Skip to main content

Advertisement

Log in

Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Weed competitive ability of a crop is one of the most widely explored aspects in the current scenario of aftermaths of synthetic herbicides such as herbicide resistant weeds emergence, residue accumulation in trophic levels; increased demands of organic produce, global climatic shifts, and other environmental issues. Further weed infestations are known to cause much more economic losses relative to crop attacks by pests. To understand the basic characteristics and underlying processes governing the competitive ability of a crop is therefore prudent, particularly in staples such as wheat. We discuss here an overview of the existing attributes of wheat-weed environment, the significance of crop competitiveness and various associated above-ground and below-ground traits (pertaining to early seed vigor and early seedling germination) discerned through biological, classical genetics and high throughput omics toolbox to provide numerous resources in terms of genome and transcriptome sequences, potential QTLs, genetic variation, molecular markers, association mapping studies, and others. Competitiveness is a cumulative response manifested as morphological, physiological, biochemical or allelochemical response ultimately driven through genetic architecture of a crop and its interaction with environment. Development of wheat competitive cultivar thus requires interdisciplinary approaches and germplasm screening to identify potential donors for competitiveness is an attractive and feasible alternative. For which utilization of landraces and other wild species, already proven to house sufficient genetic heterogeneity, thus poses a competitive advantage. Further, the availability of novel breeding techniques such as rapid generation advance could speed up the development of competitive wheat ideotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addisu M, Snape JW, Simmonds JR, Gooding MJ (2009) Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica 166:249–267

    Article  CAS  Google Scholar 

  • Agostinetto D, Tarouco CP, Nohatto MA, Oliveira C, Fraga DS (2017) Metabolic activity of wheat and ryegrass plants in competition. Planta Daninha 35:e017155463

    Article  Google Scholar 

  • Aharon S, Peleg Z, Argaman E, Ben-David R, Lati RN (2020) Image-based high-throughput phenotyping of cereals early vigor and weed-competitiveness traits. Remote Sens 12:3877

    Article  Google Scholar 

  • Alipour H, Bihamta M, Mohammadi V, Peyghambari S, Zhang G (2017) Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01293

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55:239e248

    Article  Google Scholar 

  • Asaduzzaman M, Pratley JE, An M, Luckett DJ, Lemerle D (2015) Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals. Front Plant Sci 5:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Balyan RS, Malik RK, Panwar RS, Singh S (1991) Competitive ability of winter-wheat cultivars with wild oat (Avena ludoviciana). Weed Sci 39:154–158

    Article  Google Scholar 

  • Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  PubMed  Google Scholar 

  • Barberi P (2002) Weed management in organic agriculture: are we addressing the right issues? Weed Res 42:177–193

    Article  Google Scholar 

  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barleyselection and breeding. Weed Res 44:78–86

    Article  Google Scholar 

  • Bertholdsson NO (2005) Early vigour and allelopathy–two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res 45:94–102

    Article  Google Scholar 

  • Bertholdsson NO (2011) Use of multivariate statistics to separate allelopathic and competitive factors influencing weed suppression ability in winter wheat. Weed Res 51:273–283

    Article  Google Scholar 

  • Bertholdsson NO, Weedon O, Brumlop S, Finckh MR (2016) Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Euro J Agron 79:23–30

    Article  Google Scholar 

  • Blackshaw RE, O’Donovan JT, Harker KN, Li X (2002) In: Beyond herbicides: new approaches to managing weeds. In: proceedings of the international conference on environmentally sustainable agriculture for dry areas, pp 305–312

  • Bruggeman SA, Horvath DP, Fennell AY, Gonzalez-Hernandez JL, Clay SA (2020) Teosinte (Zea mays ssp. parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties. PLoS ONE 15(8):e0237715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Piasecki C, Chavarria G, Stewart CN Jr, Vargas L (2019) Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int J Mol Sci 20:1–20

    Article  CAS  Google Scholar 

  • Challaiah BOC, Wicks GA, Johnson VA (1986) Competition between winter-wheat (Triticum aestivum) cultivars and downy brome (Bromus tectorum). Weed Sci 34:689–693

    Article  Google Scholar 

  • Chaudhary A, Chhokar RS, Dhanda S, Kaushik P, Kaur S, Poonia TM, Khedwal RS, Kumar S, Punia SS (2021) Herbicide resistance to Metsulfuron-Methyl in Rumex dentatus L. in north-west India and its management perspectives for sustainable wheat production. Sustainability 13:6947

    Article  Google Scholar 

  • Chauhan BS, Matloob A, Mahajan G, AslamF FSK, Jha P (2017) Emerging challenges and opportunities for education and research in weed science. Front Plant Sci 8:1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman R, Gill G, Rebetzke G (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Austr J AgricRes 52:1235–1246

    Article  CAS  Google Scholar 

  • Costanzo A, Barberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production- a review. Agron Sustain Dev 34:327–348

    Article  Google Scholar 

  • de Kroon H, Mommer L, Nishiwaki A (2003) Root competition: towards a mechanistic understanding. In: de Kroon H, Visser EJW (eds) Root ecology. Springer, Berlin

    Chapter  Google Scholar 

  • Didon UME, Hansson ML (2002) Competition between six spring barley (Hordeum vulgare L.) cultivars and two weed flora in relation to interception of photosynthetic active radiation. Biol Agric Hortic 20:257–274

    Article  Google Scholar 

  • Dimaano N, Ali J, Sta Cruz P, Baltazar A, DiazM AB, Li Z (2017) Performance of newly developed weed-competitive rice cultivars under lowland and upland weedy conditions. Weed Sci 65:798–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimaano N, Ali J, Anumalla M, Cruz P, Baltazar A, Diaz M, Pang YL, Acero B, Li Z (2018) Novel quantitative trait loci for weed competitive ability traits using the early generation of backcross rice populations. Preprints. https://doi.org/10.20944/preprints201808.0493.v1

    Article  Google Scholar 

  • Dimaano N, Ali J, Mahender A, Cruz PCS, Baltazar AM, Diaz MGQ, Pang YL Jr, Acero BL, Li Z (2020) Identification of quantitative trait loci governing early germination and seedling vigor traits related to weed competitive ability in rice. Euphytica 216:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drews S, Neuhoff D, Kopke U (2009) Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res 49:526–533

    Article  Google Scholar 

  • Fang Y, Liu L, Xu BC, Li FM (2011) The relationship between competitive ability and yield stability in an older ad modern winter wheat cultivar. Plant Soil 347:7–23

    Article  CAS  Google Scholar 

  • Feledyn-Szewczyk B, JończykK BA (2013) The morphological features and canopy parameters as factors affecting the competition between winter wheat varieties and weeds. J Plant Prot Res 53:203–209

    Article  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Larqué-Saavedra A (1998) Wheat yield progress is associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Fitter A (2003) Making allelopathy respectable. Science 301:1337–1338

    Article  CAS  PubMed  Google Scholar 

  • Fradgley N, Bentley AR, Gardner KA, Howell PJ, MackayI SM et al (2017) Development and QTL mapping in a 16 founder wheat magic population. Cereal Res Comm 45:13–14

    Google Scholar 

  • Gage KL, Schwartz-Lazaro LM (2019) Shifting the paradigm: an ecological systems. Approach Weed Manag Agric 9:179

    Google Scholar 

  • Gaines TA, Tranel PJ, Fleming MB, PattersonEL KA, Ravet K, Giacomini DA, Gonzalez S, Beffa R (2017) Applications of genomics in weed science. In: Jugulam M (ed) Biology, physiology and molecular biology of weeds. CRC, Boca Raton, FL, pp 185–217

    Google Scholar 

  • Galon L, André M, Bagnara M, Gabiatti R, Wilson F, Júnior R, Basso F, Nonemacher F, Luciane R, Radunz L, Forte C (2018) Interference periods of weeds infesting maize crop. J Agric Sci. https://doi.org/10.5539/jas.v10n10p197

    Article  Google Scholar 

  • Gealy DR, Yan W (2012) Weed suppression potential of ‘Rondo’ and other indica rice germplasm lines. Weed Technol 26:524–527

    Article  Google Scholar 

  • Gharde Y, Singh PK, Dubey RP, Gupta PK (2018) Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot 107:12–18

    Article  Google Scholar 

  • Goldberg DE (1990) Components of resource competition in plant communities. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, CA, USA, pp 27–45

    Google Scholar 

  • Gornish ES, Case E, Valle M, Bean TM, Moore-O’Leary KA (2018) A systematic review of management efforts on goatgrass (Aegilops spp) dominance. Plant Ecol 219:549–560

    Article  Google Scholar 

  • Guo L, Qiu J, LiLF LuB, Olsen K, Fan L (2018) Genomic Clues for Crop-Weed Interactions and Evolution. Trends Plant Sci 23:1–14

    Article  CAS  Google Scholar 

  • Hansen PK, Klarskov P (2008) Crop-weed interactions determined by sensor techniques. University of Copenhagen, Department of Agricultural Sciences, pp 1–120

    Google Scholar 

  • Hoad SP, Bertholdsson NO, Neuhoff D, Kopke U (2012) Approaches to breed for improved weed suppression in organically grown cereals. In: Van Buren ETL, Myers JR (eds) Organic Crop Breeding. Wiley-Blackwell, Oxford, UK, pp 61–76

    Chapter  Google Scholar 

  • Hoad S, Davies DHK, Topp CFE (2006) Designing crops for low input and organic systems: enhancing wheat competitive ability against weeds. Paper presented at Crop Protection in Northern Britain, United Kingdom, pp 157–162

  • Hollomon DW (2012) Do we have the tools to manage resistance in the future? Pest Manag Sci 68:149–154

    Article  CAS  PubMed  Google Scholar 

  • Horvath D (2010) Genomics for weed science. Curr Genomics 11:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath D, Hansen S, Pierik R, Yan D, Clay B, Scheffler B et al (2015) RNAseq reveals weed inducedPIF3 likeas a candidate target to manipulate weed stress response in soybean. New Phytol 207:196–210

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Bruggeman S, Moriles-Miller J, Anderson JV, Dogramaci M, Scheffler B et al (2018) Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct 2:e00057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath DP, Clay SA, Bruggeman SA, Anderson JV, Chao WS, Yeater K (2019) Varying weed densities alter the corn transcriptome, highlighting a core set of weed-induced genes and processes with potential for manipulating weed tolerance. Plant Genome 12:190035

    Article  CAS  Google Scholar 

  • Jabran K, Farooq M (2013) Implications of potential allelopathic crops in agricultural systems. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Springer, Berlin, pp 349–385

    Chapter  Google Scholar 

  • Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65

    Article  Google Scholar 

  • Jamil M, Ali A, Gul A, AwanA AA, Ibrahim A, Naveed N, Yasin N, Mujeeb-Kazi A (2019) Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol. https://doi.org/10.1186/s12870-019-1754-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaradat AA (2011) Wheat landraces: genetic resources for sustenance and sustainability. p 1–20. USDA-ARS, Morris, Minnesota, USA. Available at https://www.ars.usda.gov/ARSUserFiles/50600000/products-wheat/AAJWheat%20Landraces.pdf

  • Jordan N (1993) Prospects for weed control through crop interference. Ecol Appl 3:84–91

    Article  PubMed  Google Scholar 

  • Kato-Noguchi H, Peters RJ (2013) The role of momilactones in rice allelopathy. J Chem Ecol 39:175–185

    Article  CAS  PubMed  Google Scholar 

  • Keith BK, Burns EE, Bothner B, Carey CC, MazurieAJ HJK, Biyiklioglu S, Budak H, Dyer WE (2017) Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. Pest Manag Sci 73:2267–2281

    Article  CAS  PubMed  Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS ONE 10:e0129580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khazaei I, Salehi R, Kashi A, Mirjalili S (2013) Improvement of lettuce growth and yield with spacing, mulching and organic fertilizer. Int J Agric Crop Sci 6:1137–1143

    Google Scholar 

  • Kidane YG, Hailemariam BN, Mengistu DK, Fadda C, Pè ME, Dell’Acqua M (2017) Genome-wide association study of Septoria tritici blotch resistance in Ethiopian durum wheat landraces. Front Plant Sci 8:1586. https://doi.org/10.3389/fpls.2017.01586

    Article  PubMed  PubMed Central  Google Scholar 

  • Konvalina P, Capouchova I, Stehno Z, Moudry J (2010) Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming. J Agrobiol 27:9–17

    Article  Google Scholar 

  • Konvalina P, Stehno Z, Capouchová I, Zechner E, Berger S, Grausgruber H, Janovská D, Moudrý J (2014) Differences in grain/straw ratio, protein content and yield in landraces and modern varieties of different wheat species under organic farming. Euphytica 199:31–40

    Article  Google Scholar 

  • Korres NE, Froud-Williams R (2002) Effects of winter wheat cultivars and seed rate on the biological characteristics of naturally occurring weed flora. Weed Res 42:417–428

    Article  Google Scholar 

  • Lazzaro M, Bàrberi P, Dell’Acqua M, Enrico Pe M, Limonta M, Barabaschi D, Cattivelli L, Laino P, Vaccino P (2019) Unraveling diversity in wheat competitive ability traits can improve integrated weed management. Agron Sustain Dev 39:1–11

    Article  CAS  Google Scholar 

  • Lemerle D, Verbeek B, CousensRD CNE (1996) The potential for selecting wheat varieties strongly competitive against weeds. Weed Res 36:505–513

    Article  Google Scholar 

  • Lemerle D, Gill GS, Murphy CE, Walker SR, Cousens RD, Mokhtari S, Peltzer SJ, Coleman R, Luckett DJ (2001) Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust J Agric Res 52:527–548

    Article  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Kursad O, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P (2015) Exploiting geneticdiversity from landraces in wheat breeding for adaptationto climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annal Bot 112:347–357

    Article  CAS  Google Scholar 

  • Mahender A, Anandan A, Pradhan SK (2015) Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers. Planta 241:1027–1050

    Article  CAS  PubMed  Google Scholar 

  • Manickavelu A, Jighly A, Ban T (2014) Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide polymorphic markers. BMC Plant Biol 14:1–11

    Article  CAS  Google Scholar 

  • Maroli AS, Gaines TA, Foley ME, DukeSO DM, AndersonJV HDP, Chao WS, Tharayil N (2018) Omics in weed science: A perspective fromgenomics, transcriptomics, andmetabolomics approaches. Weed Sci 66:1–15

    Article  Google Scholar 

  • Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86:333–343

    Article  Google Scholar 

  • Mason H, Navabi A, Frick B, O’Donovan J, Spaner D (2007) Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in Northern Canada. Agron J 99:1199–1207

    Article  Google Scholar 

  • Mason H, Goonewardene L, Spaner D (2008) Competitive traits and the stability of wheat cultivars in differing natural weed environments on the northern Canadian Prairies. J Agric Sci 146:21–33

    Article  Google Scholar 

  • McElroy JS (2018) Weed Genomic Data Repository. http://weedgenomics.org/ species

  • Mengistu DK, Kidane YG, CatellaniM FE, Fadda C, Pè ME, Dell’Acqua M (2016) High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J 14:1800–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy KM, Dawson JC, Jones SS (2008) Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crop Res 105:107–115

    Article  Google Scholar 

  • Mwendwa P, Mutea N, Kaimuri MJ, KaimuriMJ BAD, Kroll T (2020) Promote locally led initiatives to fight female genital mutilation/cutting (FGM/C) lessons from anti-FGM/C advocates in rural Kenya. Reprod Health 17:1–15

    Article  Google Scholar 

  • Mwendwa JM, Weston PA, Fomsgaard I, Laursen BB, Brown WB, Wu H, Rebetzke G, Quinn JC, Weston LA (2016) Metabolic profiling for benzoxazinoids in weed-suppressive and early vigour wheat genotypes. In: Proceedings of the 20th Australasian weeds Conference, Perth, Western Australia, 11–15 September 2016; 11: 353–57

  • Neve P (2018) Gene drive systems: do they have a place in agricultural weed management? Pest Manag Sci 74:2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngow Z, Chynoweth RJ, Gunnarsson M, Rolston P, Buddenhagen CE (2020) A herbicide resistance risk assessment for weeds in wheat and barley crops in New Zealand. PLoS ONE 15(6):e0234771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeyer HM, Jerez JM (1997) Chromosomal location ofgenes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79:10–14

    Article  CAS  Google Scholar 

  • Oerke E (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Res 89:263–280

    Article  Google Scholar 

  • Rasmussen IA (2004) The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res 44:12–20

    Article  Google Scholar 

  • Ravet K, Patterson E, Kraehmer H, Hamouzova K, Fan L, Jasieniuk M, Lawton-Rauh A et al (2018) The power and potential of genomics in weed biology and management: Power and potential of weed genomics. Pest Manag Sci. https://doi.org/10.1002/ps.5048

    Article  PubMed  Google Scholar 

  • Rebetzke G, Ingvordsen C, Newman P, Weston LA, French B, Gill G (2018) Delivering weed‐competitive, wheat breeding lines to growers. GRDC Grains Research Update: Wagga Wagga, Australia pp 35–40

  • Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50:291–301

    Article  Google Scholar 

  • Saito K (2010) Weed pressure level and the correlation between weed competitiveness and rice yield without weed competition: An analysis of empirical data. Field Crop Res 117:1–8

    Article  Google Scholar 

  • Sardesai N, Nemacheck JA, Subramanyam S, Williams CE (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Seavers GP, Wright KJ (1999) Crop canopy development and structure influence weed suppression. Weed Res 39:319–328

    Article  Google Scholar 

  • Senerchia N, Wicker T, Felber F, Parisod C (2013) Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat. Genome Biol Evol 5:1010–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaner DL, Beckie HJ (2013) The future for weed control and technology. Pest Manag Sci 70:1329–1339

    Article  CAS  Google Scholar 

  • Singh CK, Singh PK, Sharma D, Choudhury MR, Sahu A (2019) Identification of different types of weeds in wheat crop during rabi season in suddhowala village of dehradun. Parmar Publishers & Distributors, Dhanbad, Jharkand, pp 41–55

    Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Tanner JW, Gardener CJ, Stoskopf NC, Reinbergs E (1966) Some observations on upright-leaf-type small grains. Can J Plant Sci 46:690

    Article  Google Scholar 

  • Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 141:444–450

    Article  CAS  PubMed  Google Scholar 

  • Tesfay A (2014) Effect of weed management methods on weeds and wheat (Triticum aestivum L.) yield. AfrJ Agric Res 9:1914–1920

    Google Scholar 

  • Thorp K, Tian LF (2004) A review on remote sensing of weeds in agriculture. Precision Agric 5:477–508

    Article  Google Scholar 

  • Travlos IS (2012) Reduced herbicide rates for an effective weed control in competitive wheat cultivars. Inter J Plant Prod 6:1–13

    CAS  Google Scholar 

  • Vandeleur RK, Gill GS (2004) The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Aust J Agric Res 55:855–861

    Article  Google Scholar 

  • van der Meulen A, Chauhan BS (2016) A review of weed management in wheat using crop competition. Crop Prot 95:1–7

    Google Scholar 

  • Venske E, dos Santos RS, Busanello C, Gustafson P, de Oliveira AC (2019) Bread wheat: a role model for plant domestication and breeding. Hereditas 156:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, LiH SD, Pierre CS, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP, Ellis M, Fuentes-Davila G, Reynolds M, Sonders K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S (2016) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092. https://doi.org/10.1038/srep23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanga MA, Shimelis H, Mark JM, Laing D (2021) Opportunities and challenges of speec breeding: a review. Plant Breed 140:185–194

    Article  Google Scholar 

  • Warwick SI, Stewart C (2005) Crops come from wild plants: how domestication, transgenes, and linkage together shape ferality. Crop Feral Volunt 36:9–30

    Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MA, Hinchliffe A, Steed A et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wicks GA, Nordquist PT, Baenziger PS, KleinRN HRH, Watkins JE (2004) Winter wheat cultivar characteristics affect annual weed suppression. Weed Technol 18:988–998

    Article  Google Scholar 

  • Winfield MO, Allen AM, Wilkinson PA, Burridge AJ, Barker GLA, Coghill J, Waterfall C, Wingen LU, Griffiths S, Edwards KJ (2018) High-density genotyping of the A.E. Watkins collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnol J 16:165–175

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Loschenberger F et al (2008) Development in breeding cereals for organic agriculture. Euphytica 163:323

    Article  Google Scholar 

  • Worthington M, Reberg-Horton C (2013) Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability. J Chem Ecol 39:213–231

    Article  CAS  PubMed  Google Scholar 

  • Worthington M, Reberg-HortonSC B-G, Jordan D, Weisz R, Murphy JP (2015a) Relative contributions of allelopathy and competitive traits to the weed suppressive ability of winter wheat lines against Italian ryegrass. Crop Sci 55:57–64

    Article  Google Scholar 

  • Worthington M, Reberg-Horton SC, Brown-Guedira G, Jordan D, Weisz R, Murphy JP (2015b) Morphological traits associated with superior weed suppressive ability of winter wheat against Italian Ryegrass. Crop Sci. https://doi.org/10.2135/cropsci2014.02.0149

    Article  Google Scholar 

  • Wu H, Pratley J, Ma W, Haig T (2003) Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor Appl Genet 107:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Pratley J, Lemerle D, An M, Liu DL (2007) Modern genomic approaches to improve allelopathic capability in wheat (Triticum aestivum L.). Allelopathy J 19:97–108

    Google Scholar 

  • Yadav R, Gaikwad KB, Bhattacharyya R (2017) Breeding wheat for yield maximization under conservation agriculture. Indian J Genet 77:185–198

    Article  CAS  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerner MC, Rebetzke GJ, Gill GS (2016) Genotypic stability of weed competitive ability for bread wheat (Triticum aestivum) genotypes in multiple environments. Crop Pasture Sci 67:695–702

    Article  Google Scholar 

  • Zuo N, Fang J, Lv X, Zhou Y, Hong Y, Li T, Tong H, Wang X, Wang W, Jiang T (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS ONE 7:e37561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwart RS, Thompson JP, Sheedy JG, Nelson JC (2006) Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the International Triticeae Mapping Initiative (ITMI) population. Aust J Agric Res 57:525–530

    Article  Google Scholar 

Download references

Funding

The authors are grateful to DST-SERB for supporting this work vide File No. SRG/2019/001181.

Author information

Authors and Affiliations

Authors

Contributions

PK and AS have made a substantial, direct and intellectual contribution to the work. PK conceptualized and wrote the manuscript. SS assisted in manuscript writing. All authors have critically read and approved the final manuscript.

Corresponding author

Correspondence to Parampreet Kaur.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Sachan, S. & Sharma, A. Weed competitive ability in wheat: a peek through in its functional significance, present status and future prospects. Physiol Mol Biol Plants 27, 2165–2179 (2021). https://doi.org/10.1007/s12298-021-01079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01079-y

Keywords

Navigation