Skip to main content

Advertisement

Log in

Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: a global appraisal

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Tecomella undulata is a valuable tree that is threatened owing to unlawful harvesting and habitat fragmentation. The current study looked at this species’ ecological niches in hot, arid locations around the world. Ensemble modeling was used in this study to assess the species’ global distribution based on current and future bio-climatic (2050 and 2070) and four green house (RCPs 2.6, 4.5, 6.0, and 8.5) scenarios, as well as soil attributes. Our findings suggest that bioclimatic factors, rather than soil, are the primary constraint on this species’ spread. Isothermality and precipitation seasonality influenced the spread of this species. In 2050 and 2070, the largest region covered by the optimal and moderate classes dropped from RCP 2.6 to RCP 8.5. When current climatic circumstances are taken into account, optimal habitat suitability falls from − 13.09% in 2050 RCP2.6 to − 50.1% in 2050 and 2070 RCP8.5. Habitat loss in 2050 was greater than in RCP4.5 and 6.0 for 2070. When analyzing RCP combinations for this species, we came upon an unusual circumstance. Combining RCP6.0 and RCP8.5 with 2050 yielded the best results, whereas combining RCP 4.5 and 6.0 produced the worst. The findings may be useful to government and non-profit forest management organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used in this study are shown in the paper itself as well as in the Supplementary file. The occurrence points may be made available upon proper request to the authors for research purposes.

References

  • Ab Lah NZ, Yusop Z, Hashim M, Mohd Salim J, Numata S (2021) Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 12:1449

    Article  Google Scholar 

  • Adhikari D, Reshi DBK, Samant SS, Chettri A, Upadhaya K, Shah MA, Singh PP, Tiwar R, Majumdar K, Pradhan A, Thakur ML, Salam N, Zahoor Z, Mir MM, Kaloo ZA, Barik SK (2018) Inventory and characterization of new populations through ecological niche modeling improve threat assessment. Curr Sci 114(3):519–531

  • Ahmad R, Khuroo AA, Hamid M, Charle, B, Rashid I (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate changes. Biodivers Conserv. https://doi.org/10.1007/s10531-019-01775-y

  • Akyol A, Örücü, ÖK. 2019. Investigation and evaluation of stone pine (Pinus pinea L.) current and future potential distribution under climate change in Turkey. CERNE 25(4): 415–423. 10. 1590/01047760201925042643

  • Al-Qaddi N, Vessella F, Stephan J, Al-Eisawi D, Schirone B (2017) Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Reg Environ Chang 17:143–156. https://doi.org/10.1007/s10113-016-0987-2

    Article  Google Scholar 

  • Alvala R, Alvala M, Sama V, Sriram D, Ullas JV, Reddy M (2013) Scientific evidence for traditional claim of anti-obesity activity of Tecomella undulata bark. J Ethnopharmacol 148:441–448

    Article  Google Scholar 

  • Amiri I, Sodaeizadeh H, Arany AM, Ardakani MAH, Fathizad H (2021) Investigating biophysical constrains and determining potential cultivation of Tecomella uudulata using fuzzy logic model: a case study arid region of Iran. Arabian J Geosci 14. https://doi.org/10.1007/s12517-021-07914-6

  • Amiri I, Sodaiezade H, Arani AM, Semiromi JT, Hakimazade MA (2019a) Autecology of Tecomella undulata (Roxb.) Seem. In Southern Iran. Iranian J Forest Poplar Res 26 (4). https://doi.org/10.22092/ijfpr.2018.118581

  • Amiri I, Sodaiezade H, Arani AM, Semiromi JT, Hakimzade MA (2019b) Survey on genetic diversity among Tecomella undulata (Roxb.) Seem. Genotypes using SSR markers. Iranian J Forest Poplar Res 27(2):158–168. https://doi.org/10.22092/ijfpr.2019.120121

  • Araujo M, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Armenteras D, Mulligan M (2010) Modeling the potential distribution of tree species on a national scale in Colombia: application to Palicourea angustifolia Kunth and Palicourea guianensis. Aubl Caldasia 32:355–380

    Google Scholar 

  • Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K, Umbreen S (2022) Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan. Sustainability 14:7215. https://doi.org/10.3390/su1412721

  • Arslan ES, Akyol A, Orucu OK, Sankaya AG (2020) Distribution of rose hip (Rosa canina L.) under current and future climate conditions. Reg Environ Change 20. https://doi.org/10.1007/s10113-020-01695-6

  • Arya HC, Shekhawat NS (1986) Clonal multiplication of tree species in the Thar desert, India through tissue culture. For Ecol Manag 16:201–208

    Article  Google Scholar 

  • Arya S, Toky OP, Harris SM, Harris PJC (1992) Tecomella undulata (Rohira): a valuable tree of the thar desert. Int Tree Crops J 7:141–147

    Article  Google Scholar 

  • Ashraf U, Peterson AT, Chaudhry MN, Ashraf I, Saqib Z, Rashid Ahmad S, Ali H (2017) Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere 8(5):e01825. https://doi.org/10.1002/ecs2.1825

  • Barkhori S, Sharifi A, Asadi H, Molaei MN, Salehpour J (2020) Simulating the effect of climate change on soil erosion risk in two regions, Tal Siah and Anar Sheitan forest (Kerman province, Iran). Desert Ecosystem Engineering J 9(5):25–40. https://doi.org/10.22052/JDEE.2020.227498.1064

  • Bhansali RR (1993) Bud culture for shoot multiplication and plantlet formation of Tecomella undulata (Rohida) a wood tree of arid zone. Trop Sci 33:1–8

    Google Scholar 

  • Bhau BS, Negi MS, Jindal SK, Singh M, Lakshmikumaran M (2007) Assessing genetic diversity of Tecomella undulata (Sm.) – an endangered tree species using amplified fragment length polymorphisms-based molecular markers. Curr Sc. 93(1):67–72

  • Bland LM, Keit, DA, Miller RM, Murray NJ, Rodríguez JP (2017) Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.1. Gland, Switzerland: IUCN. 99 p.

  • Boral D, Moktan S (2021) Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecological Proc 10:26. https://doi.org/10.1186/s13717-021-00294-5

    Article  Google Scholar 

  • Breiner F, Guisan A, Bergamini A, Nobis M (2015) Overcoming limitations of modeling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  • Cao Z, Zhang L, Zhang X, Guo Z (2021) Predicting the potential distribution of Hylomecon japonica in china under current and future climate change based on maxent model. Sustainability 13:11253. https://doi.org/10.3390/su132011253

    Article  Google Scholar 

  • CAZRI (2021) Annual Report- 2021 ICAR-Central Arid Zone Research Institute. Jodhpur, India, p 223

    Google Scholar 

  • Chal J, Kumar V, Kaushik S (2011) A phytopharmacological overview on Tecomella undulata G. Don J App Pharm Sci 1:11–12

    Google Scholar 

  • Changjun G, Yanli T, Linshan L, Bo W, Yili Z, Haibin Y, Xilong W, Zhuoga Y, Binghua Z, Bochao C (2021) Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecol Evol 1:22. https://doi.org/10.1002/ece3.7974

    Article  Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):791–802

    Google Scholar 

  • Chavan SB, Newaj R, Rizvi RH, AjitPrasad R, Alam B, Handa AK, Dhyani SK, Jain A, Tripathi D (2020) Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan India. Environ Dev Sustain 23(5):4573–4593

    Google Scholar 

  • Chen K, Wang B, Chen C, Zhou G (2022) Maxent modeling to predict the current and future distribution of Pomatosace filicula under climate change scenarios on the Qinghai-Tibet Plateau. Plants 11:670. https://doi.org/10.3390/plants11050670

    Article  Google Scholar 

  • Chitale V, Silwal R, Matin M (2018) Assessing the impacts of climate change on distribution of major non timber forest plants in Chitwan Annapurna Landscape. Nepal Resources 7:66

    Article  Google Scholar 

  • Coban HO, Orucu OK, Arslan ES (2020) MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 2671. https://doi.org/10.3390/su12072671.

  • Cotrina Sánchez DA, Castillo, EB, Briceno NBR, Oliva M, Guzman CT, Guerra CAA, Bandopadhyay S (2020) Distribution models of timber species for forest conservation and restoration in the Andean-Amazonia landscape, North of Peru. Sustainability 12. https://doi.org/10.3390/su12197945

  • Dagar JC (2018) Perspectives of vegetation ecology and biodiversity for management of ravine lands. In: Ravine Lands: Greening for Livelihood and Environmental Security. Eds. J.C. Dagar and A.K.Singh. pp. 69–118. https://doi.org/10.1007/978-981-10-8043-2_3

  • Danya U, Udhayasankar MR, Punitha D, Arumugasamy K, Suresh NS (2012) In vitro regeneration of Tecomella undulata (Sm.) Seem-an endangered medicinal plant. Int J Plant, Animal Environ Sci 44–49

  • Dauby G, Stevart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Porter P, George E, Gereau RE, Couvreur TLP (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Eva 7(24):11291–11303

    Google Scholar 

  • Dhir R, Shekhawat GS (2012) Critical review on Tecomella undulata: a medicinally potent endangered plant species of the Indian thar desert. Int J Curr Res 4(6):34–44

    Google Scholar 

  • Dixit AM, Rao SSV (2000) Observation on distribution and habitat characteristic of Gugal (Commiphora wightii) in the arid region of Kachchh, Gujarat (India). Trop Ecol 14(1):81–88

    Google Scholar 

  • Dutta BK, Tewari JC, Bohra MD (1997) Note on effect of nitrogen and phosphorus fertilizer on early growth of four arid zone tree species. Curr Agric 21:123–124

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatology 37(12):4302–4315

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conser 24:38–49

    Article  Google Scholar 

  • Franklin J (2013) Species distribution models in conservation biogeography: developments and challenges. Divers Distrib 19:1217–1223

    Article  Google Scholar 

  • Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Energy J 3:343–354

    Google Scholar 

  • Gilani H, Goheer MA, Ahmad H, Hussain K (2020) Under predicted climate change: distribution and ecological niche modeling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol Indic 111. https://doi.org/10.1016/j.ecolind.2019.106049.

  • Goncalves-Oliveira RC, Rodrigues HB, Benko-Iseppon AM (2022) Range distribution of the invasive alien species Calotropis procera in South America dry environments under climatic change scenarios. J Arid Environ 205. https://doi.org/10.1016/j.jaridenv.2022.104819

  • Goodin JR, Northington DK (1985) Plant resource of arid and semi-arid lands- a global perspective. Academic Press Inc., New York

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lweis I, Sutcliffe PR, Tulloch AIT, Regan TJ, McDonald-Madden E, Mantyka-Pringle C, Margin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Bucley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  Google Scholar 

  • Gupta GN, Choudhary BN, R, (1996) Growth and biomass production of Tecomella undulata as affected by rain water harvesting and conservation practices in arid zone. Int Tree Crops J 8(2–3):163–176. https://doi.org/10.1080/01435698.1995.9752942

    Article  Google Scholar 

  • Gupta H, Phulwaria AK, Rai M, Shekhawat NS (2014) Conservation genetics of endangered medicinal plant Commiphora weightii in Indian Thar Desert. Gene 535:266–272

    Article  Google Scholar 

  • Habib G, Khan NA, Sultan A, Ali M (2016) Nutritive value of common tree leaves for livestock in the semi-arid and arid rangelands of Northern Pakistan. Livestock Sci 184:64–70

    Article  Google Scholar 

  • Hengl T, De Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagoti´c A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B (2017) SoilGrids250m: globalgridded soil information based on machine learning. PLoS ONE 12: e0169748

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution in-terpolated climate surfaces for global land area. Int J Climatol 25(15):1965–1968

    Article  Google Scholar 

  • Hundal JS, Singh I, Wadhwa M, Singh C, Uppal C, Kaur G (2019) Effect of Punica granatum and Tecomella undulata supplementation on nutrient utilization, enteric methane emission and growth performance of Murrah male buffaloes. J Animal Feed Sci 28:110–119

    Article  Google Scholar 

  • IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Available from: http://www.iucnredlist.org/documents/ RedListGuidelines.pdf

  • James GD, Witern T, Hastie T, Tibshirani R (2013) An introduction to statistical learning with applications in R. Springer International Publishing, New York, New York, USA

    Book  Google Scholar 

  • Jindal SK, Bhansali RR (1997) Effect of plant growth regulators and extracts of abnormal growths on seed germination and seedling characteristics of rohida (Tecomella undulata (Sm.) Seem.). Curr Agric 21:97–100

    Google Scholar 

  • Jindal SK, Kackar ML, Solanki RR (1987) Germplasm collection and genetic variability in Rohira (Tecomella undulata (Sm.) Seem. in Western Rajasthan. Indian J for 10:52–55

    Google Scholar 

  • Jindal SK, Singh DV, Moharana PC, Patel N (2009) Annual Report: ICAR-Central Arid Zone Research Institute, Jodhpur. Pages, India, p 156

    Google Scholar 

  • Jindal SK, Singh DV, Moharana PC, Patel N (2010) Annual Report: ICAR-Central Arid Zone Research Institute, Jodhpur. Pages, India, p 174

    Google Scholar 

  • Jinga P, Liao Z, Nobis MP (2021) Species distribution modeling that overlooks intraspecific variation is inadequate for proper conservation of marula (Sclerocarya birrea, Anacardiaceae). Global Ecol Conser 32. https://doi.org/10.1016/j.gecco.2021.e01908

  • Kakpure MR (2019) Some noteworthy plants record to the flora of Yavatmal district, Maharashtra. India Tropical Plant Res 7(3):604–608

    Article  Google Scholar 

  • Kaky E, Gilbert F (2019) Assessment of the extinction risk of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. J Arid Environ 170. https://doi.org/10.1016/j.jaridenv.2019.05.016

  • Kaky E, Nolan V, Alatawi A, Gilbert F (2020) A comparison between ensemble and maxent species distribution modeling approaches for conservation: a case study with Egyptian medicinal plants. Ecol Inform 60. https://doi.org/10.1016/j.ecoinf.2020.101150

  • Kalia RK, Rai MK, Sharma R, Bhatt RK (2014) Understanding Tecomella undulata: an endangered pharmaceutically important timber species of hot arid regions. Genet Resour Crop Eval 61:1397–1421

    Article  Google Scholar 

  • Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156. https://doi.org/10.1111/2041-210X.12945

    Article  Google Scholar 

  • Kass JM, Meenan SI, Tinoco N, Burneo, SF, Anderson RP (2021) Improving area of occupancy estimates for parapatric species using distribution models and support vector machines. Ecol Appl 31:1–15

  • Keshar P, Pradeep PSN (2018) Comparative pharmacognositc evaluation of Tecomella undulatai and Rhododendron arboretum as two different sources of Rohitaka. Int J Green Pharmacy 12(4):242–254

    Google Scholar 

  • Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A (2022). MaxEnt modeling and impact of climate change on habitat suitability variations of economically important chilgoza pine (Pinus gerardiana Wall.) in South Asia. Forests 13: 715 .3390/f130507150.

  • Khosravi H, Solouki M, Ganjali S (2020) Investigating antibacterial properties of Tecomella undulata and Momardica charantia plant extracts on some pathogenic bacteria. Gene Cell Tissues 7(1). https://doi.org/10.5812/gct.94960.

  • Kindt R (2018) Ensemble species distribution modeling with transformed suitability values. Environ Model Softw 100:136–145

    Article  Google Scholar 

  • Kotiya A, Sharma MK, Kumar A (2018) Potential biomass for biofuels from wastelands. Biofuels: Greenhouse Gas Mitigation and Global Warming. A. Kotiya, M.K., Sharma and A. Kumar (Eds). Springer (India Pvt. Ltd.) pp. 59–79. https://doi.org/10.1007/978-81-322-3763-1_4

  • Kulhari A, Sheorayan A, Singh R, Dhawan AK, Kalia RK (2014) Survey, collection and conservation of Commiphora wightii (Arn.) Bhandari-an important medicinal plants heading towards extinction. Indian Forester 140(12):1171–1183

  • Kumar A, Ram H, Sharma SK, Rao SR (2008) Comparative meiotic chromosome studies in nine accessions of Tecomella undulata (Sm.) Seem., threatened tree of Indian desert. Silvae Genetica 57(6):301–306

  • Kumar P, Bangarwa KS, Johar V (2017) Phenological behaviour and reproductive biology of Tecomella undulata. Ecol Environ Conser 23(3):413–417

    Google Scholar 

  • Kumar S, Stohlgren TJ (2009) MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and non-native plant species richness. Ecology 87:3186–3199

    Article  Google Scholar 

  • Kumawat R, Sharma S, Kumar S (2012) An overview for various aspects of multifaceted, health care Tecomella undulate Seem. plant. Acta Pol Pharm 69(5):993–996

  • Leach K, Kelly R, Cameron A, Montgomery W, Reid N (2014) Response to climate change is related to species traits in the Lagomorpha. PlosOne. https://doi.org/10.1371/journal.pone.0122267

    Article  Google Scholar 

  • Li Y, Li M, Li C, Liu Z (2020) Optimized maxent model predictions of climate change impacts on the suitable distribution of cunninghamia lanceolata in China. Forests 11:302

    Article  Google Scholar 

  • Luitel DR, Siwakoti M, Joshi MD, Rangaswami M, Jha PK (2020) Potential suitable habitat of Eleusine coracana (L) gaertn (Finger millet) under the climate change scenarios in Nepal. BMC Ecol 20:19. https://doi.org/10.1186/s12898-020-00287-6

    Article  Google Scholar 

  • Marcer A, Sáez L, Molowny-Horas R, Pons X, Pino J (2013) Using species distribution modeling to disentangle realised versus potential distributions for rare species conservation. Biol Conser 166:221–230. https://doi.org/10.1016/j.biocon.2013.07.001

    Article  Google Scholar 

  • Marco P, Villen S, Mendes P, Noberga C, Cortes L, Castro T, Souza R (2018) Vulnerability of cerrado threatened mammals: an integrative landscape and climate modeling approach. Biodive Conserv. https://doi.org/10.1007/s10531-018-1615-x

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modeling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Mathur M (2014) Spatio-temporal variability’s in distribution patterns of Tribulus terrestris: linking patterns and processes. J Agri Sci Technol 16:1187–1201

    Google Scholar 

  • Mathur M (2015) Comportments of probability approaches in ethnbo-botanical inventories and the validation’s of outcome through internal matrix exploration. Medicinal Plants: Int J Trad Med Related Ind 7(2):79–94

    Google Scholar 

  • Mathur M, Sundaramoorthy S (2016) Pattern of herbaceous species richness and productivity along gradients of soil moisture and nutrients in the Indian Thar Desert. J Arid Environ 125:80–87

    Article  Google Scholar 

  • Mathur M, Sundarmoorthy S (2013) Inter-specific association of herbaceous vegetation in semi-arid thar desert. India Range Manag Agrofor 34(1):26–32

    Google Scholar 

  • Merow C, Smith M, Silander JA (2014) Practical guide to maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Muhammad I, Abdul R, Muhammad Z, Sawsan H, Sarfraz A, Shamim G, Barbara R, Mounir, (2022) Impact of rangeland enclosure and seasonal grazing on protected and unprotected rangelands in Chakwal region. Pakistan J Mountain Sci 19(1):46–57. https://doi.org/10.1007/s11629-021-6761-z

    Article  Google Scholar 

  • Negi RS, Sharma MK, Sharma KC, Kshetrapal S, Kothari SL, Trivedi PC (2011) Genetic diversity and variation in the endangered tree (Tecomella undulata) in Rajasthan. Indian J Fundam App Life Sci 1(1):50–58

    Google Scholar 

  • Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Anttila J, Araujo MB, Dalllas T, Dunson D, Elith J, Forester SD, Fox R, Franklin J, Godsoe W, Guisan A, O’Hara B, Hill NA, Holt RD, Hui FKC, Husby M, Kalas JA, Lehikoi-nen A, Luoto M, Mod HK, Newell G, Renner I, Roslin T, Soininen J, Thuiller W, Vanhat-alo J, Warton M, White NE, Zimmermann NE, Gravel D, Oyaskainen O (2019) A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89(3):e01370. https://doi.org/10.1002/ecm.1370

  • Nzei JM, Mwanzia VM, Ngarega BK, Musili PM, Wang QF, Chen M, Li ZZ (2022). Ecological niche modeling of water lily (Nymphaea L.) species in Australia under climate change to ascertain habitat suitability for conservation measures. Plants 11:1874. https://doi.org/10.3390/plants11141874

  • Obiakara MC, Fourcade Y (2018) Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoSONE 13(9):e0202421. https://doi.org/10.1371/journal. pone.020242.

  • Osorio-Olvera L, Lira-Noriega A, Soberon J, Townsend PA, Falcon M, Contrears-Diaz RG, Martinez-Meyer E, Barve V, Barve N (2020) Ntbox: an R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206.https://doi.org/10.1111/2041-210X.13452. https://github.com/luismurao/ntbox

  • Oyebanji OO, Salako G, Nneji LM, Oladip, SO, Bolarinwa KA, Chukwuma EC, Ayoola AO, Olagunju TE, Ighodalo DJ, Nneji IC (2021) Impact of climate change on the spatial distribution of endemic legume species of the Guineo-Congolian forest, Africa. Ecological Indicator, 122. https://doi.org/10.1016/j.ecolind.2020.107282

  • Padalia H, Srivastava V, Kushwaha SPS (2014) Modeling potential invasion range of alien invasion species, Hyptis suaveolens (L) in India: comparison of MaxEnt and GARP. Ecol Informat 22:36–43

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeo 12:361–371

    Article  Google Scholar 

  • Pecchi M, Marchi M, Burton V, Giannetti F, Moriondo M, Bernetti I, Bindi M, Chirici G (2019) Species distribution modeling to support forest management. Lit Rev Ecol Modell 411:108817

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP (2011) Ecological niches and geographic distributions. Princeton University Press

    Book  Google Scholar 

  • Petitpierre B, Broennimann O, Kueffer C Daehler C, Guisan A (2017) Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions. Global Ecol Biogeograp 26:275–287

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phondani PC, Bhatt A, Elsarrag E, Horr YA (2016) Ethnobotanical magnitude towards sustainable utilization of wild foliage in Arabian Desert. J Trad Complemen Med 6:209–2018

    Article  Google Scholar 

  • Plummer J (2021) Tecomella undulata. The IUCN Red List of Threatened Species 2021:e.T137731325A169300279. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T137731325A169300279.en. Accessed on 02 August 2022

  • Porfirio LL, Harris RMB, Lefroy EC, Hugh S, Gould SF (2014) Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9(11): e113749. doi:10.1371/ journal.pone.0113749

  • Pradhan P (2016) Strengthening Maxent modeling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8(5):29–34

    Google Scholar 

  • Ranjitkar S, Kindt R, Sujakhu NM, Hart R, Guo W, Yang X, Shrestha KK, Xu J, Luedeling E (2014a) Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Global Ecol Conser 1:2–12

    Article  Google Scholar 

  • Ranjitkar S, Xu J, Shrestha KK Kindt R (2014a) Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species. Ecol Modell 282:18–24

  • Reddy CS, Meena SL, Krishna PH, Charan PD, Sharma KC (2012) Conservation threat assessment of Commiphora wightii (Arn.) Bhandari-an economically important species. Taiwania 57(3):288–293

    Google Scholar 

  • Rehman S, Iqbal Z, Qureshi R, Rahaman I, Khan MA, Elshaer MMA, AL Farraj DA, Elshikh MS, Younas M, Sakhi S, Nawaz G, Ali N, Fazal Rahaim F, Ali H, Khan I, Rahaman S, Elsaid NMAB (2022) Ethno-gynecological knowledge of traditional medicinal plants used by the Indigenous communities of the North Waziristan, Pakistan. Evidence-Based Compl Alt Med. https://doi.org/10.1155/2022/6528264

  • Rezanejad F, Hakemi FG (2017) Studies of pollen characteristic in plants of fruitless of Tecomella undulata (Sm.) Seem. (Bignoniaceae) in Golparaki region of Jiroft city, Iran. Iran J Sci Technol Trans Sci. https://doi.org/10.1007/s40995-017-0338-2

  • Rivers MC, Bachman SP, Meagher TR, Nic Lughadha E, Brummitt NA (2010) Subpopulation, locations and fragmentation: applying IUCN red list criteria to herbarium specimen data. Biodivers Conser 19:2071–2085

  • Roy MM, Tiwari JC, Ram M (2011) Agroforestry for climate change adaptation and livelihood improvement in Indian hot arid region. Inter J Agri Crop Sci 3(2):43–54

    Google Scholar 

  • Santiz EC, Lorenzo C, Carrillo-Reyes A, Navarrete DA, Islebe G (2016) Effect of climate change on the distribution of a critically threatened species Eugenia C. Therya 7:147–159

    Article  Google Scholar 

  • Sarikaya O, Karaceylan IB, Sen I (2018) Maximum entropy modeling (Maxent) of current and future distributions of Ips Mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Appl Ecol Environ Res 16:2527–2535

    Article  Google Scholar 

  • Schmitt S, Pouteau R, Justeau D, de Boissieu F, Birnbaum, P (2017) SSDM: an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 1–9. https://doi.org/10.1111/2041-210X.12841

  • Sérgio C, Figueira R, Draper D, Menezes R, Sousa AJ (2007) Modeling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conser 135:341–351

    Article  Google Scholar 

  • Singh G (2009) Comparative productivity of Prosopis cineraria and Tecomella undulata based agroforestry systems in degraded lands of Indian Desert. J for Res 20(2):144–150

    Article  Google Scholar 

  • Singh G, Mutha S Bala N, Rathod TR, Bohra NK, Kuchhawaha GR (2005) Growth and productivity of Tecomella undulata based on agroforestry system in the Indian desert. Forests, Trees and Livelihoods 15:89–101

  • Singh G, Nagora PR, Haksar P, Rani A (2022) Biomass allocation and productivity of tree seedlings in responses to soil chemical changes under treated wastewater irrigation in Indian desert. Water Air Soil Pollut 233:219. https://doi.org/10.1007/s11270-022-05692-9

    Article  Google Scholar 

  • Smeraldo S, Bosso L, Salinas-Ramos VB, Ancillotto L, Sánchez-Cordero V, Gazaryan S, Russo D (2021) Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Rev 51:571–584

    Article  Google Scholar 

  • Sobrino E, Moreno AG, Elorza MS, Sanchez ED, Mata DS, Gavilan R (2001) The expansion of thermophilic plants in Iberian peninsula as a sign of climate change. In Fingerprints of Climate Change. Adaptive Behaviour and Shifting Species Range (Eds Walther, GR, Burga, CA and Edwards PJ .) 163–184 Kulwer Publishers

  • Sofi II, Verma S, Ganie AH, Sharma N, Shah MA (2022) Threat status of three important medicinal Himalayan plant species and conservation implications. Nat Conser Res 7(1):27–41

    Google Scholar 

  • Sohel SI, Akhter S, Ullah H, Haque E, Rana P (2016) Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). iForest. https://doi.org/10.3832/ifor1608-009

  • Tanwar SPS, Kumar P, Verma A, Bhatt RK, Singh A, Kanhaiya Lal M (2019) Carbon sequestration potential of agroforestry systems in the Indian arid zone. Curr Sci 117:2014–2022

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2020) Biomod2: ensemble platform for species distribution modeling; R Development Core Team: Vienna, Austria

  • Thuiller W, Lavorel S Araujo MB, Sykes MT, Prentice C (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. https://doi.org/10.1073/pnas.0409902102

  • Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeography 36:1111–1128

    Article  Google Scholar 

  • Tripathi JPM, Jaimini SN (2002) Floral and reproductive biology of Rohida (Tecomella undulata (Sm.) Seem.). Indian J for 25:341–343

    Google Scholar 

  • Tyagi H, Tomar UK (2013) Factors affecting in vitro shoot proliferation and rooting of mature Tecomella undulata (Sm.) Seem tree. Res Plant Sci 1(2):38–44

  • Ullah Z, Baloch MK, Khader JA, Baloch IB, Ullah R, AbdElslam NM, Noor S (2013) Proximate and nutrient analysis of selected medicinal plants of tank and south Waziristan area of Pakistan. Afr J Pharm Pharmacol 7(5):179–184

    Article  Google Scholar 

  • Visser H, de Nijs T (2006) The Map Comparison Kit. Environ Model Softw 21:346–358

    Article  Google Scholar 

  • Wani IA, Khan S, Verma S, Al-Misned FA, Shafik HM, El-Serehy HA (2022) Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Rep 12. https://doi.org/10.1038/s41598-022-16837-5

  • Wani IA, Verma S, Kumari P, Charles B, Hashim MJ, El-Serehy HA (2021) Ecological assessment and environmental niche modeling of Himalayan rhubarb (Rheum webbianum Royle) in northwest Himalaya. PLoSONE 16(11):e0259345. https://doi.org/10.1371/journal.pone.0259345

    Article  Google Scholar 

  • Warren DL Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 2868–2883

  • Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers Distrib 20:334–343

    Article  Google Scholar 

  • Wei B, Wang RL, Hou K, Wang XY, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16. https://doi.org/10.1016/j.gecco.2018.e00477

  • Wouyou HG, Lokonon BE, Idohou R, ZossouAkete AG, Assogabadjo AE Kakai RG (2022) Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon, 8: https://doi.org/10.1016/j.heliyon.2022.e09022

  • Wright AN, Schwartz MW, Hijmans RJ, Shaffer HB (2016) Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians. Clim Change 134:579–591. https://doi.org/10.1007/s10584-015-1552-6

    Article  Google Scholar 

  • Xu W, Jin J, Cheng J (2021) Predicting the potential geographic distribution and habitat suitability of two economic forest trees on the Loess Plateau China. Forests 12:747

    Article  Google Scholar 

  • Yan X, Wang S, Duan Y, Han J, Huang D, Zhou J (2021) Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by Maxent. Ecol Eval 1–14

  • Ye XZ, Zhao GH, Zhang MZ, Vui XY, Fan HH, Liu B (2020) Distribution pattern of endangered plants Semiliquidambar catayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forest 11:434. https://doi.org/10.3390/f11040434

  • Zhang K, Zhang Y, Jia D, Tao J (2020a) Species distribution modeling of Sassafras tzumu and implications for forest management. Sustain 12:4132

    Article  Google Scholar 

  • Zhang Y, Liu X, Chen G, Hu G (2020b) Simulation of urban expansion based on cellular automata and maximum entropy model. Sci China Earth Sci 63:701–712

    Article  Google Scholar 

  • Zhang Y, Tang J, Ren G, Zhao K, Wang X (2021) Global potential distribution prediction of Xanthium italicum based on Maxent Model. Sci Rep. https://doi.org/10.1038/s41598-021-96041-z

    Article  Google Scholar 

  • Zolfaghari Z, Moradi M (2018) Evaluation of spatial pattern Tecomella undulata in Bushehr province. J of Environ Sci Technol. https://doi.org/10.22034/JEST.2018.14418.2303

  • Zolfaghari Z, Moradi M, Basiri R, Ghasemi A (2017) Evaluation of soil physicochemical properties of Tecomella undulata in Busher province. For Wood Prod 70(2):273–279

    Google Scholar 

  • Zolfaghari Z, Moradi M, Basiri R, Ghasemi A (2018) Evaluation of Tecomella undulata R. stands structure in Bushehr province. J Environ Sci Technol 19(4):1–17

Download references

Author information

Authors and Affiliations

Authors

Contributions

Preet Mathur: conceptualization, methodology, formal analysis, and writing — original draft. Manish Mathur: methodology, data curation, writing — review and editing, and supervision.

Corresponding author

Correspondence to Manish Mathur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Haroun Chenchouni

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16340 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, P., Mathur, M. Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: a global appraisal. Arab J Geosci 16, 131 (2023). https://doi.org/10.1007/s12517-023-11229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11229-z

Keywords

Navigation