Skip to main content

Advertisement

Log in

Mandibular and dental characteristics of the Late Jurassic mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida)

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Henkelotherium guimarotae Krebs 1991 is an important Jurassic mammal for understanding therian evolution. We are presenting a new study of extensive, previously undescribed, mandibles and dentitions. The revised dental formula is: I4? or 5?/i4, C1/c1, P4/p4, M6/m7. The canine and premolars show an alternate replacement that ends with M4/m4 eruption, and is followed by a late sequential eruption of the last three lower (m5-7) and last two upper (M5-6) molars. The lower premolars erupted in the following order: p1 → p3 → p2 → p4, and the canine erupted most probably shortly before p4. The timing of the premolar replacement before the late molar eruption is similar to that of Dryolestes leiriensis, and is a characteristic of dryolestidans. Henkelotherium lower molars have subequal roots, a plesiomorphy of non-dryolestidan mammals, and the upper molars are supported by a strong, curved lingual root; a derived character. In the upper molars, the postvallum wear surface is contiguous to the parastyle wear surface of the succeeding molar, which differs from dryolestids. The parastylar lobe of the succeeding molar, and the postvallum of the preceding molar, are imbricated, and can develop strong, continuous wear surfaces, matching the prevallid crest of the lower molar. Henkelotherium differs from dryolestids in having an inflected, shelf-like mandibular angular process with a foramen. This large sample of Henkelotherium shows a significant variation gradient along the molar series, with the strongest wear occurring only in two to three consecutive molars. The extraordinarily long molar row is correlated with the late growth of jaws; and the jaw with late addition of molars sustained an effective mastication, much longer in older adults of dryolestidans than in other Mesozoic stem therians. The late eruption of several more molars after completion of antemolar replacement suggests that dryolestidans had either a longer-lived life, or slower life-history traits, or a combination of both, than crown therians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Specimens are deposited in the cited collections and institutions. Images of segmentation of all specimens scanned by uCT for this study, and SEM images of all specimens examined by Scanning Electron Microscopy are presented in text figures. The supplementary information provides further data in photographs of additional 15 specimens, and three movies on the composite reconstruction of adult mandibles, of the juvenile specimen Gui Mam 44/80, and of a restoration of incisors and canine of Gui Mam 133/77. Additional data are available from authors upon reasonable request.

References

  • Anthwal, N., D.J. Urban, Z.-X. Luo, K.E. Sears, and A.S. Tucker. 2017. Meckel’s cartilage breakdown offers clues to mammalian middle ear evolution. Nature Ecology & Evolution 1: 0093. https://doi.org/10.1038/s41559-017-0093(www.nature.com/natecolevol).

    Article  Google Scholar 

  • Asher, R.J., G.F. Gunnell, E.R. Seiffert, D. Pattinson, R. Tabuce, L. Hautier, and H.M. Sallam. 2017. Dental eruption and growth in Hyracoidea (Mammalia, Afrotheria). Journal of Vertebrate Paleontology 37: e1317638.

    Article  Google Scholar 

  • Asher, R.J., I. Horovitz, T. Martin, and M. Sánchez-Villagra. 2007. Neither a rodent nor a platypus: A reexamination of Necroleste patagonensis Ameghino. American Museum Novitates 3546: 1–40.

    Article  Google Scholar 

  • Asher, R.J., and T. Lehmann. 2008. Dental eruption in afrotherian mammals. BMC Biology 6: 14.

    Article  Google Scholar 

  • Astua, D., and N.O. Leiner. 2008. Tooth eruption sequence and replacement pattern in woolly opossums, genus Caluromys (Didelphimorphia: Didelphidae). Journal of Mammalogy 89: 244–251.

    Article  Google Scholar 

  • Averianov, A.O., and T. Martin. 2015. Ontogeny and taxonomy of Paurodon valens (Mammalia, Cladotheria) from the Upper Jurassic Morrison Formation of USA. Proceedings of the Zoological Institute Russian Academy of Sciences 319: 326–340.

    Article  Google Scholar 

  • Averianov, A.O., T. Martin, and A.V. Lopatin. 2013. A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100: 311–326.

    Article  Google Scholar 

  • Averianov, A.O., T. Martin, and A.V. Lopatin. 2014. The oldest dryolestid mammal from the Middle Jurassic of Siberia. Journal of Vertebrate Paleontology. 34: 924–931. https://doi.org/10.1080/02724634.2014.837471.

    Article  Google Scholar 

  • Benoit, J., I. Ruf, J.A. Miyamae, V. Fernandez, P.G. Rodrigues, and B.S. Rubidge. 2020. The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): Reassessment of the homology of the infraorbital foramen in mammalian ancestors. Journal of Mammalian Evolution 27: 329–348. https://doi.org/10.1007/s10914-019-09467-8.

    Article  Google Scholar 

  • Bonaparte, J.F. 1986. Sobre Mesungulatum houssayi y nuevos mamíferos cretácicos de Patagonia. Actas IV Congreso Argentino de Paleontología y Bioestratigrafía 2: 48–61.

    Google Scholar 

  • Bonaparte, J.F. 1990. New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. National Geographic Research 6: 63–93.

    Google Scholar 

  • Bonaparte, J.F. 1994. Approach to the significance of the Late Cretaceous mammals of South America. Berliner Geowissenschaftliche Abhandlungen E 13: 31–44.

    Google Scholar 

  • Bonaparte, J.F. 2002. New Dryolestida (Theria) from the Late Cretaceous of Los Alamitos, Argentina, and paleogeographical comments. Neues Jahrbuch Für Geologie Und Paläontologie, Abhandlungen 224: 339–371.

    Article  Google Scholar 

  • Butler, P.M. 1939. The teeth of the Jurassic Mammals. Proceedings of the Zoological Society B 109: 329–356.

    Article  Google Scholar 

  • Butler, P.M., and W.A. Clemens. 2001. Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontology 44: 1–20.

    Article  Google Scholar 

  • Chimento, N.R., F.L. Agnolin, and F.E. Novas. 2012. The Patagonian fossil mammal Necrolestes: a Neogene survivor of Dryolestoidea. Revista del Museo Argentino de Ciencias Naturales 14: 261–306.

    Google Scholar 

  • Chornogubsky, L. 2011. New remains of the dryolestoid mammal Leonardus cuspidatus from the Los Alamitos Formation (Late Cretaceous, Argentina). Paläontogische Zeitschrift 85: 1–8.

    Google Scholar 

  • Cifelli, R.L., and S.K. Madsen. 1999. Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (Upper Albian or lower Cenomnian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21: 167–214.

    Google Scholar 

  • Cifelli, R.L., T.B. Rowe, W.P. Luckett, J. Banta, R. Reyes, and R.I. Howes. 1996. Origin of marsupial pattern of tooth replacement: Fossil evidence revealed by high resolution X-ray CT. Nature 379: 715–718.

    Article  Google Scholar 

  • Clemens, W.A., and J.R.E. Mills. 1971. Review of Peramus tenuirostris. Bulletin of the British Museum (Natural History). Geology 20: 89–113.

    Google Scholar 

  • Clemens, W.A., G.P. Wilson, and R. Molnar. 2003. An emigmatic (synapsid?) tooth from the Early Cretaceous of New South Wales, Australia. Journal of Vertebrate Paleontology 23: 232–237.

    Article  Google Scholar 

  • Close, R.A., B.M. Davis, S. Walsh, A.S. Wolniewicz, M. Friedman, and R.B.J. Benson. 2015. A lower jaw of Palaeoxonodon from the Middle Jurassic of the Isle of Skye, Scotland, sheds new light on the diversity of British stem therians. Palaeontology. https://doi.org/10.1111/pala.12218.

    Article  Google Scholar 

  • Crompton, A.W. 1971. The origin of the tribosphenic molar. In Early mammals, ed. D.M. Kermack and K.A. Kermack, 65–87. Zoological Journal of the Linnean Society 50, supplement 1.

    Google Scholar 

  • Crompton, A.W. 1974. The dentition and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bulletin of the British Museum (Natural History), Geology 24: 397–437.

    Google Scholar 

  • Crompton, A.W., and W.L. Hylander. 1986. Changes in mandibular function following the acquisition of a dentary-squamosal joint. In The Ecology and Biology of Mammal-like Reptiles, ed. N. Hotton, P.D. Macean, and J.J. Roth, 263–282. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Crompton, A.W., and Z.-X. Luo. 1993. Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium. In Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials, ed. F.S. Szalay, M.J. Novacek, and M.C. McKenna, 30–44. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Davis, B.M. 2012. Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology 55: 789–817.

    Article  Google Scholar 

  • Dyce, K.M., W.O. Sack, and C.J.G. Wensing. 1995. Textbook of veterinary anatomy. Saunders Elsevier.

    Google Scholar 

  • Ensom, P.C., and D. Sigogneau-Russell. 1998. New dryolestoid mammals from the basal Cretaceous Purbeck Limestone Group of southern England. Palaeontology 41: 35–55.

    Google Scholar 

  • Evans, H.E. 1993. Miller’s anatomy of the dog. Philadelphia: Saunders Company.

    Google Scholar 

  • Forasiepi, A.M., and M.R. Sanchez-Villagra. 2014. Heterochrony, dental ontogenetic diversity, and the circumvention of constrains in marsupial mammals and extinct relatives. Paleobiology 40: 2220237.

    Article  Google Scholar 

  • Freeman, E.F. 1976. Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194: 1053–1055.

    Article  Google Scholar 

  • Freeman, E.F. 1979. A Middle Jurassic mammal bed from Oxfordshire. Palaeontology 22: 135–166.

    Google Scholar 

  • Gao, C.-L., G.P. Wilson, Z.-X. Luo, A.M. Maga, Q.-J. Meng, and X.-R. Wang. 2009. A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse angled molars and amphilestid eutriconodonts. Proceedings of the Royal Society B (london) 277: 237–246. https://doi.org/10.1098/rspb.2009.1014.

    Article  Google Scholar 

  • Geiger, M., and R.J. Asher. 2019. Schultz’s rule in domesticated mammals. Mammalian Biology 96: 36–42. https://doi.org/10.1016/j.mambio.2019.07.002.

    Article  Google Scholar 

  • Gelfo, J.N., and R. Pascual. 2001. Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23: 369–379.

    Google Scholar 

  • Gill, P.G. 2004.Kuehneotherium from the Mesozoic Fissure Fillings of South Wales. Ph.D. Dissertation, University of Bristol, Bristol, United Kingdom, 1–286. http://research-information.bristol.ac.uk

  • Godfrey, L.R., K.E. Samonds, P.C. Wright, and S.J. King. 2005. Schultz’s unruly rule: Dental developmental sequences and schedules in small-bodied, folivorous lemurs. Folia Primatologica 76: 77–99.

    Article  Google Scholar 

  • Grossnickle, D.M. 2017. The evolutionary origin of jaw yaw in mammals. Scientific Reports 7: 1–13. https://doi.org/10.1038/srep45094.

    Article  Google Scholar 

  • Grossnickle, D.M., L.N. Weaver, K.R.K. Jäger, and J.A. Schultz. 2022. The evolution of anteriorly directed molar occlusion in mammals. Zoological Journal of the Linnean Society 194: 349–365.

    Article  Google Scholar 

  • Hahn, G., and R. Hahn. 2000. Multituberculates from the Guimarota mine. In Guimarota: A Jurassic ecosystem, ed. T. Martin and B. Krebs, 97–108. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Heinrich, W.-D. 1991. Über Brancatherulum tendagurense Dietrich, 1927 (Mammalia: Eupantotheria) aus dem Oberjura von Tendaguru, Tansania. Mitteilungen aus dem Zoologischen Museum Berlin 67: 97–104. https://doi.org/10.1002/mmnz.19910670114.

    Article  Google Scholar 

  • Henderson, E. 2007. Platyrrhine dental eruption sequence. American Journal of Physical Anthropology 134: 226–239.

    Article  Google Scholar 

  • Henkel, S., and B. Krebs. 1969. Zwei Säugetier-Unterkiefer aus der Unteren Kreide von Uña (Prov. Cuenca, Spanien). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1969: 449–463.

    Google Scholar 

  • Hu, Y.-M., Y.-Q. Wang, C.-K. Li, and Z.-X. Luo. 1998. Morphology of dentition and forelimb of Zhangheotherium. Vertebrata PalAsiatica 36: 102–125.

    Google Scholar 

  • Hu, Y.-M., Y.-Q. Wang, Z.-X. Luo, and C.-K. Li. 1997. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142.

    Article  Google Scholar 

  • Hughes, E.M., J.R. Wible, M. Spaulding, and Z.-X. Luo. 2015. Mammalian petrosal from the Upper Jurassic Morrison Formation of Fruita, Colorado. Annals of Carnegie Museum 83: 1–17.

    Article  Google Scholar 

  • Jäger, K.R.K., P.G. Gill, I.J. Corfe, and T. Martin. 2019b. 3D Occlusion and dental function of Morganucodon and Megazostrodon. Journal of Vertebrate Paleontology 39: e1635135. https://doi.org/10.1080/02724634.2019.1635135.

    Article  Google Scholar 

  • Jäger, K., Z.-X. Luo, and T. Martin. 2013a. CT scanning and 3D image analysis of the postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) from the Late Jurassic of Portugal and its locomotor adaptations. Society of Vertebrate Paleontology 73rd Annual Meeting, Program and Abstracts: 147.

  • Jäger K.R.K, Z.-X. Luo, and T. Martin. 2013b. Reinvestigation of the postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) from the Late Jurassic of Portugal using MicroCT data. Joint Meeting of Paläontologische Gesellschaft and of Palaeontological Society of China in Göttingen.

  • Jäger, K.R.K., Z.-X. Luo, and T. Martin. 2019a. Postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation. Journal of Mammalian Evolution 27: 349–372. https://doi.org/10.1007/s10914-018-09457-2.

    Article  Google Scholar 

  • Ji, Q., Z.-X. Luo, and S.-A. Li. 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398: 326–330.

    Article  Google Scholar 

  • Ji, Q., Z.-X. Luo, C.-X. Yuan, R.J. Wible, J.P. Zhang, and J.A. Georgi. 2002. The earliest known eutherian mammal. Nature 416: 816–822.

    Article  Google Scholar 

  • Ji, Q., Z.-X. Luo, X. Zhang, C.-X. Yuan, and L. Xu. 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281.

    Article  Google Scholar 

  • Kelt, D.A., and J.L. Patton. 2020. A manual of the mammalia: An Homage to Lawlor’s “Handbook to the orders and families of living mammals.” The University of Chicago Press.

    Google Scholar 

  • Kermack, D.M., K.A. Kermack, and F. Mussett. 1968. The Welsh pantothere Kuehneotherium praecursoris. Journal of the Linnean Society (zoology) 47: 407–423.

    Google Scholar 

  • Kermack, K.A., F. Mussett, and H.W. Rigney. 1973. The lower jaw of Morganucodon. Zoological Journal of Linnean Society 53: 87–175.

    Article  Google Scholar 

  • Kermack, K.A., F. Mussett, and H.W. Rigney. 1981. The skull of Morganucodon. Zoological Journal of the Linnean Society 71: 1–158.

    Article  Google Scholar 

  • Kielan-Jaworowska, Z. 1981. Evolution of the therian mammals in the Late Cretaceous of Asia. Part IV. Skull structure in Kennalestes and Asioryctes. Palaeontologia Polonica 42: 25–78.

    Google Scholar 

  • Kielan-Jaworowska, Z., R.L. Cifelli, and Z.-X. Luo. 2004. Mammals from the age of dinosaurs: Origins, evolution and structure. New York: Columbia University Press.

    Book  Google Scholar 

  • Kielan-Jaworowska, Z., and D. Dashzeveg. 1989. Eutherian mammals from the Early Cretaceous of Mongolia. Zoologica Scripta 18: 347–355.

    Article  Google Scholar 

  • Kielan-Jaworowska, Z., and J.H. Hurum. 2001. Phylogeny and systematics of multituberculate mammals. Palaeontology 44: 389–429.

    Article  Google Scholar 

  • Krebs, B. 1969. Nachweis eines rudimentären Coronoids im Unterkiefer der Pantotheria (Mammalia). Paläontologische Zeitschrift 43: 57–63.

    Article  Google Scholar 

  • Krebs, B. 1971. Evolution of the mandible and lower dentition in dryolestids (Pantotheria, Mammalia). In Early mammals, ed. D.M. Kermack and K.A. Kermack, 89–103. Zoological Journal of the Linnean Society 50, supplement 1.

    Google Scholar 

  • Krebs, B. 1985. Theria (Mammalia) aus der Unterkreide von Galve (Provinz Teruel, Spanien). Berliner geowissenschaftliche Abhandlungen A 60: 29–48.

    Google Scholar 

  • Krebs, B. 1991. Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner geowissenschaftliche Abhandlungen A 133: 1–110.

    Google Scholar 

  • Krebs, B. 1993. Das Gebiß von Crusafontia (Eupantotheria, Mammalia) - Funde aus der Unter-Kreide von Galve und Uña (Spanien). Berliner geowissenschaftliche Abhandlungen E 9: 233–252.

    Google Scholar 

  • Krebs, B. 1998. Drescheratherium acutum gen. et sp. nov., ein neuer Eupantotherier (Mammalia) aus dem Oberen Jura von Portugal. Berliner geowissenschaftliche Abhandlungen E 28: 91–111.

    Google Scholar 

  • Krebs, B. 2000. The henkelotheriids from the Guimarota mine. In Guimarota: A Jurassic ecosystem, ed. T. Martin and B. Krebs, 121–128. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Krusat, G. 1980. Contribuçăo para o conhecimento da fauna do Kimeridgiano da mina de lignito Guimarota (Leiria, Portugal). IV Parte. Haldanodon exspectatus Kühne & Krusat 1972 (Mammalia, Docodonta). Memórias dos Serviços Geológicos de Portugal 27: 1–79.

    Google Scholar 

  • Lasseron, M., T. Martin, R. Allain, H. Haddoumi, N.-E. Jalil, S. Zouhri, and E. Gheerbrant. 2022. An African radiation of “Dryolestoidea” (Donodontidae, Cladotheria) and ist significance forr mammalian evolution. Journal of Mammalian Evolution. https://doi.org/10.1007/s10914-022-09613-9.

    Article  Google Scholar 

  • Lautenschlager, S., P. Gill, Z.-X. Luo, M.J. Fagan, and E.J. Rayfield. 2017. Morphological evolution of the mammalian jaw adductor complex. Biological Reviews 92: 1910–1940. https://doi.org/10.1111/brv.12314.

    Article  Google Scholar 

  • Lillegraven, J.A., and G. Krusat. 1991. Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contributions to Geology, University of Wyoming 28: 39–138.

    Google Scholar 

  • Lillegraven, J.A., and M.C. McKenna. 1986. Fossil Mammals from the “Mesaverde” Formation (Late Cretaceous, Judithian) of the Bighorn and Wind River basins, Wyoming, with definitions of Late Cretaceous North American landmammal “ages.” American Museum Novitates 2840: 1–68.

    Google Scholar 

  • Luckett, W.P. 1993. An ontogenetic assessment of dental homologies in therian mammals. In Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials, ed. F.S. Szalay, M.J. Novacek, and M.C. McKenna, 182–204. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Luo, Z.-X. 1994. Sister taxon relationships of mammals and the transformations of the diagnostic mammalian characters. In In the shadow of dinosaurs—early Mesozoic tetrapods, ed. N.C. Fraser and H.-D. Sues, 98–128. Cambridge: Cambridge University Press.

    Google Scholar 

  • Luo, Z.-X. 2007. Transformation and diversification in the early mammalian evolution. Nature 450: 1011–1019.

    Article  Google Scholar 

  • Luo, Z.-X. 2011. Developmental patterns in Mesozoic evolution of mammal ears. Annual Review of Ecology, Evolution and Systematics 42: 355–380. https://doi.org/10.1146/annurev-ecolsys-032511-142302.

    Article  Google Scholar 

  • Luo, Z.-X., B.-A.S. Bhullar, A.W. Crompton, A.I. Neander, and T.B. Rowe. 2022. Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui. Acta Palaeontologica Polonica 67: 95–113. https://doi.org/10.4202/app.00949.2021.

    Article  Google Scholar 

  • Luo, Z.-X., P.-J. Chen, G. Li, and M. Chen. 2007a. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446: 288–293.

    Article  Google Scholar 

  • Luo, Z.-X., A.W. Crompton, and A.-L. Sun. 2001. A new mammal from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.

    Article  Google Scholar 

  • Luo, Z.-X., and Q. Ji. 2005. New study on dental and skeletal features of the Cretaceous mammal Zhangheotherium. Journal of Mammalian Evolution 12: 337–357.

    Article  Google Scholar 

  • Luo, Z.-X., Q. Ji, J.R. Wible, and C.-X. Yuan. 2003. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940.

    Article  Google Scholar 

  • Luo, Z.-X., Q. Ji, and C.-X. Yuan. 2007b. Convergent dental evolution in pseudotribosphenic and tribosphenic mammals. Nature 450: 93–97.

    Article  Google Scholar 

  • Luo, Z.-X., Z. Kielan-Jaworowska, and R.L. Cifelli. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47: 1–78.

    Google Scholar 

  • Luo, Z.-X., Z. Kielan-Jaworowska, and R.L. Cifelli. 2004. Evolution of dental replacement in mammals. In Fanfare for an uncommon paleontologist—Festschrift in honor of Dr. Malcolm C. McKenna, 36th ed., ed. M.R. Dawson and J.A. Lillegraven, 159–175. The Carnegie Museum of Natural History Bulletin 36.

    Google Scholar 

  • Luo, Z.-X., and G.A. Manley. 2020. Origins and evolution of mammalian ears and hearing function. In The senses: A comprehensive reference (volume 2), 2nd ed., ed. B. Fritzsch and B. Grothe, 207–252. Amsterdam: Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-805408-6.00033-6.

    Chapter  Google Scholar 

  • Luo, Z.-X., and T. Martin. 2007. Analysis of molar structure and phylogeny of docodont genera. Carnegie Museum of Natural History Bulletin 39: 27–47.

    Article  Google Scholar 

  • Luo, Z.-X., I. Ruf, and T. Martin. 2012. The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for evolution of ear in therian mammals. Zoological Journal of Linnean Society (London) 166: 433–463.

    Article  Google Scholar 

  • Luo, Z.-X., and J.R. Wible. 2005. A new Late Jurassic digging mammal and early mammalian diversification. Science 308: 103–107.

    Article  Google Scholar 

  • Luo, Z.-X., C.-X. Yuan, Q.-J. Meng, and Q. Ji. 2011. A Jurassic eutherian mammal and the divergence of marsupials and placentals. Nature 476: 442–445. https://doi.org/10.1038/nature10291.

    Article  Google Scholar 

  • Maier, W. 1999. On the evolutionary biology of early mammals— with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zoologischer Anzeiger 238: 55–74.

    Google Scholar 

  • Mao, F.-Y., Y.-M. Hu, Y.-Q. Wang, M.H. Chase, A.L. Smith, and J. Meng. 2020. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367: 305–308. https://doi.org/10.1126/science.aay9220.

    Article  Google Scholar 

  • Martin, T. 1995. Dryolestidae from the Kimmeridge of the Guimarota coal mine (Portugal) and their implications for dryolestida systematics and phylogeny. In Sixth Symposium on Mesozoic terrestrial ecosystems and biota, ed. A.-L. Sun and Y. Wang, 229–231. Beijing: Ocean Press.

    Google Scholar 

  • Martin, T. 1997. Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). Journal of Mammalian Evolution 4: 1–18.

    Article  Google Scholar 

  • Martin, T. 1998. The premolars of Crusafontia cuencana (Dryolestidae, Mammalia) from the Early Cretaceous (Barremian) of Spain. Berliner geowissenschaftliche Abhandlungen E 28: 119–126.

    Google Scholar 

  • Martin, T. 1999. Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der senckenbergischen naturforschenden Gesellschaft 550: 1–119.

    Google Scholar 

  • Martin, T. 2000. The dryolestids and the small “peramurid” from the Guimarota coal mine. In Guimarota: A Jurassic ecosystem, ed. T. Martin and B. Krebs, 109–120. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Martin, T. 2002. New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology 22: 332–348.

    Article  Google Scholar 

  • Martin, T. 2018. Mesozoic mammals early mammalian diversity and ecomorphological adaptations. In Handbook of zoology, mammalia. Mammalian evolution, diversity and systematics, ed. F.E. Zachos and R.J. Asher, 199–299. Berlin: De Gruyter.

    Chapter  Google Scholar 

  • Martin, T., and A.O. Averianov. 2010. Mammals from the Middle Jurassic Balabansai formation of the fergana depression, Kyrgyzstan. Journal of Vertebrate Paleontology 30: 855–871.

    Article  Google Scholar 

  • Martin, T., A.O. Averianov, J.A. Schultz, R. Schellhorn, and A.H. Schwermann. 2022a. First spalacotheriid and dryolestid mammals from the Cretaceous of Germany. Acta Palaeontologica Polonica 67: 155–175.

    Article  Google Scholar 

  • Martin, T., A.O. Averianov, J.A. Schultz, A.H. Schwermann, and O. Wings. 2021. A derived dryolestid mammal indicates possible insular endemism in the Late Jurassic of Germany. The Science of Nature 108: 23. https://doi.org/10.1007/s00114-021-01719-z).

    Article  Google Scholar 

  • Martin, T., F.J. Goin, J.A. Schultz, and J.N. Gelfo. 2022b. Early Late Cretaceous mammals from southern Patagonia (Santa Cruz Province, Argentina). Cretaceous Research 133: 105127. https://doi.org/10.1016/j.cretres.2021.105127.

    Article  Google Scholar 

  • Martin, T., and B. Krebs, eds. 2000. Guimarota: A Jurassic Ecosystem. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Martin, T., and O.W.M. Rauhut. 2005. Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. Journal of Vertebrate Paleontology 25: 414–425.

    Article  Google Scholar 

  • Martinelli, A.G., S. Soto-Acuña, F.J. Goin, J. Kaluza, J.E. Bostelmann, P.H.M. Fonseca, M.A. Reguero, M. Leppe, and A.O. Vargas. 2021. New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era. Scientific Reports 11: 7594. https://doi.org/10.1038/s41598-021-87245-4.

    Article  Google Scholar 

  • McKenna, M.C. 1975. Toward a phylogenetic classification of the mammalia. In Phylogeny of the primates, ed. W.P. Luckett and F.S. Szalay, 21–46. New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Meng, J., Y.-Q. Wang, and C.-K. Li. 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472: 181–185.

    Article  Google Scholar 

  • Mills, J.R.E. 1964. The dentitions of Peramus and Amphitherium. Proceedings of the Linnean Society of London 175: 117–133.

    Article  Google Scholar 

  • Monson, T.A., and L.J. Hlusko. 2018a. The evolution of dental eruption sequence in artiodactyls. Journal of Mammalian Evolution 25: 15–26.

    Article  Google Scholar 

  • Monson, T.A., and L.J. Hlusko. 2018b. Breaking the rules: Phylogeny, not life history explains dental eruption sequence in primates. American Journal of Physical Anthropology 167: 217–233.

    Article  Google Scholar 

  • Muchlinski, M.N., and E.C. Kirk. 2017. A comparative analysis of infraorbital foramen size in Paleogene euarchontans. Journal of Human Evolution 105: 57–68. https://doi.org/10.1016/j.jhevol.2017.01.017.

    Article  Google Scholar 

  • Novacek, M.J. 1986. The primitive eutherian dental formula. Journal of Vertebrate Paleontology 6: 191–196.

    Article  Google Scholar 

  • O’Meara, R.N., and R.J. Asher. 2016. The evolution of growth patterns in mammalian versus non-mammalian cynodonts. Paleobiology 42: 439–464.

    Article  Google Scholar 

  • O’Meara, R.N., and R.S. Thompson. 2014. Were there Miocene meridiolestidans? Assessing the phylogenetic placement of Necrolestes patagonensis and the presence of a 40 million year meridiolestidan ghost lineage. Journal of Mammalian Evolution 21: 271–284. https://doi.org/10.1007/s10914-013-9252-3.

    Article  Google Scholar 

  • Panciroli, E.L., R.B.J. Benson, and R.J. Butler. 2018. New partial dentaries of Palaeoxonodon ooliticus (Mammalia, Amphitheriidae) from Scotland, and posterior dentary morphology in stem cladotherians. Acta Palaeontologica Polonica 63: 197–206.

    Article  Google Scholar 

  • Panciroli, E.L., R.B.J. Benson, V. Fernandez, R.J. Butler, N.C. Fraser, Z.-X. Luo, and S. Walch. 2021. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zoological Journal of the Linnean Society 192: 1323–1362.

    Article  Google Scholar 

  • Panciroli, E.L., R.B.J. Benson, and Z.-X. Luo. 2019. The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland. Journal of Vertebrate Paleontology. https://doi.org/10.1080/02724634.2019.1621884.

    Article  Google Scholar 

  • Parrington, F.R. 1973. The dentitions of the earliest mammals. Zoological Journal of the Linnean Society 52: 85–95.

    Article  Google Scholar 

  • Plogschties, T., and T. Martin. 2020. New information on the maxilla, dentary, and dentition of Maotherium sinense, with comments on the zhangheotheriid dental formulae. PalZ 94: 155–164. https://doi.org/10.1007/s12542-019-00460-3).

    Article  Google Scholar 

  • Prothero, D.R. 1981. New Jurassic Mammals from Como Bluff, Wyoming, and the Interrelationships of Non-tribosphenic Theria. Bulletin of the American Museum of Natural History 167: 277–326.

    Google Scholar 

  • Ramírez-Chaves, H.E., V. Weisbecker, S. Wroe, and M.J. Phillips. 2016. Resolving the evolution of the mammalian middle ear using Bayesian inference. Frontiers in Zoology 13: 39. https://doi.org/10.1186/s12983-016-0171-z.

    Article  Google Scholar 

  • Rich, T.H., T.F. Flannery, P. Trusler, A. Constantine, L. Kool, N. van Klaveren, and P. Vickers-Rich. 2001. An advanced ausktribosphenid from the Early Cretaceous of Australia. The Records of the Queen Victoria Museum 110: 1–9.

    Google Scholar 

  • Rich, T.H., J.A. Hopson, P.G. Gill, P. Trusler, S. Rogers-Davidson, S. Morton, R.L. Cifelli, D. Pickering, L. Kool, K. Siu, F.A. Burgmann, T. Senden, A.R. Evans, B.E. Wagstaff, D. Seegets-Villiers, I.J. Corfe, T.F. Flannery, K. Walker, A.M. Musser, M. Archer, R. Pian, and P. Vickers-Rich. 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40: 475–501. https://doi.org/10.1080/03115518.2016.1180034.

    Article  Google Scholar 

  • Rich, T.H., P. Vickers-Rich, A. Constantine, T.F. Flannery, L. Kool, and N. van Klaveren. 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum 106: 1–35.

    Google Scholar 

  • Rougier, G.W., S. Apesteguía, and L.C. Gaetano. 2011. Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479: 98–102.

    Article  Google Scholar 

  • Rougier, G.W., A.M. Forasiepi, R.V. Hill, and M.J. Novacek. 2009. New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Palaeontologica Polonica 54: 195–212.

    Article  Google Scholar 

  • Rougier, G.W., A.G. Martinelli, and A.M. Forasiepi. 2021a. Mesozoic mammals from South America and their forerunners. Springer Earth System Sciences. https://doi.org/10.1007/978-3-030-63862-7.

    Article  Google Scholar 

  • Rougier, G.W., A.G. Martinelli, A.M. Forasiepi, and M.J. Novacek. 2007. New Jurassic mammals from Patagonia, Argentina: A reappraisal of australosphenidan morphology and interrelationships. American Museum Novitates 3566: 1–54.

    Article  Google Scholar 

  • Rougier, G.W., G.F. Turazzinni, M.S. Cardozo, T. Harper, A.I. Lires, and L.A. Canessa. 2021b. New specimens of Reigitherium bunodontum from the Late Cretaceous La Colonia Formation, Patagonia, Argentina and meridiolestidan diversity in South America. Journal of Mammalian Evolution 2021 (28): 1051–1081. https://doi.org/10.1007/s10914-021-09585-2.

    Article  Google Scholar 

  • Rougier, G.W., J.R. Wible, R.M.B. Beck, and S. Apesteguía. 2012. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic notherian lineage inthe the late Cenozoic of South America. Proceedings of National Academy of Sciences USA 109: 20053–20058.

    Article  Google Scholar 

  • Rougier, G.W., J.R. Wible, and M.J. Novacek. 1998. Implications of Deltatheridium specimens for early marsupial history. Nature 396: 459–463.

    Article  Google Scholar 

  • Rougier, G.W., J.R. Wible, and M.J. Novacek. 2004. New specimens of Deltatheroides cretacicus (Metatheria, Deltatheroida) from the Late Cretaceous of Mongolia. Bulletin of Carnegie Museum of Natural History 36: 245–266.

    Article  Google Scholar 

  • Ruf, I., Z.-X. Luo, J.R. Wible, and T. Martin. 2009. Petrosal Anatomy and Inner Ear Structure of the Late Jurassic mammal Henkelotherium and the ear region characters of basal therian mammals. Journal of Anatomy 214: 679–693. https://doi.org/10.1111/j.1469-7580.2009.01059.x.

    Article  Google Scholar 

  • Sánchez-Villagra, M.R., and K.K. Smith. 1997. Diversity and evolution of the marsupial mandibular angular process. Journal of Mammalian Evolution 4: 119–144.

    Article  Google Scholar 

  • Scapino, R.P. 1965. The third joint of the canine jaw. Journal of Morphology 116: 23–50.

    Article  Google Scholar 

  • Scapino, R.P. 1981. Morphological investigation into functions of the jaw symphysis in carnivorans. Journal of Morphology 167: 339–375.

    Article  Google Scholar 

  • Schultz, A.H. 1935. Eruption and decay of the permanent teeth in primates. American Journal of Physical Anthropology 19: 489–581.

    Article  Google Scholar 

  • Schultz, A.H. 1960. Age changes in primates and their modification in man. In Human growth, ed. J.M. Tanner, 1–20. Oxford: Pergamon Press.

    Google Scholar 

  • Schultz, J.A., B.-A.S. Bhullar, and Z.-X. Luo. 2019. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. Journal of Mammalian Evolution. 26 (9–38): 2017. https://doi.org/10.1007/s10914-017-9418)(publishedonlinein.

    Article  Google Scholar 

  • Schultz, J.A., and T. Martin. 2011. Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontologische Zeitschrift 85: 269–285.

    Article  Google Scholar 

  • Schultz, J.A., and T. Martin. 2014. Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101: 771–781.

    Article  Google Scholar 

  • Scott, J.E., A.S. Hogue, and M.J. Ravosa. 2012. The adaptive significance of mandibular symphyseal fusion in mammals. Journal of Evolutionary Biology 25: 661–673.

    Article  Google Scholar 

  • Sigogneau-Russell, D. 1991. Nouveaux mammifères theriens du Crétacé inférieur du Maroc. Comptes Rendus de l’académie des Sciences 313: 279–285.

    Google Scholar 

  • Sigogneau-Russell, D. 1999. Réévaluation des Peramura (Mammalia, Theria) sur la base de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21: 93–127.

    Google Scholar 

  • Sigogneau-Russell, D. 2003. Holotherian mammals from the forest marble (Middle Jurassic of England). Geodiversitas 25: 501–537.

    Google Scholar 

  • Simpson, G.G. 1928. A catalogue of the mesozoic mammalia in the Geological Department of the British Museum (Natural History). London: Trustees of the British Museum.

    Google Scholar 

  • Simpson, G.G. 1929. American mesozoic mammalia. Memoires of the Peabody Museum 3: 1–235.

    Google Scholar 

  • Smith, B.H. 1994. Sequence of emergence of the permanent teeth in Macaca, Pan, Homo, and Australopithecus: Its evolutionary significance. American Journal of Human Biology 6: 61–76.

    Article  Google Scholar 

  • Smith, B.H. 2000. ‘Schultz’s rule’ and the evolution of tooth emergence and replacement patterns in primates and ungulates. In Development, function and evolution of teeth, ed. M.F. Teaford, M.M. Smith, and M.W.J. Ferguson, 212–227. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Tsubamoto, T., G.W. Rougier, S. Isaji, M. Manabe, and A.M. Forasiepi. 2004. New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontologica Polonica 49: 329–346.

    Google Scholar 

  • Turnbull, W.D. 1970. Mammalian masticatory apparatus. Fieldiana Geology 18: 147–356.

    Google Scholar 

  • Ungar, P.S. 2010. Mammal teeth: Origin, evolution, and diversity. Baltimore: Johns Hopkins University Press.

    Book  Google Scholar 

  • Urban, D.J., N. Anthwal, Z.-X. Luo, J.A. Maier, A. Sadier, A.S. Tucker, and K.E. Sears. 2017. A new developmental mechanism for the separation of the mammalian middle ear ossicles from the jaw. Proceedings of Royal Society B 284: 1–8. https://doi.org/10.1098/rspb.2016.2416.

    Article  Google Scholar 

  • van Nievelt, A.F.H., and K.K. Smith. 2005. The significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31: 324–346.

    Article  Google Scholar 

  • Vázquez-Molinero, R., T. Martin, M.S. Fischer, and R. Frey. 2001. Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications on its locomotion. Mitteilungen aus dem Museum für Naturkunde in Berlin, Zoologische Reihe 77: 207–216.

    Google Scholar 

  • Wang, H.-B., S. Hoffmann, D.-C. Wang, and Y.-Q. Wang. 2022. A new mammal from the Lower Cretaceous Jehol Biota and implications for eutherian evolution. Philosophical Transactions of the Royal Society B 377: 20210042. https://doi.org/10.1098/rstb.2021.0042.

    Article  Google Scholar 

  • Wang, Y.-Q., Y.-M. Hu, J. Meng, and C.-K. Li. 2001. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294: 357–361.

    Article  Google Scholar 

  • Wible, J.R., and G.W. Rougier. 2017. Craniomandibular anatomy of the subterranean meridiolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the Early Miocene of Patagonia. Annals of Carnegie Museum 84: 183–252.

    Article  Google Scholar 

  • Wible, J.R., G.W. Rougier, M.J. Novacek, and R.J. Asher. 2009. The eutherian mammal Maelestes gobiensis from the late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bulletin of the American Museum of Natural History 327: 1–123.

    Article  Google Scholar 

  • Zeller, U. 1989. Die Entwicklung und Morphologie des Schädels von Ornithorhyncus anatinus (Mammalia: Prototheria: Monotremata). Abhandlungen der senckenbergischen naturforschenden Gesellschaft 545: 1–188.

    Google Scholar 

  • Zhou, C.-F., B.-A.S. Bhullar, A.I. Neander, T. Martin, and Z.-X. Luo. 2019. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365: 276–279. https://doi.org/10.1126/science.aau9345.

    Article  Google Scholar 

Download references

Acknowledgements

Field work in Portugal was generously supported by the Serviços Geológicos de Portugal (Lisbon). Special thanks are due to the former director of this institution F. Moitinho de Almeida and his successor M. Ramalho for their long-term goodwill. E. Eggert (Drescher) masterfully prepared the fossils. M. Bulang-Lörcher (both Free University Berlin) drew the mandible of Fig. 6. D. Kranz provided the drawings of Fig. 8, and G. Oleschinski (both University of Bonn) assisted at the SEM; he and Sven Tränkner (Senckenberg Research Institute, Frankfurt) provided the photographs. April I. Neander (The University of Chicago) scanned the fossil specimens and meticulously executed a large volume of 3D renderings for this study. During this study, we benefited from extensive discussion from A. O. Averianov, K. R. K. Jäger, and G. W. Rougier. Luo likes to thank G. W. Rougier for the opportunity to see the meridiolestidan specimens. D. R. Prothero graciously granted the permission to re-use graphics. Our manuscript benefitted from constructive comments by reviewers Pam Gill (University of Bristol) and Elsa Panciroli (University of Oxford).The excavations in the Guimarota mine (1973-1982) were financed by the Freie Universität Berlin and the German Research Foundation (DFG). Z.-X. Luo was funded by a Research Award by the Alexander von Humboldt-Foundation (Bonn) and Division of Biological Sciences of the University of Chicago. T. Martin was granted a sabbatical leave by the University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe-Xi Luo or Thomas Martin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Handling Editor: Thomas Mörs.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, ZX., Martin, T. Mandibular and dental characteristics of the Late Jurassic mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida). PalZ 97, 569–619 (2023). https://doi.org/10.1007/s12542-023-00651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-023-00651-z

Keywords

Navigation