Skip to main content
Log in

A porous high-entropy alloy for high-efficient oxygen evolution reaction

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

析氧反应(OER)在电解水制氢过程中起着至关重要的作用,急需一种高效、稳定、低成本的电催化剂。本文采用一种简单的选择性相溶解的方法,成功地制备了一种多孔的AlCoCrFeNi高熵合金(SPD-48 h)。SPD-48 h在1 mol·L-1 KOH碱性溶液中达到10 mA·cm-2的电流密度时具有260 mV的过电位和58.0 mV·dec-1的Tafel斜率。扫描电镜 (SEM)分析表明,经过10 h的计时电流测试后,微观结构没有变化,证实了SPD-48 h的优异稳定性。多孔高熵合金优异的电催化性能不仅取决于合金自身的性能,也可以归因于其物理上独特的多孔结构。这些发现显示SPD-48 h是有益OER的,因此,对制备高性能电催化剂的研究人员来说应该是有价值的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sun H, Zhao FG, Fen YC, Ren HP, Zhang YH. Activation and hydrogen absorption properties of Mg22Y2Ni10Cu hydrogen storage alloy. Chin J Rare Met. 2020;44(4):387. https://doi.org/10.13373/j.cnki.cjrm.XY18120013

    Google Scholar 

  2. Zhang B, Wang W, Liang L, Zhice Xu, Li X, Qiao S. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: lithium-ion batteries, supercapacitors and water-splitting. Coord Chem Rev. 2021;436(6):213782. https://doi.org/10.1016/j.ccr.2021.213782.

    Article  CAS  Google Scholar 

  3. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021;40(12):3375. https://doi.org/10.1007/s12598-021-01735-y.

    Article  CAS  Google Scholar 

  4. Chen TW, Anushya G, Chen SM, Kalimuthu P, Mariyappan V, Gajendran P, Ramachandran R. Recent advances in nanoscale based electrocatalysts for metal-air battery, fuel cell and water-splitting applications: an overview. Materials. 2022;15(2):458. https://doi.org/10.3390/ma15020458.

    Article  CAS  Google Scholar 

  5. Gong YX, Yao JS, Wang P, Li ZX, Zhou HJ, Xu CM. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng. 2022;43(3):282. https://doi.org/10.1016/j.cjche.2022.02.010.

    Article  CAS  Google Scholar 

  6. Ma BJ, Dang YY, Li DK, Wang XY, Lin KY, Wang W, Zhou X, Chen YF, Xie TF, Zhang XW, Han HX. A Yin-Yang hybrid co-catalyst (CoOx-Mo2N) for photocatalytic overall water splitting. Appl Catal B Environ. 2021;298:120491. https://doi.org/10.1016/j.apcatb.2021.120491.

    Article  CAS  Google Scholar 

  7. Guang HL, Zhu SL, Liang YQ, Wu SL, Li ZY, Luo SY, Cui ZD, Inoue A. Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Met. 2021;40(5):1031. https://doi.org/10.1007/s12598-020-01697-7.

    Article  CAS  Google Scholar 

  8. Manzoor S, Trukhanov SV, Ansari MN, Abdullah M, Alruwaili A, Trukhanov AV, Khandaker MU, Idris AM, El-Nasser KS, Taha TAM. Flowery ln2MnSe4 novel electrocatalyst developed via anion exchange strategy for efficient water splitting. Nanomaterials. 2022;12(13):2209. https://doi.org/10.3390/nano12132209.

    Article  CAS  Google Scholar 

  9. Raza A, Deen KM, Asselin E, Haider W. A review on the electrocatalytic dissociation of water over stainless steel: hydrogen and oxygen evolution reactions. Renew Sust Energ Rev. 2022;161:112323. https://doi.org/10.1016/j.rser.2022.112323.

    Article  CAS  Google Scholar 

  10. Cui H, Liao HX, Wang ZL, Xie JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022;41(8):2606. https://doi.org/10.1007/s12598-022-02003-3.

    Article  CAS  Google Scholar 

  11. Wang C, Jin LJ, Shang HY, Xu H, Shiraishi Y, Du YK. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin Chem Lett. 2021;32(7):2108. https://doi.org/10.1016/j.cclet.2020.11.051.

    Article  CAS  Google Scholar 

  12. Lee Y, Suntivich J, May KJ, Perry EE, Horn YS. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett. 2012;3(3):399. https://doi.org/10.1021/jz2016507.

    Article  CAS  Google Scholar 

  13. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169.

    Article  CAS  Google Scholar 

  14. Wang HX, Zhang KHL, Hofmann JP, O’Shea VAP, Oropeza FE. The electronic structure of transition metal oxides for oxygen evolution reaction. J Mater Chem A. 2021;9(35):19465. https://doi.org/10.1039/d1ta03732c.

    Article  CAS  Google Scholar 

  15. Yu ZY, Duan Y, Feng XY, Yu XX, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater. 2021;33(31):2007100. https://doi.org/10.1002/adma.202007100.

    Article  CAS  Google Scholar 

  16. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  17. Katiyar NK, Biswas K, Yeh JW, Sharma S, Tiwary CS. A perspective on the catalysis using the high entropy alloys. Nano Energy. 2021;88:106261. https://doi.org/10.1016/j.nanoen.2021.106261.

    Article  CAS  Google Scholar 

  18. Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2022;41(1):125. https://doi.org/10.1007/s12598-021-01760-x.

    Article  CAS  Google Scholar 

  19. Sun YF, Dai S. High-entropy materials for catalysis: a new frontier. Sci Adv. 2021;7(20):1600. https://doi.org/10.1126/sciadv.abg1600.

    Article  CAS  Google Scholar 

  20. Jin ZY, Lv J, Jia HL, Liu WH, Li HL, Chen ZH, Lin X, Xie GQ, Liu XJ, Sun SH, Qiu HJ. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small. 2019;15(47):1904180. https://doi.org/10.1002/smll.201904180.

    Article  CAS  Google Scholar 

  21. Liu H, Qin HY, Kang JL, Ma LY, Chen GX, Huang Q, Zhang ZJ, Liu EZ, Lu HM, Li JX, Zhao NQ. A free-standing nanoporous NiCoFeMoMn high entropy alloy as an efficient electrocatalyst fast driving water splittling. Chem Eng J. 2022;435(1):134898. https://doi.org/10.1016/j.cej.2022.134898.

    Article  CAS  Google Scholar 

  22. Manzoni A, Daoud H, Völkl R, Glatzel U, Wanderka N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy. 2013;132:212. https://doi.org/10.1016/j.ultramic.2012.12.015.

    Article  CAS  Google Scholar 

  23. Sui QX, Wang Z, Wang J, Xu SR, Zhao FJ, Gong L, Liu B, Liu J, Liu G. The microstructure and mechanical properties of the additive manufactured AlCoCrFeNi high entropy alloy. Mater Sci Eng A. 2022;833:142507. https://doi.org/10.1016/j.msea.2021.142507.

    Article  CAS  Google Scholar 

  24. Kong K, Hyun J, Kim Y, Kim W, Kim D. Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode. J Power Sources. 2019;437:226927. https://doi.org/10.1016/j.msea.2021.142507.

    Article  CAS  Google Scholar 

  25. Chen HH, Zheng HB, Yang TH, Yue S, Gao PZ, Liu XP, Xiao HN. AC magnetic field enhancement oxygen evolution reaction of bimetallic metal-organic framework. Int J Hydrogen Energy. 2022;47(43):18675. https://doi.org/10.1016/j.ijhydene.2022.04.014.

    Article  CAS  Google Scholar 

  26. Zhang YC, Han CD, Gao J, Wu JT, Zhu XD, Zou JJ. Co3-xO4/NiO with abundant Ni3+ active sites for boosting oxygen evolution reaction. Chem Eng J. 2022;446(1):137036. https://doi.org/10.1016/j.cej.2022.137036.

    Article  CAS  Google Scholar 

  27. Liu YF, Ye CC, Zhao SN, Wu YY, Liu C, Huang JF, Xue L, Sun JW, Zhang WQ, Wang X, Xiong P, Zhu JW. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction. Nano Energy. 2022;99:107344. https://doi.org/10.1016/j.nanoen.2022.107344.

    Article  CAS  Google Scholar 

  28. Chen XJ, Li WM, Song N, Zhong MX, Yan S, Xu JQ, Zhu WD, Wang C, Lu XF. Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction. Chem Eng J. 2022;440:135851. https://doi.org/10.1016/j.cej.2022.135851.

    Article  CAS  Google Scholar 

  29. Feng CQ, Yang J, Xiao CR, Xin BW, Zhang SN, Wang LM, Geng BJ. Glycerate-derived Co3O4 nano-microspheres as efficient catalysts for oxygen evolution reaction. Appl Surf Sci. 2022;598:153795. https://doi.org/10.1016/j.apsusc.2022.153795.

    Article  CAS  Google Scholar 

  30. Zhao XL, Yong XH, Ji QZ, Yang ZH, Song Y, Tian TY, Chen T, Yang ZG, Xu LX, Shen X, Wang P, Baek JB. Synthesis of all-biomass-derived carbon nanofibers for dual-functional filtration membranes and oxygen evolution reaction electrocatalysts. J Alloys Compd. 2022;918:165600. https://doi.org/10.1016/j.jallcom.2022.165600.

    Article  CAS  Google Scholar 

  31. Wu YY, Liu Y, Liu B, Jiang W, Zhou TY, Li HJ, Shang MX, Lang JH, Liu CB, Che GB. Vanadium nitride/carbon nanotube vertical nanoarrays on iron foam for oxygen evolution reaction. ACS Appl Nano Mater. 2022;5(6):7714. https://doi.org/10.1021/acsanm.2c00363.

    Article  CAS  Google Scholar 

  32. Wang T, Li CM, Liao XY, Li Q, Hu WH, Chen YF, Yuan WY, Lin H. Fe-doped Co9S8@CoO aerogel with core-shell nanostructures for boosted oxygen evolution reaction. Int J Hydrogen Energy. 2022;47(49):21182. https://doi.org/10.1016/j.ijhydene.2022.04.237.

    Article  CAS  Google Scholar 

  33. Bandal HA, Pawar AA, Kim H. Transformation of waste onion peels into core-shell Fe3C@N-doped carbon as a robust electrocatalyst for oxygen evolution reaction. Electrochim Acta. 2022;422:140545. https://doi.org/10.1016/j.electacta.2022.140545.

    Article  CAS  Google Scholar 

  34. Yu Z, Lin YH, Gao XT, Guo B, Ma JL, Zhang Y, Bai FY, Dong YW, Zhao Z. Prussian-blue-analog derived hollow Co3O4/NiO decorated CeO2 nanoparticles for boosting oxygen evolution reaction. J Alloys Compd. 2022;914:165344. https://doi.org/10.1016/j.jallcom.2022.165344.

    Article  CAS  Google Scholar 

  35. Kong ZQ, Dongyang BK, Yang WY, Li L, Li L, Dong FF, Lin Z. A tin-incorporated multi-phase perovskite nanocomposite for efficiently catalyzing oxygen evolution reaction. Int J Energy Res. 2022;46(9):13079. https://doi.org/10.1002/er.8053.

    Article  CAS  Google Scholar 

  36. Zhang Q, Sun MS, Zhu J, Yang SD, Chen L, Yang XL, Wang P, Li K, Zhao P. Optimizing electronic state in Sr2Co2O5-x with ferromagnetic state by improving oxygen vacancies for oxygen evolution reaction. Int J Hydrogen Energy. 2022;47(44):19027. https://doi.org/10.1016/j.ijhydene.2022.04.095.

    Article  CAS  Google Scholar 

  37. Yu R, Wang C, Liu DM, Wu ZY, Li J, Du YK. Bimetallic sulfide particles incorporated in Fe/Co-based metal-organic framework ultrathin nanosheets toward boosted electrocatalysis of the oxygen evolution reaction. Inorg Chem Front. 2022;9(13):313. https://doi.org/10.1039/d2qi00125j.

    Article  CAS  Google Scholar 

  38. Yi Liang Yu, Cui YC, Han N, Sunarso J, Liang P, He X, Zhang C, Liu S. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 2022;15(8):6977. https://doi.org/10.1007/s12274-022-4328-0.

    Article  CAS  Google Scholar 

  39. He MM, Wang D, Shiigi H, Liu CH, Wang WC, Shan XL, Chen ZD. Black phosphorous dots phosphatized bio-based carbon nanofibers/bimetallic organic framework as catalysts for oxygen evolution reaction. Int J Hydrogen Energy. 2022;47(39):17194. https://doi.org/10.1016/j.ijhydene.2022.01.228.

    Article  CAS  Google Scholar 

  40. Yin X, Hua YN, Hao WB, Yang J, Gao Z. Hierarchical nanocomposites of nickel/iron-layered double hydroxide ultrathin nanosheets strong-coupled with nanocarbon networks for enhanced oxygen evolution reaction. Electrochim Acta. 2022;420:140455. https://doi.org/10.1016/j.electacta.2022.140455.

    Article  CAS  Google Scholar 

  41. Tian ZM, Liu YX, Xu QC, Shi YY, Ma CX, Peng B, Liu GY, Yang JN, Zheng WJ. Fe doped NiSe2 nanoarrays to boost electrocatalytic oxygen evolution reaction. Electrochim Acta. 2022;425:140711. https://doi.org/10.1016/j.electacta.2022.140711.

    Article  CAS  Google Scholar 

  42. Yang B, Gu CJ, Zhao Q, Zhou GY, Xu L, Pang H. Reactive template-engaged synthesis of Ni-doped Co3S4 hollow and porous nanospheres with optimal electronic modulation toward high-efficiency electrochemical oxygen evolution. Inorg Chem Front. 2022;9(15):3924. https://doi.org/10.1039/d2qi00896c.

    Article  CAS  Google Scholar 

  43. Muthukutty B, Yoo H. Fabrication of efficient electrocatalytic system with ruthenium cobalt sulfide over a carbon cloth. J Ind Eng Chem. 2022;113:316. https://doi.org/10.1016/j.jiec.2022.06.005.

    Article  CAS  Google Scholar 

  44. Tang CY, Ramírez-Hernández M, Thomas B, Yeh YW, Batson PE, Asefa T. Hierarchically ordered nanoporous carbon with exclusively surface-anchored cobalt as efficient electrocatalyst. Small Methods. 2022;6(7):2200519. https://doi.org/10.1002/smtd.202200519.

    Article  CAS  Google Scholar 

  45. Wang JC, Liu M, Chaemchuen S, Klomkliang N, Kao CM, Verpoort F. Carbon-supported cobalt nanoparticles via thermal sugar decomposition as efficient electrocatalysts for the oxygen evolution reaction. ACS Appl Nano Mater. 2022;5(6):7993. https://doi.org/10.1021/acsanm.2c01107.

    Article  CAS  Google Scholar 

  46. Yang Xu, Liping S, Qiang Li, Lihua H, Hui Z. Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 for the oxygen evolution reaction. J Mater Chem A. 2022;10(34):17633. https://doi.org/10.1039/D2TA01376B.

    Article  CAS  Google Scholar 

  47. Qiao HY, Wang XZ, Dong Q, Zheng HK, Chen G, Hong M, Yang CP, Wu ML, He K, Hu LB. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy. 2021;86:106029. https://doi.org/10.1016/j.nanoen.2021.106029.

    Article  CAS  Google Scholar 

  48. Jiang TT, Xie WW, Geng SP, Li RC, Song SQ, Wang Y. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. Chin J Catal. 2022;43(9):2434. https://doi.org/10.1016/s1872-2067(22)64137-8.

    Article  CAS  Google Scholar 

  49. Tang J, Xu JL, Ye ZG, Li XB, Luo JM. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. J Mater Sci Technol. 2021;79(20):171. https://doi.org/10.1016/j.jmst.2020.10.079.

    Article  CAS  Google Scholar 

  50. Marcus P, Hinnen C, Olefjord I. Determination of attenuation lengths of photoelectrons in aluminium and aluminium oxide by angle-dependent X-ray photoelectron spectroscopy. Surf Interface Anal. 1993;20(11):923. https://doi.org/10.1002/sia.740201108.

    Article  CAS  Google Scholar 

  51. Hess A, Kemnitz E, Lippitz A, Unger WES, Menz DH. ESCA, XRD, and IR characterization of aluminum oxide, hydroxyfluoride, and fluoride surfaces in correlation with their catalytic activity in heterogeneous halogen exchange reactions. J Catal. 1994;148(1):270. https://doi.org/10.1006/jcat.1994.1208.

    Article  Google Scholar 

  52. Tan BJ, Klabunde KJ, Sherwood PMA. XPS studies of solvated metal atom dispersed (SMAD) catalysts. evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855–61. https://doi.org/10.1021/ja00003a019.

    Article  CAS  Google Scholar 

  53. McIntyre NS, Johnston DD, Coatsworth LL, Davidson RD, Brown JR. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum. Surf Interface Anal. 1990;15(4):265. https://doi.org/10.1002/sia.740150406.

    Article  CAS  Google Scholar 

  54. Chen ZJ, Zhang T, Gao XY, Huang YJ, Qin XH, Wang YF, Zhao K, Peng X, Zhang C, Liu L, Zeng MH, Yu HB. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv Mater. 2021;33(33):2101845. https://doi.org/10.1002/adma.202101845.

    Article  CAS  Google Scholar 

  55. Yang Y, Dang LN, Shearer MJ, Sheng HY, Li WJ, Chen J, Xiao P, Zhang YH, Hamers RJ, Jin S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv Energy Mater. 2018;8(15):1703189. https://doi.org/10.1002/aenm.201703189.

    Article  CAS  Google Scholar 

  56. Wang Y, Zhao YZ, Liu LA, Qin WJ, Liu SJ, Tu JP, Qin YP, Liu JF, Wu HY, Zhang DY, Chu AM, Jia BR, Qu XH, Qin ML. Mesoporous single crystals with Fe-rich skin for ultralow overpotential in oxygen evolution catalysis. Adv Mater. 2022;34(20):2200088. https://doi.org/10.1002/adma.202200088.

    Article  CAS  Google Scholar 

  57. Huang K, Peng DD, Yao ZX, Xia JY, Zhang BW, Liu H, Chen ZB, Wu F, Wu JS, Huang YZ. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem Eng J. 2021;425:131533. https://doi.org/10.1016/j.cej.2021.131533.

    Article  CAS  Google Scholar 

  58. Yan Y, Liu HC, Liu CY, Zhao YG, Liu SZ, Wang D, Fritz M, Ispas A, Bund A, Schaaf P, Wang XY. Efficient preparation of Ni-M (M = Fe Co, Mo) bimetallic oxides layer on Ni nanorod arrays for electrocatalytic oxygen evolution. Appl Mater Today. 2021;25:101185. https://doi.org/10.1016/j.apmt.2021.101185.

    Article  Google Scholar 

  59. Huang J, Wang PL, Li P, Yin HY, Wang DH. Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. J Mater Sci Technol. 2021;93(34):110. https://doi.org/10.1016/j.jmst.2021.03.046.

    Article  CAS  Google Scholar 

  60. Zhou PF, Liu D, Chen YY, Chen MP, Liu YX, Chen S, Kwok CT, Tang YX, Wang SP, Pan H. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst. J Mater Sci Technol. 2022;109(14):267. https://doi.org/10.1016/j.jmst.2021.09.003.

    Article  Google Scholar 

  61. Qiu HJ, Fang G, Gao JJ, Wen YR, Lv J, Li HL, Xie GQ, Liu XJ, Sun SH. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl Energy Mater. 2019;1(5):526. https://doi.org/10.1021/acsmaterialslett.9b00414.

    Article  CAS  Google Scholar 

  62. Liang QH, Brocks BH. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J Phys Energy. 2021;3(2):26001. https://doi.org/10.1088/2515-7655/abdc85.

    Article  CAS  Google Scholar 

  63. Wang S, Lu AL, Zhong CJ. Hydrogen production from water electrolysis: role of catalysts. Nano convergence. 2021;8(1):4. https://doi.org/10.1186/s40580-021-00254-x.

    Article  CAS  Google Scholar 

  64. Chang HY, Liang ZJ, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. Nanoscale. 2022;14(15):5639. https://doi.org/10.1039/d2nr00522k.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51971047 and 52271022), the Project of Liaoning Province's “Rejuvenating Liaoning Talents Plan” (No. XLYC1907046), Dalian High-Level Talent Innovation Support Program (No. 2020RJ07), the State Key Lab of Advanced Metals and Materials (No. 2021-ZD10), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (No. 2019JH3/30100032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Zhuo Lu or Xing Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, YZ. & Lu, X. A porous high-entropy alloy for high-efficient oxygen evolution reaction. Rare Met. 42, 2174–2181 (2023). https://doi.org/10.1007/s12598-022-02255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02255-z

Navigation