Skip to main content
Log in

Chiral metal nanostructures: synthesis, properties and applications

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Chirality, the property that an object cannot coincide with its mirror image arising from lack of mirror symmetry, is ubiquitous in nature at various length scales. The physical and chemical properties are strongly related to the nature of chiral complexes, playing a significant role in various fields such as photonics, biochemistry, medicine and catalysis. In particular, the recent flexible design of chiral metal nanostructures offers one platform for deeply understanding the origin of chirality and one roadmap for the precise construction of chiral nanomaterials directed by the applications. Herein, we summarize the different geometries and classical synthetic approaches to chiral noble metal nanomaterials. Moreover, chiroptical properties and potential applications of chiral metal nanostructures are discussed as well. Finally, the opportunities and challenges toward the synthesis and application of chiral metal nanostructures are proposed.

Graphical abstract

摘要

手性是物体由于缺乏镜像对称性而不能与其镜像重合的特性,其普遍存在于在自然界不同尺度的事物上。手性 配合物的物理化学性质与其手性性质密切相关,在光子学、生物化学、医学、催化等领域有着重要的应用,特别 是手性金属纳米结构的灵活设计为深入理解手性的起源提供了一个平台,并为由应用指导的手性纳米材料的精确 构建提供了一个路线图。本文综述了手性贵金属纳米材料的不同几何结构和经典的合成方法,此外还讨论了手性 金属纳米结构的手性光学性质和潜在的应用前景,最后对手性金属纳米结构的合成和应用提出了机遇和挑战。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [38]. Copyright 2013, Springer Nature

Fig. 3

Reproduced with permission from Ref. [61]. Copyright 2016, American Chemical Society. b Structure of tetracationic [Au20(PP3)4]4+ cluster. Reproduced with permission from Ref. [57]. Copyright 2014, John Wiley and Sons. c Schematic illustration of AuCu alloy nanoclusters with (inset) perfect mirror image CD spectra. d, e TEM images of D-Pen-protected AuCu nanoclusters. fh Chiroptical properties of AuCu, Au and Cu nanoclusters, and i g-factors as a function of molar ratio of two metal precursors. j, k CD spectra of AuCu nanoclusters with different thiolated chiral molecules. Reproduced with permission from Ref. [62]. Copyright 2018 American Chemical Society

Fig. 4

Reproduced with permission from Ref. [65]. Copyright 2009, American Association for the Advancement of Science. e Schematic diagram and TEM image of left- and right-handed nanohelices formed by Au NPs attached on surface of DNA origami 24-helix bundles. f CD spectra of left-handed (red line) and right-handed (blue line) helices of 10 nm Au NPs. g CD spectra of assemblies of 16 nm Au NPs, showing a 400-fold enhancement, compared with f. h CD spectra of left-handed Au@Ag nanohelices (blue line) and left-handed Au@AgAu helices (green line), showing blueshift compared with pure Au one (red line). i Excessive metal deposition leading to large Au NPs and enhancement of CD signal for left-handed (orange line) and right-handed (purple line) Au@Ag helices. Reproduced with permission from Ref. [24]. Copyright 2012, Springer Nature

Fig. 5

Reproduced with permission from Ref. [85]. Copyright 2014, American Chemical Society. b Plasmonic circular dichroism being observed in chiral 3D gold nanorod assemblies made by self-assembling nanoantennas onto a twisted fiber template. c TEM image of left-handedness nanocomposite showing twisted fibers with adsorbed nanorods. Reproduced with permission from Ref. [86]. Copyright 2011, John Wiley and Sons. d TEM image of Au NRs with NR concentrations in presence of α-synuclein fibrils 0.5 nmol·L−1. e Image of a cryo-TEM tomography reconstruction of a composite fiber displaying 3D chiral arrangement of Au NRs. Right image shows an enlarged view of the top marked area of assembly. Reproduced with permission from Ref. [27]. Copyright 2018, National Academy of Sciences. f Tilt angle TEM images of a representative assembled structure on the top; 3D model structures on the bottom. Label's numbers correspond to angle of title. Reproduced with permission from Ref. [87]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [35]. Copyright 2020, the American Association for the Advancement of Science. e, f Experimental and simulated HRTEM images of a BCB Au nanowire (Δf =  −35 nm). g Model of a BCB tetrahelix. h Schematic diagram of pseudoperiodicity in BCB tetrahelix. i Schematic illustration of a BCB tetrahelix. j, k Experimental and simulated HRTEM images of a BCB Au nanowire (Δf =  −30 nm), showing two types of helical pitches (τ1 and τ2). Reproduced with permission from Ref. [88]. Copyright 2014, American Chemical Society. l Schematic diagram of formation process of double helix by depositing a metal layer on AuAg alloy nanowire. m, n TEM images of as-prepared AuAg nanowire and AuAg@Pd double helix, respectively. o–q TEM images of AuAg@Pd double helices by using precursors of 80, 270, 540 μmol·L−1 H2PdCl4, respectively. r TEM image of AuAg@Pd quadruple helix. SEM images of AuAg@Pd double helices of s, t right-handed and u left-handed chirality. Reproduced with permission from Ref. [89]. Copyright 2011, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [67]. Copyright 2018, Springer Nature. i SEM image of L-P+ NPs after 0, 5, 10, 20, 30 and 40 min of illumination at 594 nm with 84 mW·cm−2, scale bar 20 nm. j TEM tomography images of L-P+, D-P, L-P and L-P0 NPs. k, l CD spectra and g-factor spectra of NPs. Reproduced with permission from Ref. [66]. Copyright 2022, Springer Nature

Fig. 8

Reproduced with permission from Ref. [95]. Copyright 2015, John Wiley and Sons. d Enantioselective photocyclodimerization of 2-anthracenecarboxylic acid (AC) by metallic NH under 365-nm non-polarized light (NPL). Si and Re faces of AC molecules are depicted in purple and green, respectively. Structures on the right show that (+)-3 is formed by Si–Si stacking of AC pairs, and (−)-3 is formed by Re–Re stacking; HRTEM images of e LH-AgNHs and f RH-AgNHs with a helical pitch (P) of 5 nm. Dots represent wavelike chiral lattices. g Optical chirality (C) distribution on helical surface. Reproduced with permission from Ref. [97]. Copyright 2020, Springer Nature

Fig. 9

Reproduced with permission from Ref. [107]. Copyright 2018, Springer Nature. In vivo experiments: f CT and g PA imaging of HeLa tumor-bearing mice taken at different time points after injection with an agent (SS15-d-Cys). Reproduced with permission from Ref. [108]. Copyright 2017, John Wiley and Sons

Fig. 10

Reproduced with permission from Ref. [120]. Copyright 2015, American Chemical Society

Fig. 11
Fig. 12

Reproduced with permission from Ref. [130]. Copyright 2014, Royal Society of Chemistry. g Schematic illustration of self-assembly of chiral fluorescent CQD/CNC nanostructures. h Inkjet printing of chemically designed chiral luminous CNC films; i PL spectra of o-CQD dispersion at various pH solutions. Patterned chiral luminous CNC films with a diameter of 10 cm under j natural light and k UV light at 365 nm. Reproduced with permission from Ref. [131]. Copyright 2019, American Chemical Society

Similar content being viewed by others

References

  1. Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346. https://doi.org/10.1021/acs.chemrev.5b00703.

    Article  CAS  Google Scholar 

  2. Gal J. Pasteur and the art of chirality. Nat Chem. 2017;9:604. https://doi.org/10.1038/nchem.2790.

    Article  CAS  Google Scholar 

  3. Zheng G, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Plasmonic metal-organic frameworks. SmartMat. 2021;2(4):446. https://doi.org/10.1002/smm2.1047.

    Article  CAS  Google Scholar 

  4. Xiao K, Xue Y, Yang B, Zhao L. Ion-pairing chirality transfer in atropisomeric biaryl-centered gold clusters. CCS Chem. 2021;3(1):555. https://doi.org/10.31635/ccschem.020.202000225.

    Article  CAS  Google Scholar 

  5. Wang Y, Xu J, Wang Y, Chen H. Emerging chirality in nanoscience. Chem Soc Rev. 2013;42(7):2930. https://doi.org/10.1039/C2CS35332F.

    Article  CAS  Google Scholar 

  6. Ben-Moshe A, Maoz BM, Govorov AO, Markovich G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem Soc Rev. 2013;42(16):7028. https://doi.org/10.1039/C3CS60139K.

    Article  CAS  Google Scholar 

  7. Crassous J. Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev. 2009;38(3):830. https://doi.org/10.1039/B806203J.

    Article  CAS  Google Scholar 

  8. Ma W, Hao C, Sun M, Xu L, Xu C, Kuang H. Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Mater Horiz. 2018;5(2):141. https://doi.org/10.1039/C7MH00966F.

    Article  CAS  Google Scholar 

  9. Zeng C, Jin R. Chiral gold nanoclusters: atomic level origins of chirality. Asian J Chem. 2017;12(15):1839. https://doi.org/10.1002/asia.201700023.

    Article  CAS  Google Scholar 

  10. Jiang S, Chekini M, Qu ZB, Wang Y, Yeltik A, Liu Y, Kotlyar A, Zhang T, Li B, Demir HV, Kotov NA. Chiral ceramic nanoparticles and peptide catalysis. J Am Chem Soc. 2017;139(39):13701. https://doi.org/10.1021/jacs.7b01445.

    Article  CAS  Google Scholar 

  11. Qing G, Sun T. The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Mater. 2012;4:e4. https://doi.org/10.1038/am.2012.6.

    Article  CAS  Google Scholar 

  12. Zheng G, Bao Z, Pérez-Juste J, Du R, Liu W, Dai J, Zhang W, Lee LYS, Wong KY. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew Chem Int Ed. 2018;57(50):16452. https://doi.org/10.1002/anie.201810693.

    Article  CAS  Google Scholar 

  13. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL. Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B. 1998;102(52):10643. https://doi.org/10.1021/jp9830528.

    Article  CAS  Google Scholar 

  14. Schaaff TG, Whetten RL. Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J Phys Chem B. 2000;104(12):2630. https://doi.org/10.1021/jp993691y.

    Article  CAS  Google Scholar 

  15. Zheng G, Polavarapu L, Liz-Marzán LM, Pastoriza-Santos I, Pérez-Juste J. Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem Commun. 2015;51(22):4572. https://doi.org/10.1039/C4CC09466B.

    Article  CAS  Google Scholar 

  16. García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, Grzelczak M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Plasmonic supercrystals. Acc Chem Res. 2019;52(7):1855. https://doi.org/10.1021/acs.accounts.9b00213.

    Article  CAS  Google Scholar 

  17. Li D, Wang J, Zheng G, Liu J, Xu W. A highly active SERS sensing substrate: core-satellite assembly of gold nanorods/nanoplates. Nanotechnology. 2013;24(23):235502. https://doi.org/10.1088/0957-4484/24/23/235502.

    Article  CAS  Google Scholar 

  18. Severoni E, Maniappan S, Liz-Marzan LM, Kumar J, Garcia de Abajo FJ, Galantini L. Plasmon-enhanced optical chirality through hotspot formation in surfactant-directed self-assembly of gold nanorods. ACS Nano. 2020;14(12):16712. https://doi.org/10.1021/acsnano.0c03997.

    Article  CAS  Google Scholar 

  19. Gilroy C, Koyroytsaltis-McQuire D, Gadegaard N, Karimullah A, Kadodwala M. Superchiral hot-spots in “real” chiral plasmonic structures. Mater Adv. 2022;3(1):346. https://doi.org/10.1039/D1MA00831E.

    Article  CAS  Google Scholar 

  20. Dong J, Zhou Y, Pan J, Zhou C, Wang Q. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem Commun. 2021;57(50):6201. https://doi.org/10.1039/D1CC01925B.

    Article  CAS  Google Scholar 

  21. Wang M, Dong J, Zhou C, Xie H, Ni W, Wang S, Jin H, Wang Q. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano. 2019;13(12):13702. https://doi.org/10.1021/acsnano.9b06734.

    Article  CAS  Google Scholar 

  22. Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q. Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv Mater. 2017;29(16):1606533. https://doi.org/10.1002/adma.201606533.

    Article  CAS  Google Scholar 

  23. Lan X, Wang Q. Self-assembly of chiral plasmonic nanostructures. Adv Mater. 2016;28(47):10499. https://doi.org/10.1002/adma.201600697.

    Article  CAS  Google Scholar 

  24. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Högele A, Simmel FC, Govorov AO, Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012;483:311. https://doi.org/10.1038/nature10889.

    Article  CAS  Google Scholar 

  25. Vila-Liarte D, Kotov NA, Liz-Marzán LM. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem Sci. 2022;13(3):595. https://doi.org/10.1039/D1SC03327A.

    Article  CAS  Google Scholar 

  26. Lu J, Xue Y, Bernardino K, Zhang NN, Gomes WR, Ramesar NS, Liu S, Hu Z, Sun T, de Moura AF. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science. 2021;371(6536):1368. https://doi.org/10.1126/science.abd8576.

    Article  CAS  Google Scholar 

  27. Kumar J, Eraña H, López-Martínez E, Claes N, Martín VF, Solís DM, Bals S, Cortajarena AL, Castilla J, Liz-Marzán LM. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc Natl Acad Sci. 2018;115(13):3225. https://doi.org/10.1073/pnas.1721690115.

    Article  CAS  Google Scholar 

  28. Yan J, Chen Y, Hou S, Chen J, Meng D, Zhang H, Fan H, Ji Y, Wu X. Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols. Nanoscale. 2017;9(31):11093. https://doi.org/10.1039/C7NR03712K.

    Article  CAS  Google Scholar 

  29. Carone A, Mariani P, Désert A, Romanelli M, Marcheselli J, Garavelli M, Corni S, Rivalta I, Parola S. Insight on chirality encoding from small thiolated molecule to plasmonic Au@Ag and Au@Au nanoparticles. ACS Nano. 2022;16(1):1089. https://doi.org/10.1021/acsnano.1c08824.

    Article  CAS  Google Scholar 

  30. Hao C, Xu L, Sun M, Ma W, Kuang H, Xu C. Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv Funct Mater. 2018;28(33):1802372. https://doi.org/10.1002/adfm.201802372.

    Article  CAS  Google Scholar 

  31. Fan Z, Govorov AO. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 2012;12(6):1606533. https://doi.org/10.1021/nl3013715.

    Article  CAS  Google Scholar 

  32. Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chiral inorganic nanostructures. Chem Rev. 2017;117(12):8041. https://doi.org/10.1021/acs.chemrev.6b00755.

    Article  CAS  Google Scholar 

  33. Hentschel M, Schäferling M, Duan X, Giessen H, Liu N. Chiral plasmonics. Sci Adv. 2017;3(5):e160273. https://doi.org/10.1126/sciadv.1602735.

    Article  CAS  Google Scholar 

  34. Kotov NA, Liz-Marzan LM, Weiss PS. Chiral nanostructures: new twists. ACS Nano. 2021;15(8):12457. https://doi.org/10.1021/acsnano.1c06959.

    Article  CAS  Google Scholar 

  35. González-Rubio G, Mosquera J, Kumar V, Pedrazo-Tardajos A, Llombart P, Solís DM, Lobato I, Noya EG, Guerrero-Martínez A, Taboada JM. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science. 2020;368(6498):1472. https://doi.org/10.1126/science.aba0980.

    Article  CAS  Google Scholar 

  36. Zheng G, Jiao S, Zhang W, Wang S, Zhang Q, Gu L, Ye W, Li J, Ren X, Zhang Z. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022;15:6574. https://doi.org/10.1007/s12274-022-4212-y.

    Article  CAS  Google Scholar 

  37. Nakagawa M, Kawai T. Chirality-controlled syntheses of double-helical Au nanowires. J Am Chem Soc. 2018;140(15):4991. https://doi.org/10.1021/jacs.8b00910.

    Article  CAS  Google Scholar 

  38. Mark AG, Gibbs JG, Lee TC, Fischer P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat Mater. 2013;12:802. https://doi.org/10.1038/nmat3685.

    Article  CAS  Google Scholar 

  39. Jeong HH, Mark AG, Alarcón-Correa M, Kim I, Oswald P, Lee TC, Fischer P. Dispersion and shape engineered plasmonic nanosensors. Nat Commun. 2016;7:11331. https://doi.org/10.1038/ncomms11331.

    Article  CAS  Google Scholar 

  40. Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):1513. https://doi.org/10.1126/science.1177031.

    Article  CAS  Google Scholar 

  41. Yeom J, Santos US, Chekini M, Cha M, de Moura AF, Kotov NA. Chiromagnetic nanoparticles and gels. Science. 2018;359(6373):309. https://doi.org/10.1126/science.aao7172.

    Article  CAS  Google Scholar 

  42. Aboul-Enein HY, Bounoua N, Rebizi M, Wagdy H. Application of nanoparticles in chiral analysis and chiral separation. Chirality. 2021;33(5):196. https://doi.org/10.1002/chir.23303.

    Article  CAS  Google Scholar 

  43. Dass M, Gür FN, Kołątaj K, Urban MJ, Liedl T. DNA origami-enabled plasmonic sensing. J Phys Chem C. 2021;125(11):5969. https://doi.org/10.1021/acs.jpcc.0c11238.

    Article  CAS  Google Scholar 

  44. Huang S, Yu H, Li Q. Supramolecular chirality transfer toward chiral aggregation: asymmetric hierarchical self-assembly. Adv Sci. 2021;8(8):2002132. https://doi.org/10.1002/advs.202002132.

    Article  Google Scholar 

  45. Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements. Opt Express. 2021;29(8):12543. https://doi.org/10.1364/CROSSMARK_POLICY.

    Article  CAS  Google Scholar 

  46. Ni B, Cölfen H. Chirality communications between inorganic and organic compounds. SmartMat. 2021;2(1):17. https://doi.org/10.1002/smm2.1021.

    Article  Google Scholar 

  47. Zheng G, He J, Kumar V, Wang S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Wong KY. Discrete metal nanoparticles with plasmonic chirality. Chem Soc Rev. 2021;50(6):3738. https://doi.org/10.1039/c9cs00765b.

    Article  CAS  Google Scholar 

  48. Goerlitzer ESA, Puri AS, Moses JJ, Poulikakos LV, Vogel N. The Beginner’s guide to chiral plasmonics: mostly harmless theory and the design of large-area substrates. Adv Opt Mater. 2021;9(16):2100378. https://doi.org/10.1002/adom.202100378.

    Article  CAS  Google Scholar 

  49. Wu W, Pauly M. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Mater Adv. 2022;3(1):186. https://doi.org/10.1039/D1MA00915J.

    Article  Google Scholar 

  50. Slocik JM, Govorov AO, Naik RR. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011;11(2):701. https://doi.org/10.1021/nl1038242.

    Article  CAS  Google Scholar 

  51. Maoz BM, van der Weegen R, Fan Z, Govorov AO, Ellestad G, Berova N, Meijer E, Markovich G. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J Am Chem Soc. 2012;134(42):17807. https://doi.org/10.1021/ja309016k.

    Article  CAS  Google Scholar 

  52. Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q. Au nanorod helical superstructures with designed chirality. J Am Chem Soc. 2015;137(1):457. https://doi.org/10.1021/ja511333q.

    Article  CAS  Google Scholar 

  53. Zhou C, Duan X, Liu N. DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc Chem Res. 2017;50(12):2906. https://doi.org/10.1021/acs.accounts.7b00389.

    Article  CAS  Google Scholar 

  54. Maoz BM, Chaikin Y, Tesler AB, Bar Elli O, Fan Z, Govorov AO, Markovich G. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 2013;13(3):1203. https://doi.org/10.1021/nl304638a.

    Article  CAS  Google Scholar 

  55. Dolamic I, Varnholt B, Bürgi T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat Commun. 2015;6:7117. https://doi.org/10.1038/ncomms8117.

    Article  CAS  Google Scholar 

  56. KuÈhnle A, Linderoth TR, Hammer B, Besenbacher F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature. 2002;415(6874):891. https://doi.org/10.1038/415891a.

    Article  Google Scholar 

  57. Wan XK, Yuan SF, Lin ZW, Wang QM. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angew Chem Int Ed. 2014;53(11):2923. https://doi.org/10.1002/ange.201308599.

    Article  CAS  Google Scholar 

  58. He Y, Larsen GK, Ingram W, Zhao Y. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett. 2014;14(4):1976. https://doi.org/10.1021/nl404823z.

    Article  CAS  Google Scholar 

  59. Hrudey PC, Westra KL, Brett MJ. Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition. Adv Mater. 2006;18(2):224. https://doi.org/10.1002/adma.200501714.

    Article  CAS  Google Scholar 

  60. Yeom B, Zhang H, Zhang H, Park JI, Kim K, Govorov AO, Kotov NA. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 2013;13(11):5277. https://doi.org/10.1021/nl402782d.

    Article  CAS  Google Scholar 

  61. Yan J, Su H, Yang H, Hu C, Malola S, Lin S, Teo BK, Häkkinen H, Zheng N. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4 nanoclusters via ion pairing. J Am Chem Soc. 2016;138(39):12751. https://doi.org/10.1021/jacs.6b08100.

    Article  CAS  Google Scholar 

  62. Long T, He H, Li J, Yuan M, Wei J, Liu Z. Optically active Au-Cu bimetallic nanoclusters: insights into the alloying effect on the chiroptical behavior. J Phys Chem C. 2018;122(20):11152. https://doi.org/10.1021/acs.jpcc.8b02554.

    Article  CAS  Google Scholar 

  63. Schreiber R, Luong N, Fan Z, Kuzyk A, Nickels PC, Zhang T, Smith DM, Yurke B, Kuang W, Govorov AO. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun. 2013;4:2948. https://doi.org/10.1038/ncomms3948.

    Article  CAS  Google Scholar 

  64. Kuzyk A, Yang Y, Duan X, Stoll S, Govorov AO, Sugiyama H, Endo M, Liu N. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat Commun. 2016;7:10591. https://doi.org/10.1038/ncomms10591.

    Article  CAS  Google Scholar 

  65. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science. 2009;323(5910):112. https://doi.org/10.1126/science.1165831.

    Article  CAS  Google Scholar 

  66. Xu L, Wang X, Wang W, Sun M, Choi WJ, Kim JY, Hao C, Li S, Qu A, Lu M. Enantiomer-dependent immunological response to chiral nanoparticles. Nature. 2022;601(7893):366. https://doi.org/10.1038/s41586-021-04243-2.

    Article  CAS  Google Scholar 

  67. Lee HE, Ahn HY, Mun J, Lee YY, Kim M, Cho NH, Chang K, Kim WS, Rho J, Nam KT. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360. https://doi.org/10.1038/s41586-018-0034-1.

    Article  CAS  Google Scholar 

  68. Maoz BM, Ben Moshe A, Vestler D, Bar-Elli O, Markovich G. Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. Nano Lett. 2012;12(5):2357. https://doi.org/10.1021/nl300316f.

    Article  CAS  Google Scholar 

  69. Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol. 2010;5:783. https://doi.org/10.1038/nnano.2010.209.

    Article  CAS  Google Scholar 

  70. Zhao Y, Belkin MA, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun. 2012;3:870. https://doi.org/10.1038/ncomms1877.

    Article  CAS  Google Scholar 

  71. Larsen GK, He Y, Ingram W, LaPaquette ET, Wang J, Zhao Y. The fabrication of three-dimensional plasmonic chiral structures by dynamic shadowing growth. Nanoscale. 2014;6(16):9467. https://doi.org/10.1039/C4NR01878H.

    Article  CAS  Google Scholar 

  72. Zhao YP, Ye DX, Wang GC, Lu TM. Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 2002;2(4):351. https://doi.org/10.1021/nl0157041.

    Article  CAS  Google Scholar 

  73. Xi JQ, Schubert MF, Kim JK, Schubert EF, Chen M, Lin SY, Liu W, Smart JA. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon. 2007;1:176. https://doi.org/10.1038/nphoton.2007.26.

    Article  CAS  Google Scholar 

  74. Noguez C, Garzón IL. Optically active metal nanoparticles. Chem Soc Rev. 2009;38(3):757. https://doi.org/10.1039/B800404H.

    Article  CAS  Google Scholar 

  75. Nishida N, Yao H, Ueda T, Sasaki A, Kimura K. Synthesis and chiroptical study of D/L-penicillamine-capped silver nanoclusters. Chem Mater. 2007;19(11):2831. https://doi.org/10.1021/cm0700192.

    Article  CAS  Google Scholar 

  76. Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J Am Chem Soc. 2013;135(31):11441. https://doi.org/10.1021/ja404354c.

    Article  CAS  Google Scholar 

  77. Forterre Y, Dumais J. Generating helices in nature. Science. 2011;333(6050):1715. https://doi.org/10.1126/science.1210734.

    Article  CAS  Google Scholar 

  78. Wei J, Guo Y, Li J, Yuan M, Long T, Liu Z. Optically active ultrafine Au–Ag alloy nanoparticles used for colorimetric chiral recognition and circular dichroism sensing of enantiomers. Anal Chem. 2017;89(18):9781. https://doi.org/10.1021/acs.analchem.7b01723.

    Article  CAS  Google Scholar 

  79. Song C, Blaber MG, Zhao G, Zhang P, Fry HC, Schatz GC, Rosi NL. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett. 2013;13(7):3256. https://doi.org/10.1021/nl4013776.

    Article  CAS  Google Scholar 

  80. Xu L, Hao C, Yin H, Liu L, Ma W, Wang L, Kuang H, Xu C. Plasmonic core-satellites nanostructures with high chirality and bioproperty. J Phys Chem Lett. 2013;4(14):2379. https://doi.org/10.1021/jz401014b.

    Article  CAS  Google Scholar 

  81. Yin X, Schäferling M, Metzger B, Giessen H. Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett. 2013;13(12):6238. https://doi.org/10.1021/nl403705k.

    Article  CAS  Google Scholar 

  82. Hu H, Sekar S, Wu W, Battie Y, Lemaire V, Arteaga O, Poulikakos LV, Norris DJ, Giessen H, Decher G, Pauly M. Nanoscale bouligand multilayers: giant circular dichroism of helical assemblies of plasmonic 1D nano-objects. ACS Nano. 2021;15(8):13653. https://doi.org/10.1021/acsnano.1c04804.

    Article  CAS  Google Scholar 

  83. Wu W, Battie Y, Lemaire V, Decher G, Pauly M. Structure-dependent chiroptical properties of twisted multilayered silver nanowire assemblies. Nano Lett. 2021;21(19):8298. https://doi.org/10.1021/acs.nanolett.1c02812.

    Article  CAS  Google Scholar 

  84. Shen X, Zhan P, Kuzyk A, Liu Q, Asenjo-Garcia A, Zhang H, De Abajo FJG, Govorov A, Ding B, Liu N. 3D plasmonic chiral colloids. Nanoscale. 2014;6(4):2077. https://doi.org/10.1039/C3NR06006C.

    Article  CAS  Google Scholar 

  85. Querejeta-Fernández A, Gg C, Methot M, Bouchard J, Kumacheva E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc. 2014;136(12):4788. https://doi.org/10.1021/ja501642p.

    Article  CAS  Google Scholar 

  86. Guerrero-Martínez A, Auguié B, Alonso-Gómez JL, Džolić Z, Gómez-Graña S, Žinić M, Cid MM, Liz-Marzán LM. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew Chem Int Ed. 2011;50(24):5499. https://doi.org/10.1002/anie.201007536.

    Article  CAS  Google Scholar 

  87. Cheng G, Xu D, Lu Z, Liu K. Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization. ACS Nano. 2019;13(2):1479. https://doi.org/10.1021/acsnano.8b07151.

    Article  CAS  Google Scholar 

  88. Zhu Y, He J, Shang C, Miao X, Huang J, Liu Z, Chen H, Han Y. Chiral gold nanowires with Boerdijk–Coxeter–Bernal structure. J Am Chem Soc. 2014;136(36):12746. https://doi.org/10.1021/ja506554j.

    Article  CAS  Google Scholar 

  89. Wang Y, Wang Q, Sun H, Zhang W, Chen G, Wang Y, Shen X, Han Y, Lu X, Chen H. Chiral transformation: from single nanowire to double helix. J Am Chem Soc. 2011;133(50):20060. https://doi.org/10.1021/ja208121c.

    Article  CAS  Google Scholar 

  90. Hu A, Yee GT, Lin W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc. 2005;127(36):12486. https://doi.org/10.1021/ja053881o.

    Article  CAS  Google Scholar 

  91. Xu L, Sun M, Cheng P, Gao R, Wang H, Ma W, Shi X, Xu C, Kuang H. 2D chiroptical nanostructures for high-performance photooxidants. Adv Funct Mater. 2018;28(18):1707237. https://doi.org/10.1002/adfm.201707237.

    Article  CAS  Google Scholar 

  92. Negrín-Montecelo Y, Movsesyan A, Gao J, Burger S, Wang ZM, Nlate S, Pouget E, Oda R, Comesaña-Hermo M, Govorov AO, Correa-Duarte MA. Chiral generation of hot carriers for polarization-sensitive plasmonic photocatalysis. J Am Chem Soc. 2022;144(4):1663. https://doi.org/10.1021/jacs.1c10526.

    Article  CAS  Google Scholar 

  93. Sun Y, Zhao C, Gao N, Ren J, Qu X. Stereoselective nanozyme based on ceria nanoparticles engineered with amino acids. Chem Eur J. 2017;23(72):18146. https://doi.org/10.1002/chem.201704579.

    Article  CAS  Google Scholar 

  94. Zhang C, Wang X, Qiu L. Circularly polarized photodetectors based on chiral materials: a review. Front Chem. 2021;9:711488. https://doi.org/10.3389/fchem.2021.711488.

    Article  CAS  Google Scholar 

  95. Hao C, Xu L, Ma W, Wu X, Wang L, Kuang H, Xu C. Unusual circularly polarized photocatalytic activity in nanogapped gold–silver chiroplasmonic nanostructures. Adv Funct Mater. 2015;25(36):5816. https://doi.org/10.1002/adfm.201502429.

    Article  CAS  Google Scholar 

  96. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M. Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev. 2012;41(17):5577. https://doi.org/10.1039/C2CS35029G.

    Article  CAS  Google Scholar 

  97. Wei X, Liu J, Xia GJ, Deng J, Sun P, Chruma JJ, Wu W, Yang C, Wang YG, Huang Z. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat Chem. 2020;12(6):551. https://doi.org/10.1038/s41557-020-0453-0.

    Article  CAS  Google Scholar 

  98. Fang Y, Verre R, Shao L, Nordlander P, Käll M. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 2016;16(8):5183. https://doi.org/10.1021/acs.nanolett.6b02154.

    Article  CAS  Google Scholar 

  99. Han Z, Zhao X, Peng P, Li S, Zhang C, Cao M, Li K, Wang ZY, Zang SQ. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020;13(12):3248. https://doi.org/10.1007/s12274-020-2997-0.

    Article  CAS  Google Scholar 

  100. Yang WY, Lee E, Lee M. Tubular organization with coiled ribbon from amphiphilic rigid-flexible macrocycle. J Am Chem Soc. 2006;128(11):3484. https://doi.org/10.1021/ja057823e.

    Article  CAS  Google Scholar 

  101. Boersma AJ, Megens RP, Feringa BL, Roelfes G. DNA-based asymmetric catalysis. Chem Soc Rev. 2010;39(6):2083. https://doi.org/10.1039/B811349C.

    Article  CAS  Google Scholar 

  102. Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Self-assembly of copper (II) ion-mediated nanotube and its supramolecular chiral catalytic behavior. Langmuir. 2011;27(22):13847. https://doi.org/10.1021/la203110z.

    Article  CAS  Google Scholar 

  103. Jiang J, Meng Y, Zhang L, Liu M. Self-assembled single-walled metal-helical nanotube (M-HN): creation of efficient supramolecular catalysts for asymmetric reaction. J Am Chem Soc. 2016;138(48):15629. https://doi.org/10.1021/jacs.6b08808.

    Article  CAS  Google Scholar 

  104. Li C, Paineau E, Brisset F, Franger S, Colbeau-Justin C, Ghazzal MN. Photonic titanium dioxide film obtained from hard template with chiral nematic structure for environmental application. Catal Today. 2019;335:409. https://doi.org/10.1016/j.cattod.2019.01.030.

    Article  CAS  Google Scholar 

  105. Li S, Liu J, Ramesar NS, Heinz H, Xu L, Xu C, Kotov NA. Single-and multi-component chiral supraparticles as modular enantioselective catalysts. Nat Commun. 2019;10:4826. https://doi.org/10.1038/s41467-019-12134-4.

    Article  CAS  Google Scholar 

  106. Xu Z, Qu A, Wang W, Lu M, Shi B, Chen C, Hao C, Xu L, Sun M, Xu C. Facet-dependent biodegradable Mn3O4 nanoparticles for ameliorating Parkinson’s disease. Adv Healthc Mater. 2021;10(23):2101316. https://doi.org/10.1002/adhm.202101316.

    Article  CAS  Google Scholar 

  107. Yuan L, Zhang F, Qi X, Yang Y, Yan C, Jiang J, Deng J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. J Nanobiotechnol. 2018;16(1):55. https://doi.org/10.1186/s12951-018-0383-9.

    Article  CAS  Google Scholar 

  108. Gao F, Sun M, Ma W, Wu X, Liu L, Kuang H, Xu C. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv Mater. 2017;29(18):1606864. https://doi.org/10.1002/adma.201606864.

    Article  CAS  Google Scholar 

  109. Li S, Xu L, Lu M, Sun M, Xu L, Hao C, Wu X, Xu C, Kuang H. Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Res. 2021;14:2451. https://doi.org/10.1007/s12274-020-3250-6.

    Article  CAS  Google Scholar 

  110. Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. Nanoscale. 2020;12(1):58. https://doi.org/10.1039/C9NR08433A.

    Article  CAS  Google Scholar 

  111. Mu X, Hu L, Cheng Y, Fang Y, Sun M. Chiral surface plasmon-enhanced chiral spectroscopy: principles and applications. Nanoscale. 2021;13(2):581. https://doi.org/10.1039/D0NR06272C.

    Article  CAS  Google Scholar 

  112. Sun M, Guo X, Xu L, Kuang H, Xu C. Chirality at nanoscale for bioscience. Chem Sci. 2022;13(11):3069. https://doi.org/10.1039/D1SC06378B.

    Article  CAS  Google Scholar 

  113. Liang Z, Hao C, Chen C, Ma W, Sun M, Xu L, Xu C, Kuang H. Ratiometric FRET encoded hierarchical ZrMOF@Au cluster for ultrasensitive quantifying microRNA in vivo. Adv Mater. 2022;34(1):2107449. https://doi.org/10.1002/adma.202107449.

    Article  CAS  Google Scholar 

  114. Hao C, Xu L, Kuang H, Xu C. Artificial chiral probes and bioapplications. Adv Mater. 2020;32(41):1802075. https://doi.org/10.1002/adma.201802075.

    Article  CAS  Google Scholar 

  115. Ma W, Xu L, Wang L, Xu C, Kuang H. Chirality-based biosensors. Adv Funct Mater. 2019;29(1):1805512. https://doi.org/10.1002/adfm.201805512.

    Article  CAS  Google Scholar 

  116. Wang J, Wu X, Ma W, Xu C. Chiral AuCuAu heterogeneous nanorods with tailored optical activity. Adv Funct Mater. 2020;30(17):2000670. https://doi.org/10.1002/adfm.202000670.

    Article  CAS  Google Scholar 

  117. Shukla N, Bartel MA, Gellman AJ. Enantioselective separation on chiral Au nanoparticles. J Am Chem Soc. 2010;132(25):8575. https://doi.org/10.1021/ja908219h.

    Article  CAS  Google Scholar 

  118. Shi X, Wang Y, Peng C, Zhang Z, Chen J, Zhou X, Jiang H. Enantiorecognition of tyrosine based on a novel magnetic electrochemical chiral sensor. Electrochim Acta. 2017;241:386. https://doi.org/10.1016/j.electacta.2017.04.155.

    Article  CAS  Google Scholar 

  119. Wang X, Hao J, Cheng J, Li J, Miao J, Li R, Li Y, Li J, Liu Y, Zhu X, Liu Y, Sun XW, Tang Z, Delville MH, He T, Chen R. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale. 2019;11(19):9327. https://doi.org/10.1039/C8NR10506E.

    Article  CAS  Google Scholar 

  120. Tang L, Li S, Xu L, Ma W, Kuang H, Wang L, Xu C. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl Mater Inter. 2015;7(23):12708. https://doi.org/10.1021/acsami.5b01259.

    Article  CAS  Google Scholar 

  121. Dolamic I, Knoppe S, Dass A, Bürgi T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat Commun. 2012;3:798. https://doi.org/10.1038/ncomms1802.

    Article  CAS  Google Scholar 

  122. Knoppe S, Dolamic I, Bürgi T. Racemization of a chiral nanoparticle evidences the flexibility of the gold-thiolate interface. J Am Chem Soc. 2012;134(31):13114. https://doi.org/10.1021/ja3053865.

    Article  CAS  Google Scholar 

  123. Barrabés N, Zhang B, Bürgi T. Racemization of chiral Pd2Au36 (SC2H4Ph)24: doping increases the flexibility of the cluster surface. J Am Chem Soc. 2014;136(41):14361. https://doi.org/10.1021/ja507189v.

    Article  CAS  Google Scholar 

  124. Gao X, Chen X, Li ZH, He H. Direct synthesis of in-situ chirally modified palladium nanocrystals without capping agents and their application in heterogeneous enantioselective hydrogenations. ACS Catal. 2019;9(7):6100. https://doi.org/10.1021/acscatal.9b00762.

    Article  CAS  Google Scholar 

  125. Karst J, Cho NH, Kim H, Lee HE, Nam KT, Giessen H, Hentschel M. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano. 2019;13(8):8659. https://doi.org/10.1021/acsnano.9b04046.

    Article  CAS  Google Scholar 

  126. Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P. Chiral quantum optics. Nature. 2017;541(7638):473. https://doi.org/10.1038/nature21037.

    Article  CAS  Google Scholar 

  127. Liu Z, Du H, Li J, Lu L, Li ZY, Fang NX. Nano-kirigami with giant optical chirality. Sci Adv. 2018;4(7):eaat4436. https://doi.org/10.1126/sciadv.aat4436.

    Article  CAS  Google Scholar 

  128. Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H. Optical communication of spin information between light emitting diodes. Appl Phys Lett. 2011;98(16):162508. https://doi.org/10.1063/1.3582917.

    Article  CAS  Google Scholar 

  129. Lipkin DM. Existence of a new conservation law in electromagnetic theory. J Math Phys. 1964;5(5):696. https://doi.org/10.1063/1.1704165.

    Article  Google Scholar 

  130. Wen H, Song S, Xie F, Wang B, Xu J, Feng Z, Wu S, Han J, Guan BO, Xu X. Great chiral fluorescence from the optical duality of silver nanostructures enabled by 3D laser printing. Mater Horiz. 2020;7(12):3201. https://doi.org/10.1039/D0MH01207F.

    Article  CAS  Google Scholar 

  131. Xiong R, Yu S, Smith MJ, Zhou J, Krecker M, Zhang L, Nepal D, Bunning TJ, Tsukruk VV. Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS Nano. 2019;13(8):9074. https://doi.org/10.1021/acsnano.9b03305.

    Article  CAS  Google Scholar 

  132. Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci. 2022;13(3):633. https://doi.org/10.1039/D1SC03561D.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22071172, 21902148, 12205165, 50835002 and 51105102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhat Nosheen, Xiao-Ya Cui, Guang-Chao Zheng or Zhi-Cheng Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.U., Li, JJ., Liu, X. et al. Chiral metal nanostructures: synthesis, properties and applications. Rare Met. 42, 2489–2515 (2023). https://doi.org/10.1007/s12598-023-02274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02274-4

Keywords

Navigation