Skip to main content
Log in

Identification and characterization of Phoma tracheiphila mutants impaired in pathogenicity following Agrobacterium-mediated mutagenesis

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Mal secco disease, caused by the pathogenic fungus Phoma tracheiphila, is a devastating disease of susceptible citrus species, especially lemon. To study the molecular interactions between the pathogen and its host, a method for identifying the genes involved in pathogenicity is needed. This work describes the transformation of P. tracheiphila phialoconidia by Agrobacterium tumefaciens, and the generation of mutated P. tracheiphila isolates exhibiting reduced virulence on rough lemon seedlings. A rapid, replicable, and reliable method for screening P. tracheiphila mutants to assess their virulence by using rough lemon seedlings was developed. Among 2263 transformants obtained, three were non-virulent and 43 displayed reduced virulence. In addition, one of the transformants, which exhibited virulence similar to that of the wild type, was used for in planta visualization of the fungus progression through the plant xylem. To our knowledge, this is the first report of A. tumefaciens-mediated transformation of P. tracheiphila, and subsequent screening of the transformants to identify non-virulent mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balmas, V., Scherm, B., Ghignone, S., Salem, A. O. M., Cacciola, S. O., & Migheli, Q. (2005). Characterisation of Phoma tracheiphila by RAPD-PCR, microsatellite-primed PCR and ITS rDNA sequencing and development of specific primers for in planta PCR detection. European Journal of Plant Pathology, 111, 235–247.

    Article  CAS  Google Scholar 

  • Bugg, T. D. (2003). Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron, 59, 7075–7101.

    Article  CAS  Google Scholar 

  • Chet, I., Havkin, D., & Katan, J. (1978). The role of catechol in inhibition of Fusarium wilt. Phytopathologische Zeitschrift, 91, 60–66.

    Article  CAS  Google Scholar 

  • Chorin, M., Pinkas, J., & Bental, A. (1966). [Wilting disease in citrus.] The National and University Agricultural Press, 5, 348–350 (in Hebrew).

  • Chorin, R., & Chorin, M. (1956). Mal secco of citrus in Israel and neighbouring countries. Bulletin of the Research Council of Israel, 5D, 176–182.

    Google Scholar 

  • Cogoni, C., & Macino, G. (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 399, 166–169.

    Article  PubMed  CAS  Google Scholar 

  • Demontis, M. A., Cacciola, S. O. M., Orrù, V. B., Chessa, V., Maserti, B. E., Mascia, L., et al. (2008). Development of real-time PCR systems based on SYBR® Green I and TaqMan® technologies for specific quantitative detection of Phoma tracheiphila in infected Citrus. European Journal of Plant Pathology, 120, 339–351.

    Article  CAS  Google Scholar 

  • EPPO, & CABI. (1990). Data sheet on quarantine pests. Deuterophoma tracheiphila (Phoma tracheiphila) (pp. 1–4). Wallingford, UK: CAB International.

  • Ezra, D., Kroitor, T., & Sadowsky, A. (2007). Molecular characterization of Phoma tracheiphila, causal agent of mal secco disease of citrus, in Israel. European Journal of Plant Pathology, 118, 183–191.

    Article  Google Scholar 

  • Ezra, D., Skovorodnikova, J., Kroitor-Keren, T., Denisov, Y., & Liarzi, O. (2010). Development of methods for detection and Agrobacterium-mediated transformation of the sterile, endophytic fungus Muscodor albus. Biocontrol Science and Technology, 20, 83–97.

    Article  Google Scholar 

  • Fogliano, V., Marchese, A., Scaloni, A., Ritieni, A., Visconti, A., Randazzo, G., et al. (1998). Characterization of a 60 kDa phytotoxic glycoprotein produced by Phoma tracheiphila and its relation to malseccin. Physiological and Molecular Plant Pathology, 53, 149–161.

    Article  CAS  Google Scholar 

  • Fulci, V., & Macino, G. (2007). Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Current Opinions in Microbiology, 10, 199–203.

    Article  CAS  Google Scholar 

  • Graniti, A., & Perrota, G. (1988). Phoma tracheiphila (Petri) Kanchaveli & Gikashvili (pp. 396–398). In I. M. Smith, J. Dunez, R. A. Lelliott, D. H. Phillips, & S. A. Archer (Eds.), European handbook of plant diseases. Oxford, UK: Blackwell Scientific Publications.

  • Inoue, L., Ohara, T., Namikv, F., & Tsuge, T. (2001). Isolation of pathogenicity mutants of Fusarium oxysporum f. sp. melonis by insertional mutagenesis. Journal of General Plant Pathology, 67, 191–199.

    Article  CAS  Google Scholar 

  • Kritzman, G., & Chet, I. (1980). The role of phenols in the pathogenicity of Botrytis allii. Phytoparasitica, 8, 27–37.

    Article  CAS  Google Scholar 

  • Kumar, D., & Gupta, R. K. (2006). Biocontrol of wood rotting fungi. Indian Journal of Biotechnology, 5, 20–25.

    CAS  Google Scholar 

  • Licciardello, G., Grasso, F. M., Bella, P., Cirvilleri, G., Grimaldi, V., & Catara, V. (2006). Identification and detection of Phoma tracheiphila, causal agent of citrus mal secco disease, by real-time polymerase chain reaction. Plant Disease, 90, 1523–1530.

    Article  CAS  Google Scholar 

  • Migheli, Q., Balmas, V., Olga Cacciola, S., Pane, A., Ezra, D., & di San Lio, G. M. (2009). Mal secco disease caused by Phoma tracheiphila: A potential threat to lemon industry worldwide. Plant Disease, 93, 852–867.

    Article  Google Scholar 

  • Nicasio, T., Del Bosco, F. S., Nigro, F., & Ippolito, A. (2000). Response of cybrids and a somatic hybrid of lemon to Phoma tracheiphila infections. HortScience, 35, 125–127.

    Google Scholar 

  • Palm, M. E. (1987). Pests not known to occur in the United States or of limited distribution, no. 91: Phoma tracheiphila. In US Department of Agriculture APHIS-PPQ (p. 14). Assessment Support Staff PPQ, APHIS, USDA, Beltsville, MD, USA.

  • Retig, N., & Chet, I. (1974). Catechol-induced resistance of phenols to Fusarium wilt. Physiological Plant Pathology, 4, 469–475.

    Article  CAS  Google Scholar 

  • Reverberi, M., Betti, C., Fabbri, A. A., Zjalic, S., Spadoni, S., Mattei, B., et al. (2008). A role for oxidative stress in the Citrus limon / Phoma tracheiphila interaction. Plant Pathology, 57, 92–102.

    CAS  Google Scholar 

  • Rollo, F., Roberto, S., & Torchia, P. (1990). Highly sensitive and fast detection of Phoma tracheiphila by polymerase chain reaction. Applied Microbiology and Biotechnology, 32, 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Solel, Z. (1976). Epidemiology of Mal secco disease of lemons. Phytopathology, 85, 90–92.

    Article  Google Scholar 

  • Solel, Z., Pinkas, J., & Loebenstein, G. (1972). Evaluation of systemic fungicides and mineral oil adjuvants for the control of mal secco disease of lemon plants. Phytopathology, 62, 1007–1013.

    Article  CAS  Google Scholar 

  • Spiegel, P., & Solel, Z. (1973). [Examination and investigation of lemon species for tolerance to Mal secco.] Bet Dagan, Israel: The Agricultural Research Organization Press, 5, 349–356 (in Hebrew).

    Google Scholar 

  • Timmer, L. W., Garnsey, S. M., & Graham, J. H. (1988), Compendium of citrus diseases, 2nd ed. St. Paul, MN, USA: APS Press.

Download references

Acknowledgments

This work was partially financed by the Chief Scientist of the Israel Ministry of Agriculture and Rural Development (MOARD), research project number 132-1243-06. Contribution No. 523/13 from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ezra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroitor-Keren, T., Liarzi, O., Gat, T. et al. Identification and characterization of Phoma tracheiphila mutants impaired in pathogenicity following Agrobacterium-mediated mutagenesis. Phytoparasitica 41, 491–502 (2013). https://doi.org/10.1007/s12600-013-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0328-7

Keywords

Navigation