Skip to main content
Log in

Retort Co-carbonization of Daniellia oliveri Leaves: Effect of Cow Dung Co-feed on Biochar Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Daniellia oliveri sheds a large quantity of leaves in the dry season in sub-Saharan Africa. Retort carbonization is a recent biomass conversion technique where the flue gas generated in the product zone is re-combusted in the heating zone to produce BC. This work shows that good-quality biochar (DO-BC) can be obtained from the retort carbonization of these leaves. We also show that the utilization of cow dung as co-feed improves the quality of the BC obtained (DC-BC).

Methods

The process was conducted at ambient pressure and 100 min of process time. The BC yield for DO-BC was 28.01% at a peak temperature of 382.2 °C and 38.69% for DC-BC at a peak temperature of 361.6 °C. The BCs were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Xray Spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA), and Brunauer–Emmett–Teller (BET) analysis.

Results

The specific surface increased from 114 m2/g for DO-BC to 174 m2/g for DC-BC respectively. Cow dung co-feed led to significant morphological differences in the BC. DC-BC had more surface heterogeneity and more inorganic elements. The average roughness was 31.25 × 103 μm for DO-BC and 29.21 × 103 μm for DC-BC respectively. Functional groups like C–H, C–O, C=C, O–H, and C–N were observed in the BCs and the cow dung co-feed led to more C–O and C–H functional groups in the BC. The BCs showed similar thermal characteristics with a maximum thermal degradation temperature of around 400 °C.

Conclusions

It was surmised that the systematic addition of a secondary component to the feedstock can improve the yield and surface properties of the final BC obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Banerjee, P., et al.: Solid waste management in India: a brief review, in Waste management and resource efficiency, pp. 1027–1049. Springer, New York (2019)

    Google Scholar 

  2. Rizzo, L., et al.: Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 655, 986–1008 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hoornweg, D., Bhada-Tata, P.: What a waste: a global review of solid waste management, vol. 15. World Bank, Washington, DC (2012)

    Google Scholar 

  4. Ighalo, J.O., Adeniyi, A.G.: Biomass to biochar conversion for agricultural and environmental applications in Nigeria: challenges, peculiarities and prospects. Mater. Int. 2(2), 111–116 (2020)

    Article  Google Scholar 

  5. Marshall, R.E., Farahbakhsh, K.: Systems approaches to integrated solid waste management in developing countries. Waste Manage. 33(4), 988–1003 (2013)

    Article  Google Scholar 

  6. Adewole, A.T.: Waste management towards sustainable development in Nigeria: a case study of Lagos state. Int. NGO J. 4(4), 173–179 (2009)

    Google Scholar 

  7. Yakubu, O.E., Otitoju, O., Onwuka, J.: Gas chromatography–mass spectrometry (GC–MS) analysis of aqueous extract of Daniellia oliveri stem bark. Pharm. Anal. Acta 8(11), 1–8 (2017)

    Article  Google Scholar 

  8. Fohouo, F.-N.T., et al.: Oraging behaviour of Apis mellifera Adansonii Latreille (Hymenoptera: Apidae) on Daniellia oliveri, Delonix regia, Hymenocardia acida and Terminalia mantaly flowers in Ngaoundéré (Cameroon). Int. J. Biol. Chem. Sci. 4(4), 1180–1190 (2010)

    Google Scholar 

  9. Eletta, A.A.O., Tubi, O.T., Ighalo, J.O.: Adsorption of pb(II) from aqueous media using mesoporous adsorbents obtained from Daniellia oliveri leaves. World Sci. News 148, 90–107 (2020)

    CAS  Google Scholar 

  10. Ighalo, J.O., Eletta, O.A.A., Adeniyi, A.G.: Biomass carbonisation in retort kilns: process techniques, product quality and future perspectives. Bioresource Technol. Rep. 17, 100934 (2022)

    Article  CAS  Google Scholar 

  11. Schure, J., et al.: Efficiency of charcoal production in Sub-Saharan Africa: solutions beyond the kiln, p. 340. Bois & Forets Des Tropiques, Jabalpur (2019)

    Google Scholar 

  12. Rodrigues, T., Junior, A.B.: Charcoal: a discussion on carbonization kilns. J. Anal. Appl. Pyrol. 143, 104670 (2019)

    Article  CAS  Google Scholar 

  13. Ighalo, J.O., Onifade, D.V., Adeniyi, A.G.: Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int. J. Sustain. Energ. 14(5), 1059–1067 (2021)

    Article  Google Scholar 

  14. Njenga, M., et al.: Charcoal production and strategies to enhance its sustainability in Kenya. Dev. Pract. 23(3), 359–371 (2013)

    Article  Google Scholar 

  15. Duku, M.H., Gu, S., Hagan, E.B.: Biochar production potential in Ghana—a review. Renew. Sustain. Energy Rev. 15(8), 3539–3551 (2011)

    Article  Google Scholar 

  16. Shahack-Gross, R.: Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. J. Archaeol. Sci. 38(2), 205–218 (2011)

    Article  Google Scholar 

  17. Matos, J.S., et al.: Evaluation of the reduction of methane emission in swine and bovine manure treated with black soldier fly larvae (Hermetia illucens L.). Environ. Monit. Assess. 193, 1–17 (2021)

    Article  Google Scholar 

  18. Puri, S., et al.: Extraction of lignocellulosic constituents from cow dung: preparation and characterisation of nanocellulose. Biomass Convers. Biorefinery 13, 1–10 (2020)

    Google Scholar 

  19. Susianti, B., Warmadewanthi, I., Tangahu, B.V.: Characterization and experimental evaluation of cow dung biochar + dolomite for heavy metal immobilization in solid waste from silica sand purification. Bioresource Technol. Rep. 18, 101102 (2022)

    Article  CAS  Google Scholar 

  20. Holm-Nielsen, J.B., Seadi, T.A., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100(22), 5478–5484 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad, A., et al.: Removal of methylene blue dye using rice husk, cow dung and sludge biochar: characterization, application, and kinetic studies. Bioresour. Technol. 306, 123202 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X., et al.: Cow dung-based biochar materials prepared via mixed base and its application in the removal of organic pollutants. Int. J. Mol. Sci. 23(17), 10094 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma, B., Suthar, S.: Enriched biogas and biofertilizer production from Eichhornia weed biomass in cow dung biochar-amended anaerobic digestion system. Environ. Technol. Innov. 21, 101201 (2021)

    Article  CAS  Google Scholar 

  24. Lin, J.-C., et al.: Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresour. Technol. 328, 124765 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Adeniyi, A.G., et al.: Thermochemical conversion of African balsam leaves-cow dung hybrid wastes into biochar. Biofuels Bioprod. Biorefin. 17(3), 510–522 (2023)

    Article  CAS  Google Scholar 

  26. Adeniyi, A.G., Ighalo, J.O., Onifade, D.V.: Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust. Sci. Technol. 193(1), 60–74 (2021)

    Article  CAS  Google Scholar 

  27. Adeniyi, A.G., Ighalo, J.O., Onifade, D.V.: Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust. Sci. Technol. 193(1), 60–74 (2019)

    Article  Google Scholar 

  28. Ighalo, J.O., Adeniyi, A.G., Igwegbe, C.A.: 3D reconstruction and morphological analysis of electrostimulated hyperthermophile biofilms of Thermotoga neapolitana. Biotechnol. Lett. 43(7), 1303–1309 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Chandrasekaran, A., et al.: Natural draft-improved carbonization retort system for biocarbon production from Prosopis juliflora biomass. Energy Fuels 33(11), 11113–11124 (2019)

    Article  CAS  Google Scholar 

  30. Padakan, R.: Effect of the flue of charcoal retort kilns on production charcoal using drum kilns for households. Int. J. Eng. Technol. (2019). https://doi.org/10.7763/IJET.2019.V11.1155

    Article  Google Scholar 

  31. Adeniyi, A.G., Ighalo, J.O., Onifade, D.V.: Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications. Chem. Afr. 3(2), 439–448 (2020)

    Article  CAS  Google Scholar 

  32. Alagbe, J.: Daniellia oliveri leaf extracts as an alternative to antibiotic feed additives in broiler chicken diets: meat quality and fatty acid composition. Indonesian J. Innov. Appl. Sci. (IJIAS) 1(3), 177–186 (2021)

    Article  Google Scholar 

  33. Kiyasudeen, S.K., et al.: Characterization of fresh cattle wastes using proximate, microbial, and spectroscopic principles. Am.-Eurasian J. Agric. Environ. Sci. 15(8), 1700–1709 (2015)

    CAS  Google Scholar 

  34. Tsai, C.-Y., et al.: Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters. Bioresour. Technol. 347, 126749 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. Emenike, E.C., et al.: Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresource Technol. Rep. 19, 101195 (2022)

    Article  CAS  Google Scholar 

  36. Zhang, S.-Z., et al.: Biochar based functional materials as heterogeneous catalysts for organic reactions. Curr. Opin. Green. Sustainable Chem. 38, 100713 (2022)

    Article  CAS  Google Scholar 

  37. Aboyade, A.O., et al.: Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim. Acta. 517(1–2), 81–89 (2011)

    Article  CAS  Google Scholar 

  38. Mani, T., et al.: Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem. Eng. Res. Des. 88(8), 952–958 (2010)

    Article  CAS  Google Scholar 

  39. Bayartsengel, B., et al.: Characterization of biochars produced from various biowastes: in 5th international conference on chemical investigation and utilization of natural resource (ICCIUNR-2021). Atlantis Press, Amsterdam (2021)

    Google Scholar 

  40. Garba, J., et al.: Evaluation of adsorptive characteristics of cow dung and rice husk ash for removal of aqueous glyphosate and aminomethylphoshonic acid. Sci. Rep. 9(1), 17689 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Adeniyi, A.G., et al.: Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environ. Challenges 9, 100630 (2022)

    Article  CAS  Google Scholar 

  42. Qu, J., et al.: Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr (VI) and tetracycline adsorption from water. Bioresour. Technol. 340, 125692 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. Saliu, O.D., et al.: Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochem. Commun. 139, 107308 (2022)

    Article  CAS  Google Scholar 

  44. Zhou, S., et al.: The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Waste Manage. 88, 85–95 (2019)

    Article  CAS  Google Scholar 

  45. Chand, N., Kumar, K., Suthar, S.: Cattle dung biochar-packed vertical flow constructed wetland for nutrient removal: effect of intermittent aeration and wastewater COD/N loads on the removal process. J. Water Process. Eng. 43, 102215 (2021)

    Article  Google Scholar 

  46. Yusefi, M., et al.: Performance of cow dung reinforced biodegradable poly (lactic acid) biocomposites for structural applications. J. Polym. Environ. 26, 474–486 (2018)

    Article  CAS  Google Scholar 

  47. Yang, X., et al.: Sorptive removal of ibuprofen from water by natural porous biochar derived from recyclable plane tree leaf waste. J. Water Process. Eng. 46, 102627 (2022)

    Article  Google Scholar 

  48. El-Shafie, A.S., et al.: Techno-economic assessment of waste mandarin biochar as a green adsorbent for binary dye wastewater effluents of methylene blue and basic fuchsin: lab-and large-scale investigations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 306, 123621 (2024)

    Article  CAS  Google Scholar 

  49. Campion, L., et al.: The costs and benefits of biochar production and use: a systematic review. J. Clean. Prod. 408, 137138 (2023)

    Article  Google Scholar 

  50. Ighalo, J.O., et al.: Competitive adsorption of heavy metals in a quaternary solution by sugarcane bagasse—LDPE hybrid biochar: equilibrium isotherm and kinetics modelling. Chem Prod Proc Model 18, 1–15 (2022)

    Google Scholar 

  51. Adelodun, A.A., et al.: Thermochemical conversion of oil palm fiber-LDPE hybrid waste into biochar. Biofuels Bioprod. Biorefining 14(6), 1313–1323 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

There was no external funding for the study.

Author information

Authors and Affiliations

Authors

Contributions

JOI (conceptualization; data curation; methodology; writing—original draft; writing—review & editing; resources), CAA (conceptualization; data curation; methodology), KOI (writing—original draft; writing - review & editing), ECE (writing—original draft; writing—review & editing), AGA (conceptualization; writing—review & editing; supervision; validation; project administration; resources).

Corresponding authors

Correspondence to Joshua O. Ighalo or Adewale George Adeniyi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval 

No Ethical approval was required for the study. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1255.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ighalo, J.O., Adeyanju, C.A., Iwuozor, K.O. et al. Retort Co-carbonization of Daniellia oliveri Leaves: Effect of Cow Dung Co-feed on Biochar Properties. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02461-z

Keywords

Navigation