Skip to main content
Log in

Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Species delimitations in the predominantly Antarctic and South American group of neuropogonoid species of the lichen-forming fungal genus Usnea are poorly understood. Morphological variability has been interpreted as a result of harsh ecological conditions, but preliminary molecular data have led to doubts about the current species delimitations in these lichenized fungi. We examined species boundaries using a phylogenetic approach and a cohesion species recognition method generating haplotype networks and looking at associations of phenotypic characters with clades found in the networks. In addition, we estimated gene flow among detected clades and currently circumscribed species. We identified several clades that were significantly associated with phenotypic characters, but did not necessarily agree with current species circumscriptions. In one case (U. aurantiaco-atra/U. antarctica), network analysis and the estimation of gene flow provided no evidence of distinct species. The distinctness of another species pair (U. subantarctica/U. trachycarpa) remains dubious, showing evidence for gene flow among currently accepted species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ané, C., Larget, B., Baum, D. A., Smith, S. D., & Rokas, A. (2007). Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution, 24, 412–426.

    Article  PubMed  Google Scholar 

  • Argüello, A., del Prado, R., Cubas, P., & Crespo, A. (2007). Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society, 91, 455–467.

    Article  Google Scholar 

  • Articus, K., Mattsson, J. E., Tibell, L., Grube, M., & Wedin, M. (2002). Ribosomal DNA and beta-tubulin data do not support the separation of the lichens Usnea florida and U-subfloridana as distinct species. Mycological Research, 106, 412–418.

    Article  CAS  Google Scholar 

  • Avise, J. C., & Ball, R. M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology, 7, 45–67.

    Google Scholar 

  • Buschbom, J., & Barker, D. (2006). Evolutionary history of vegetative reproduction in Porpidia s. l. (lichen-forming ascomycota). Systematic Biology, 55, 471–484.

    Article  PubMed  Google Scholar 

  • Buschbom, J., & Mueller, G. M. (2006). Testing "species pair" hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Molecular Biology and Evolution, 23, 574–586.

    Article  PubMed  CAS  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • Clerc, P. (1984). Contribution a la revision de la systematique des usnees (Ascomycotina, Usnea) d'Europe I.--Usnea florida (L.) Wigg. emend. Clerc. Cryptogamie. Bryologie et Lichenologie, 5, 333–360.

    Google Scholar 

  • Clerc, P. (1998). Species concepts in the genus Usnea (lichenized Ascomycetes). The Lichenologist, 30, 321–340.

    Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer Associates.

    Google Scholar 

  • Crandall, K. (1996). Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution, 13, 115–131.

    PubMed  CAS  Google Scholar 

  • Crespo, A., & Lumbsch, H. T. (2010). Cryptic species in lichen-forming fungi. IMA Fungus, 1, 167–170.

    Article  Google Scholar 

  • Crespo, A., & Perez-Ortega, S. (2009). Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardin Botánico de Madrid, 66, 71–81.

    Article  Google Scholar 

  • Cubero, O. F., Crespo, A., Esslinger, T. L., & Lumbsch, H. T. (2004). Molecular phylogeny of the genus Physconia (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences. Mycological Research, 108, 498–505.

    Article  PubMed  CAS  Google Scholar 

  • de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.

    Article  PubMed  Google Scholar 

  • Dettman, J. R., Jacobson, D. J., & Taylor, J. W. (2003). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution, 57, 2703–2720.

    PubMed  Google Scholar 

  • Dettman, J. R., Jacobson, D. J., Turner, E., Pringle, A., & Taylor, J. W. (2003). Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution, 57, 2721–2741.

    PubMed  Google Scholar 

  • Dettman, J. R., Jacobson, D. J., & Taylor, J. W. (2006). Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia, 98, 436–446.

    Article  PubMed  Google Scholar 

  • Divakar, P. K., Molina, M. C., Lumbsch, H. T., & Crespo, A. (2005). Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. The Lichenologist, 37, 37–46.

    Article  Google Scholar 

  • Dodge, C. W. (1973). Lichen flora of the Antarctic continent and adjacent islands. New Hampshire: Canaan.

    Google Scholar 

  • Elix, J. A., Wirtz, N., & Lumbsch, H. T. (2007). Studies on the chemistry of some Usnea species of the Neuropogon group (Lecanorales, Ascomycota). Nova Hedwigia, 85, 491–501.

    Article  Google Scholar 

  • Farris, J. S., Källersjö, M., Kluge, A. G., & Bult, C. (1994). Testing significance of incongruence. Cladistics, 10, 315–319.

    Article  Google Scholar 

  • Farris, J. S., Källersjö, M., Kluge, A. G., & Bult, C. (1995). Constructing a significance test for incongruence. Systematic Biology, 44, 570–572.

    Google Scholar 

  • Fisher, M. C., Koenig, G., White, T. J., & Taylor, J. W. (2000). A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis. Molecular Biology and Evolution, 17, 1164–1174.

    PubMed  CAS  Google Scholar 

  • Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423.

    Article  Google Scholar 

  • Geiser, D. M., Pitt, J. I., & Taylor, J. W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the United States of America, 95, 388–393.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Heled, J., & Drummond, A. J. (2009). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580.

    Article  PubMed  Google Scholar 

  • Hey, J., & Wakeley, J. (1997). A coalescent estimator of the population recombination rate. Genetics, 145, 833–846.

    PubMed  CAS  Google Scholar 

  • Hird, S., Kubatko, L., & Carstens, B. (2010). Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling. Molecular Phylogenetics and Evolution, 57, 888–898.

    Article  PubMed  Google Scholar 

  • Honegger, R., & Zippler, U. (2007). Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycological Research, 111, 424–432.

    Article  PubMed  CAS  Google Scholar 

  • Honegger, R., Zippler, U., Gansner, H., & Scherrer, S. (2004). Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycological Research, 108, 480–488.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R. R., & Coyne, J. A. (2002). Mathematical consequences of the genealogical species concept. Evolution, 56, 1557–1565.

    PubMed  Google Scholar 

  • Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow fom DNA sequence data. Genetics, 132, 583–589.

    PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, T., White, T. J., Koenig, G., McEwen, J., Restrepo, A., Castaneda, E., Lacaz, C. D., Heins-Vaccari, E. M., De Freitas, R. S., Zancope-Oliveira, R. M., Qin, Z. Y., Negroni, R., Carter, D. A., Mikami, Y., Tamura, M., Taylor, M. L., Miller, G. F., Poonwan, N., & Taylor, J. W. (2003). Phylogeography of the fungal pathogen Histoplasma capsulatum. Molecular Ecology, 12, 3383–3401.

    Article  PubMed  CAS  Google Scholar 

  • Kliman, R. M., Andolfatto, P., Coyne, J. A., Depaulis, F., Kreitman, M., Berry, A. J., McCarter, J., Wakeley, J., & Hey, J. (2000). The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics, 156, 1913–1931.

    PubMed  CAS  Google Scholar 

  • Kroken, S., & Taylor, J. W. (2001). A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia, 93, 38–53.

    Article  CAS  Google Scholar 

  • Kubatko, L. S., Carstens, B. C., & Knowles, L. L. (2009). STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics, 25, 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, I. M. (1939). A review of the genus Neuropogon (Nees & Flot.) Nyl., with special reference to the antarctic species. Journal of the Linnean Society (Botany), 52, 199–237.

    Google Scholar 

  • Lange, O. L. (1992). Pflanzenleben unter Stress. Flechten als Pioniere der Vegetation an Extremstandorten der Erde. Würzburg: Rostra Universitatis Wirceburgensis.

    Google Scholar 

  • Liu, L., & Pearl, D. K. (2007). Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Systematic Biology, 56, 504–514.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Yu, L. L., Pearl, D. K., & Edwards, S. (2009). Estimating species phylogenies using coalescence times among sequences. Systematic Biology, 58, 468–477.

    Article  PubMed  CAS  Google Scholar 

  • Lohse, K. (2009). Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematic Biology, 58, 439–442.

    Article  PubMed  Google Scholar 

  • Lohtander, K., Myllys, L., Sundin, R., Kallersjo, M., & Tehler, A. (1998). The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist, 101, 404–411.

    CAS  Google Scholar 

  • Lumbsch, H. T., & Leavitt, S. D. (2011). Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity, 50, 59–72.

    Article  Google Scholar 

  • Lumbsch, H. T., & Wirtz, N. (2011). Phylogenetic relationships of the neuropogonoid core group in the genus Usnea (Ascomycota, Parmeliaceae). The Lichenologist, 43, 553–559.

    Article  Google Scholar 

  • Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, H. T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R., & Vilgalys, R. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany, 91, 1446–1480.

    Article  PubMed  Google Scholar 

  • Mattsson, J. E., & Lumbsch, H. T. (1989). The use of the species pair concept in lichen taxonomy. Taxon, 38, 238–241.

    Article  Google Scholar 

  • Molina, M. C., Crespo, A., Blanco, O., Hladun, N., & Hawksworth, D. L. (2002). Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii. The Lichenologist, 34, 509–519.

    Article  Google Scholar 

  • Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T., & Hawksworth, D. L. (2004). Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. The Lichenologist, 36, 37–54.

    Article  Google Scholar 

  • Motyka, J. (1936–1938). Lichenum generis Usnea studium monographicum, pars systematica. 2 vols., Lviv.

  • Murtagh, G. J., Dyer, P. S., & Crittenden, P. D. (2000). Sex and the single lichen. Nature, 404, 564.

    Article  PubMed  CAS  Google Scholar 

  • Myllys, L., Lohtander, K., Källersjö, M., & Tehler, A. (1999). Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) Phylogeny. Molecular Phylogenetics and Evolution, 12, 295–309.

    Article  PubMed  CAS  Google Scholar 

  • Myllys, L., Lohtander, K., & Tehler, A. (2001). beta-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia, 93, 335–343.

    Article  CAS  Google Scholar 

  • Myllys, L., Stenroos, S., Thell, A., & Ahti, T. (2003). Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution, 27, 58–69.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  • Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L., & Swofford, D. L. (2008). AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics, 24, 581–583.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C., & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes support formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 41, 600–623.

    Article  PubMed  Google Scholar 

  • Ohmura, Y. (2001). Taxonomic study of the genus Usnea (lichenized Ascomycetes) in Japan and Taiwan. Journal of the Hattori Botanical Laboratory, 90, 1–96.

    Google Scholar 

  • Ott, S., Brinkmann, M., Wirtz, N., & Lumbsch, H. T. (2004). Mitochondrial and nuclear ribosomal DNA data do not support the separation of the Antarctic lichens Umbilicaria kappenii and Umbilicaria antarctica as distinct species. The Lichenologist, 36, 227–234.

    Article  Google Scholar 

  • Øvstedal, D. O., & Lewis Smith, R. I. (2001). Lichens of Antarctica and South Georgia: A guide to their identification and ecology. Studies in Polar Research. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pfenninger, M., & Posada, D. (2002). Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution, 56, 1776–1788.

    PubMed  Google Scholar 

  • Poelt, J. (1970). Das Konzept der Artenpaare bei den Flechten. Vorträge aus dem Gesamtgebiet der Botanik, Neue Folge [Deutsche Botanische Gesellschaft], 4, 187–198.

  • Poelt, J. (1972). Die taxonomische Behandlung von Artenpaaren bei den Flechten. Botaniska Notiser, 125, 77–81.

    Google Scholar 

  • Pons, J., Barraclough, T. G., Gómez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609.

    Article  PubMed  Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D., & Crandall, K. A. (2001). Selecting the best-fit model of nucleotide substitution. Systematic Biology, 50, 580–601.

    Article  PubMed  CAS  Google Scholar 

  • Printzen, C., Ekman, S., & Tønsberg, T. (2003). Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology, 12, 1473–1486.

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg, L. H., & Brouillet, L. (1994). Are many plant-species paraphyletic? Taxon, 43, 21–32.

    Article  Google Scholar 

  • Rodriguez, F., Oliver, J. L., Marin, A., & Medina, J. R. (1990). The general stochastic-model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, F. A., Crittenden, P. D., Dickinson, M. J., Paoletti, M., Montiel, D., Cho, L., & Dyer, P. S. (2005). Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genetics and Biology, 42, 554–563.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, F. A., Crittenden, P. D., Wirtz, N., Øvstedal, D. O., Dyer, P. S., & Lumbsch, H. T. (2007). Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon. Antarctic Science, 19, 71–82.

    Article  Google Scholar 

  • Soltis, P. S., & Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Schemske, D. W., Hancock, J. F., Thompson, J. N., Husband, B. C., & Judd, W. S. (2007). Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon, 56, 13–30.

    Google Scholar 

  • Syring, J., Farrell, K., Businsky, R., Cronn, R., & Liston, A. (2007). Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus. Systematic Biology, 56, 163–181.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., & Fisher, M. C. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 3–27). Sunderland: Sinauer Associates.

    Google Scholar 

  • Templeton, A. R. (2001). Using phylogeographic analyses of gene trees to test species status and processes. Molecular Ecology, 10, 779–791.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R., & Sing, C. F. (1993). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. 4. Nested analyses with cladogram uncertainty and recombination. Genetics, 134, 659–669.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., Boerwinkle, E., & Sing, C. F. (1987). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. 1. Basic theory and an analysis of alcohol-dehydrogenase activity in Drosophila. Genetics, 117, 343–351.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data. 3. Cladogram estimation. Genetics, 132, 619–633.

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Tuffley, C., & Steel, M. (1998). Modeling the covarion hypothesis of nucleotide substitution. Mathematical Biosciences, 147, 63–91.

    Article  PubMed  CAS  Google Scholar 

  • Walker, F. J. (1985). The lichen genus Usnea subgenus Neuropogon. Bulletin of the British Museum, 13, 1–130. (Natural History), Botany series.

    Google Scholar 

  • Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276.

    Article  PubMed  CAS  Google Scholar 

  • Wirtz, N., Printzen, C., Sancho, L. G., & Lumbsch, H. T. (2006). The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon, 55, 367–376.

    Article  Google Scholar 

  • Wirtz, N., Printzen, C., & Lumbsch, H. T. (2008). The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research, 112, 472–484.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107, 9264–9269.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all colleagues who provided fresh lichen material for this study. N,W, is indebted to María Inés Messuti, Andrés Diehl and Gernot Vobis (all S.C. de Bariloche, Argentina) for organizing and performing a field trip to Tierra del Fuego. N.W. and H.T.L. are grateful to Asuncion Cano and Angel Ramirez (Lima) for organizing and conducting a field trip to Huascaran NP in Peru and to the Women’s Board of the Field Museum in Chicago for financially supporting the trip. Most of the laboratory work was done at the Pritzker Laboratory for Molecular Systematics at the Field Museum. Financial support for this project was allocated by the Deutsche Forschungsgemeinschaft (DFG grant to H.T.L. and C.P.), the National Science Foundation (DEB-0949147, PI: HTL), a scholarship of the DAAD (German Exchange Service) to N.W., and a grant of the Women’s Board of the Field Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thorsten Lumbsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtz, N., Printzen, C. & Lumbsch, H.T. Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Org Divers Evol 12, 17–37 (2012). https://doi.org/10.1007/s13127-011-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-011-0066-y

Keywords

Navigation