Skip to main content
Log in

Endophytism and bioactivity of endophytic fungi isolated from Combretum lanceolatum Pohl ex Eichler

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

We report the isolation and identification of endophytic fungi from Combretum lanceolatum Pohl ex Eichler. Further, we evaluated the relationships of fungi with the host plant and tested bioactivities of isolates. The fungi were isolated from disinfected root fragments and plated onto potato dextrose agar. Root pieces were also used to quantify fungal structures associated with the roots. Identification of fungi was carried out by characterization of morphological features and sequencing of the ITS region. Endophytism was confirmed by inoculation of endophyte-free seedlings followed by microscopic examination. The extract was obtained by maceration of the mycelium in ethyl acetate for antioxidant and antimicrobial evaluations. A total of 112 strains belonging to nine different species were isolated, the major classes were Dothideomycetes and Sordariomycetes. C. lanceolatum is colonized by dark septate endophytes (DSE), evidenced by the presence of microsclerotia and melanized hyphae. There is also co-colonization with mycorrhizal fungi in the same root fragments. Seedling inoculation experiments revealed that C. perangustum-95C and M. phaseolina-46C showed association with the seedlings of C. lanceolatum and differentiated microsclerotia and dark septate hyphae, indicating that these species are DSE. In the antimicrobial test, the D. phaseolorum-92C extract had the highest zones of inhibition against S. aureus and E. coli, respectively. The results showed that 100 % of the extracts have antioxidant activity ranging from low to moderate. All endophyte species had antioxidant and antimicrobial activities that were directly proportional to the dose-responses. Future research will involve chemical characterization and structural elucidation of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan AJ (2009) Assessment of the medicinal potentials of the methanol extracts of the leaves and stems of Buddleja saligna. BMC Complement Altern Med 9:21. doi:10.1186/1472-6882-9-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Adelmann J (2005) Própolis: Compositional variability, correlation with the flora and antimicrobial bioactivity/antioxidant. Thesis (Master in Pharmaceutical Sciences) Health Sciences Sector, Federal University of Paraná, Curitiba

  • Aderogba MA, Kgatle DT, McGaw LJ, Eloff JN (2012) Isolation of antioxidant constituents from Combretum apiculatum subsp. Apiculatum. S Afr J Bot 79:125–131. doi:10.1016/j.sajb.2011.10.004

    Article  CAS  Google Scholar 

  • Alasalvar C, Karamać M, Kosinska A, Rybarczyk A, Shahidi F, Amarowicz R (2009) Antioxidant activity of hazelnut skin phenolics. J Agric Food Chem 57:4645–4650. doi:10.1021/jf900489d

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845. doi:10.1007/s00253-011-3270-y

    Article  CAS  PubMed  Google Scholar 

  • Angeh JE, Huang X, Sattler I, Swan GE, Dahse H, Härtl A, Eloff JN (2007) Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae). J Ethnopharmacol 110:56–60. doi:10.1016/j.jep.2006.09.002

  • Araujo LCJ, da Silva VC, Dall’Oglio EL, de Sousa PT (2013) Flavonoids from Combretum lanceolatum Pohl. Biochem Syst Ecol 49:37–38. doi:10.1016/j.bse.2013.03.012

    Article  CAS  Google Scholar 

  • Artanti N, Tachibana S, Kardono LB, Sukiman H (2011) Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pakistan journal of biological sciences: PJBS 14:1019–1023

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, Stone JK, White JF (2000) An overview of endophytic microbes: endophytism defined. Microbial endophytes 3:29–33

    Google Scholar 

  • Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi. Mycologia 64:930–932. doi:10.2307/3757954

    Article  Google Scholar 

  • Bhagobaty RK, Joshi SR (2011) Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J Metabolomics Syst Biol 2:20–31. doi:10.5897/JMSB

    CAS  Google Scholar 

  • Brundrett MC, Bougher N, Dell B, Grove T, Malajczu N (1996) Working with mycorrhizas in forest and agriculture, Canberra: Australian centre for international agricultural research, Canberra, p. 374

  • Cai YZ, Sun M, Xing J, Luo P, Corke H (2006) Structure-radical elimination activity relationship of phenolic compounds traditional Chinese medicinal plant. Vida Sci 78:2872–2888

    CAS  Google Scholar 

  • Chow Y, Ting AS (2014) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. Journal of Advanced Research. doi:10.1016/j.jare.2014.07.005

    PubMed  PubMed Central  Google Scholar 

  • Costa IP, Maia LC, Cavalcanti MA (2012) Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz J Microbiol 43:1165–1173. doi:10.1590/S1517-83822012000300044

    Article  Google Scholar 

  • Cui J L, Guo TT, Ren ZX, Zhang NS, Wang ML (2015) Diversity and Antioxidant Activity of Culturable Endophytic Fungi from Alpine Plants of Rhodiola crenulata, R. angusta, and R. sachalinensis 10:1–16.doi:10.1371/journal.pone.0118204

  • Das IK, Fakrudin B, Arora DK (2008) RAPD cluster analysis and chlorate sensitivity of some Indian isolates of Macrophomina phaseolina from sorghum and their relationships with pathogenicity. Microbiol res 163:215–224. doi:10.1016/j.micres.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  • Dechandt CRP, Siqueira JT, Souza DLPD, Araujo LCJ, Silva VCD, Sousa Junior PTD, Baviera AM (2013) Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin. Revista Brasileira de Farmacognosia 23:291–300

  • Dimitrios B (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 17:505–512

    Article  CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 2. Academic Press (London), Ltd.

    Google Scholar 

  • Dunn IS, Blattner FR (1987) Charons 36 to 40: multienzyme, higt capacity, recobination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res 15:2677–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fankam AG, Kuiate JR, Kuete V (2015) Antibacterial and antibiotic resistance modifying activity of the extracts from allanblackia gabonensis, Combretum molle and gladiolus quartinianus against gram-negative bacteria including multi-drug resistant phenotypes. BMC Complement Altern Med 15:206. doi:10.1186/s12906-015-0726-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206. doi:10.1111/pbi.12279

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehlot P, Bohra NK, Purohit DK (2008) Endophytic mycoflora of inner bark of Prosopis cineraria - a key stone tree species of Indian desert. Am-Eur J Bot 1:01–04

    Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390. doi:10.1139/b95-040

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347.2th ed

  • Hou XQ, Guo SX (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51:374–381. doi:10.1111/j.1744-7909.2008.00777.x

    Article  CAS  PubMed  Google Scholar 

  • Hsiao Y, Cheng MJ, Chang HS, Wu MD, Hsieh SY, Liu TW, Chen IS (2016) Six new metabolites produced by Colletotrichum aotearoa 09F0161, an endophytic fungus isolated from Bredia oldhamii. Nat Prod Res 30:251–258. doi:10.1080/14786419.2015.1054285

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ES, Tinnell SB (1993) Antioxidant function of fungal melanin. J Bacteriol 175:7102–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouda JB, Kusari S, Lamshöft M, Talontsi FM, Meli CD, Wandji J, Spiteller M (2014) Penialidins A–C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia 98:209–214. doi:10.1016/j.fitote.2014.08.011

  • Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Junker C, Draeger S, Schulz B (2012) A fine line–endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol 5:657–662. doi:10.1016/j.funeco.2012.05.002

    Article  Google Scholar 

  • Kamala T, Devi SI, Sharma KC, Kennedy K (2015) Phylogeny and Taxonomical Investigation of Trichoderma spp. from Indian Region of Indo-Burma Biodiversity Hot Spot Region with Special Reference to Manipur. BioMed Res Int 2015. doi:10.1155/2015/285261

    Google Scholar 

  • Kern ME, Blevins KS (1999) Micologia Médica: texto e Atlas. Ed. Premier, São Paulo.

  • Khiralla A, Mohamed I, Thomas J, Mignard B, Spina R, Yagi S, Laurain-Mattar D (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8:701–704. doi:10.1016/j.apjtm.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  • Knapp DG, Pintye A, Kovács GM (2012) The dark side is not fastidious–dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One 7:32570. doi:10.1371/journal.pone.0032570

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. doi:10.1016/S0953-7562(89)80195-9

    Article  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & biology 19:792–798. doi:10.1016/j.chembiol.2012.06.004

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lai HY, Lim YY, Tan SP (2009) Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem 73:1362–1366. doi:10.1271/bbb.90018

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Wong C, Cheng KW, Chen F (2008) Propriedades antioxidante in vitro e teor de fenólicos totais em extratos de metanol a partir de plantas medicinais. LWT-Food Sci Tecnologia 41:385–390

    Article  CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554. doi:10.1016/j.foodchem.2007.04.008

    Article  CAS  Google Scholar 

  • Liu F, Cai XL, Yang, H, Xia XK, Guo ZY, Yuan J, Lin YC (2010) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta medica 76:185–189. doi:10.1055/s-0029-1186047

  • Loiola MIB, Rocha EA, Baracho GS, Agra MDF (2009) Flora of Paraíba, Brazil: Solanum L., Solanaceae. Acta Botanica Brasilica 23:330–342

    Article  Google Scholar 

  • Longato S, Bonfante P (1997) Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycol Res 101:425–432. doi:10.1017/S0953756296002766

    Article  CAS  Google Scholar 

  • Mandyam K, Fox C, Jumpponen A (2012) Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie. Mycorrhiza 22:109–119. doi:10.1007/s00572-011-0386-y

    Article  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol:495–501

  • Merkl R, Hradkova I, Filip V, Smidrkal J (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28:275–279

    CAS  Google Scholar 

  • Mihara R, Barry KM, Mohammed CL, Mitsunaga T (2005) Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts. J Chem Ecol 31:789–804. doi:10.1007/s10886-005-3544-x

    Article  CAS  PubMed  Google Scholar 

  • Mutasa T, Mangoyi R, Mukanganyama S (2015) The effects of Combretum zeyheri leaf extract on Ergosterol synthesis in Candida albicans. Journal of Herbs, Spices & Medicinal Plants 21:211–217. doi:10.1080/10496475.2014.941451

    Article  Google Scholar 

  • Nath A, Chattopadhyay A, Joshi SR (2015) Biological activity of endophytic fungi of Rauwolfia serpentina Benth: an ethnomedicinal plant used in folk medicines in Northeast India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 85:233–240. doi:10.1007/s40011-013-0184-8

    Article  CAS  Google Scholar 

  • Oliver-Bever BEP (1986) Medicinal plants in tropical West Africa. Cambridge University Press

  • Otieno DO, Schmidt MWT, Kurz-Besson C, Do Vale RL, Pereira JS, Tenhunen JD (2007) Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Tree Physiol 27:1179–1187. doi:10.1093/treephys/27.8.1179

    Article  CAS  PubMed  Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes–the chemical synthesizers inside plants. Sci Prog 87:79–99. doi:10.3184/003685004783238553

    Article  CAS  PubMed  Google Scholar 

  • Padhi S, Tayung K (2013) Antimicrobial activity and molecular characterization of an endophytic fungus, Quambalaria sp isolated from Ipomoea carnea. Ann Microbiol 63:793–800. doi:10.1007/s13213-012-0534-4

    Article  CAS  Google Scholar 

  • Petrini O, Muller E (1986) Haupt und nebenfruchtformen europaischer pilze. Mycologia Helvética 1:501–627

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158. doi:10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  • Plakthongdee S, Monklung S, Cheewangkoon R, To-anun C (2013) Cladosporiod on monocotyledon plant from Thailand. J Agric Technol 9:943–951

    Google Scholar 

  • Pontecorvo G, Roper JA, Chemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    CAS  PubMed  Google Scholar 

  • Pott A, Oliveira AKM, Damasceno-Junior GA, Silva JSV (2011) Plant diversity of the pantanal wetland. Braz J Biol 71:265–273. doi:10.1590/S1519-69842011000200005

    CAS  PubMed  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024. doi:10.1002/jobm.201200367

    Article  CAS  PubMed  Google Scholar 

  • Rao HY, Baker S, Rakshith D, Satish S (2015) Molecular profiling and antimicrobial potential of endophytic Gliomastix polychroma CLB32 inhabiting Combretum latifolium Blume. Mycology 6:176–181. doi:10.1080/21501203.2015.1113207

    Article  CAS  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of microbes for the alleviation of soil stresses, Vol 1. Springer 21–42

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. doi:10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rosa LH, Vieira MDLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl.(Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189. doi:10.1111/j.1574-6941.2010.00872.x

    CAS  PubMed  Google Scholar 

  • Rosa LH, Tabanca N, Techen N, Wedge DE, Pan Z, Bernier UR, Moraes RM (2012) Diversity and biological activities of endophytic fungi associated with micropropagated medicinal plant Echinacea purpurea (L.) Moench. Am J Plant Sci 3:1105. doi:10.4236/ajps.2012.38133

    Article  Google Scholar 

  • Sandberg DC, Battista LJ, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747. doi:10.1007/s00248-013-0324-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos LV, de Queiroz MV, Santana MF, Soares MA, de Barros EG, de Araújo EF, Langin T (2012a) Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J Microbiol Biotechnol 28:1087–1095. doi:10.1007/s11274-011-0909-x

    Article  PubMed  Google Scholar 

  • Santos SN, Ferraris FK, de Souza AO, das Graças Henriques M, Melo IS (2012b) Endophytic fungi from Combretum leprosum with potential anticancer and antifungal activity. Symbiosis 58:109–117. doi:10.1007/s13199-012-0218-7

    Article  Google Scholar 

  • Satue-gracia MT, Heinonen M, Frankel EN (1997) Antioxidant activity of anthocyanins in LDL and lecithin liposome systems.J. Agric. Food Chem 45:3362–3367

    Article  CAS  Google Scholar 

  • Schepetkin IA, Kouakou K, Yapi A, Kirpotina LN, Jutila MA, Quinn MT (2013) Immunomodulatory and hemagglutinating activities of acidic polysaccharides isolated from Combretum racemosum. Int immunopharmacol 15:628–637. doi:10.1016/j.intimp.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. doi:10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Sebastianes FL, Romao-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, de Melo IS, Pizzirani-Kleiner AA (2013) Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59:153–166. doi:10.1007/s00294-013-0396-8

    Article  CAS  Google Scholar 

  • Sengul M, Yildiz H, Gungor N, Cetin B, Eser Z, Ercisli S (2009) Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak J Pharm Sci 22:102–106

    CAS  PubMed  Google Scholar 

  • Shubin L, Juan H, RenChao Z, ShiRu X, YuanXiao J (2014) Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration. PLoS One 9:15289. doi:10.1371/journal.pone.0115289

    Article  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191. doi:10.4161/psb.6.2.14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza SMD, Monache FD, Smânia A (2005) Antibacterial activity of coumarins. Zeitschrift fuer Naturforschung C 60:693–700. doi:10.1515/znc-2005-9-1006

    Google Scholar 

  • Spiegler V, Sendker J, Petereit F, Liebau E, Hensel A (2015) Bioassay-guided fractionation of a leaf extract from Combretum mucronatum with anthelmintic activity: Oligomeric Procyanidins as the active principle. Molecules 20:14810–14832. doi:10.3390/molecules200814810

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. doi:10.1126/science.8097061

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Rajulu MG, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the western Ghats, southern India. Biodivers Conserv 20:913–928. doi:10.1007/s10531-011-0004-5

    Article  Google Scholar 

  • Tayung K, Barik BP, Jha DK, Deka DC (2011) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2:203–213

    Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. A.(Combretaceae). World J Microbiol Biotechnol 21:1535–1540. doi:10.1007/s11274-005-7579-5

    Article  Google Scholar 

  • Teles CB, Moreira LS, Silva ADA, Facundo VA, Zuliani JP, Stábeli RG, Silva-Jardim I (2011) Activity of the Lupane isolated from Combretum leprosum against Leishmania amazonensis Promastigotes. J Braz Chem Soc 22:936–942. doi:10.1590/S0103-50532011000500017

    Article  CAS  Google Scholar 

  • Teles CB, Moreira-Dill LS, Silva AA, Facundo VA, de Azevedo WF, da Silva LH, Silva-Jardim I (2015) A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165. doi:10.1186/s12906-015-0681-9

    Article  PubMed  PubMed Central  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914. doi:10.3732/ajb.1100459

    Article  PubMed  Google Scholar 

  • Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN, Okoye FB, Müller WEG, Lin WH, Liu Z, Proksch P (2015) Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzae evidence for a metabolic partnership. Fitoterapia 105:147–150. doi:10.1016/j.fitote.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051–2051. doi:10.1126/science.295.5562.2051

    Article  PubMed  Google Scholar 

  • Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887. doi:10.1016/j.biotechadv.2015.07.004

    Article  PubMed  Google Scholar 

  • Vieira ML, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60:847–856. doi:10.1139/cjm-2014-0449

    Article  CAS  PubMed  Google Scholar 

  • Vitorino LC, Silva FG, Soares MA, Souchie EL, Lima WC (2012) The isolation and characterization of endophytic microorganisms from Hyptis marrubioides Epling roots. Afr J Biotechnol 11:12766–12772. doi:10.5897/AJB12.1403

    Google Scholar 

  • Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132:2469–2493. doi:10.1021/ja909118a

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol Control 74:82–88. doi:10.1016/j.biocontrol.2014.04.002

    Article  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  • Wu JH, Tung YT, Wang SY, Shyur LF, Kuo YH, Chang ST (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J Agric Food Chem 53:5917–5921. doi:10.1021/jf050550m

    Article  CAS  PubMed  Google Scholar 

  • Xing YM, Chen J, Cui JL, Chen XM, Guo SX (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr Microbiol 62:1218–1224. doi:10.1007/s00284-010-9848-2

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Nassuth A, Peterson RL (2001) Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol 47:741–753. doi:10.1139/w01-065

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine a. World J Microbiol Biotechnol 27:479–486. doi:10.1007/s11274-010-0476-6

    Article  CAS  Google Scholar 

  • Zhao GR, Xiang ZJ, Ye TX, Yuan YJ, Guo ZX (2006) Antioxidant activities of salvia miltiorrhiza and Panax notoginseng. Food Chem 99:767–774. doi:10.1016/j.foodchem.2005.09.002

    Article  CAS  Google Scholar 

  • Zhu F, Cai YZ, Sun M, Ke J, Lu D, Corke H (2009) Comparação dos principais constituintes fenólicos ea atividade antioxidante in vitro de diversos genótipos de Ilex Ilex, Ilex cornuta, e Ligustrum robustum. J Agric Food Chem 57:6082–6089

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Chang SK, Gu Y, Qian SY (2011) Antioxidant activity and phenolic compositions of lentil (Lens culinaris Var. Morton) extract and its fractions. J Agric Food Chem 59:2268–2276. doi:10.1021/jf104640k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was conducted using resources from different funding agencies FAPEMAT, CNPq, CAPES and the National Institute of Science and Technology in Wetlands (INAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antônio Soares.

Electronic Supplementary Material

ESM 1

(XLSX 14 kb)

ESM 2

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Siqueira, K.A., Brissow, E.R., Santos, J.L.d. et al. Endophytism and bioactivity of endophytic fungi isolated from Combretum lanceolatum Pohl ex Eichler. Symbiosis 71, 211–222 (2017). https://doi.org/10.1007/s13199-016-0427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0427-6

Keywords

Navigation