Skip to main content
Log in

The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Dischidia major is an epiphyte with pitcher leaves that serve as nests for ants. We investigated this ant-plant symbiosis in two sites in southeastern Thailand, Rayong and Trat, using a morphological and molecular approach. In our study sites, D. major was colonized by one monomorphic ant species of genus Philidris. The inner surface of the pitcher leaves had a black and green lining composed of intermingled coccoid cells and filaments of algae and fungi, reminiscent of a biofilm structure. Microscopic investigation of the algae suggested they belonged to Trebouxia (coccoid cells) and Trentepohliaceae (filaments). Molecular investigation of environmental samples and pure cultures of the fungi revealed five species of Chaetothyriales and four species of Capnodiales, among which two have already been isolated from ant-plant symbioses in Africa and South America and five were described species known from various environments around world. One appears to be an undescribed species. Thus, most fungal associates were likely ubiquitous species. Our study highlights the need to include the identity and functional ecology of microbes in studies of the evolutionary and functional ecology of ant-plant symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All DNA sequences that support the findings of this study are publicly available in GenBank at http://www.ncbi.nlm.nih.gov/genbank/.

References

  • Archibald PA (1977) Physiological characteristics of Trebouxia (Chlorophyceae, Chlorococcales) and Pseudotrebouxia (Chlorophyceae, Chlorosarcinales). Phycologia 16:295–300

    Google Scholar 

  • Bailey IW (1922) The anatomy of certain plants from the Belgian Congo, with special reference to myrmecophytism. Bull Am Mus Nat Hist 45:585–621

    Google Scholar 

  • Bensch K, Groenewald JZ, Meijer M, Dijksterhuis J, Jurjević Ž, Andersen B, Houbraken J, Crous PW, Samson RA (2018) Cladosporium species in indoor environments. Stud Mycol 89:177–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blatrix R, Bouamer S, Morand S, Selosse MA (2009) Ant-plant mutualisms should be viewed as symbiotic communities. Plant Signal Behav 4:554–556

    PubMed  PubMed Central  Google Scholar 

  • Blatrix R, Debaud S, Salas-Lopez A, Born C, Benoit L, McKey D, Atteke C, Djiéto-Lordon C (2013) Repeated evolution of fungal cultivar specificity in independently evolved ant-plant-fungus symbioses. PLoS One 8:e68101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blatrix R, Djiéto-Lordon C, Mondolot L, La Fisca P, Voglmayr H, McKey D (2012) Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proc R Soc B Biol Sci 279:3940–3947

    Google Scholar 

  • Brunauer G, Blaha J, Hager A, Tuerk R, Stocker-Wörgötter E, Grube M (2007) An isolated lichenicolous fungus forms lichenoid structures when co-cultured with various coccoid algae. Symbiosis 44:127–136

    CAS  Google Scholar 

  • Chomicki G, Renner SS (2015) Phylogenetics and molecular clocks reveal the repeated evolution of ant-plants after the late Miocene in Africa and the early Miocene in Australasia and the Neotropics. New Phytol 207:411–424

    PubMed  Google Scholar 

  • Chomicki G, Janda M, Renner SS (2017) The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proc R Soc B Biol Sci 284:20161759

    Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, De Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Schumacher RK, Akulov A, Bulgakov TS, Carnegie AJ, Jurjević Ž, Decock C, Denman S, Lombard L (2020) New and interesting fungi. 3. Fungal Syst Evol 6:157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  • Decock C, Delgado-Rodríguez G, Buchet S, Seng JM (2003) A new species and three new combinations in Cyphellophora, with a note on the taxonomic affinities of the genus, and its relation to Kumbhamaya and Pseudomicrodochium. Antonie Van Leeuwenhoek 84:209–216

    CAS  PubMed  Google Scholar 

  • Defossez E, Djiéto-Lordon C, McKey D, Selosse MA, Blatrix R (2011) Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proc R Soc B Biol Sci 278:1419–1426

    Google Scholar 

  • Defossez E, Selosse MA, Dubois MP, Mondolot L, Faccio A, Djiéto-Lordon C, McKey D, Blatrix R (2009) Ant-plants and fungi: a new threeway symbiosis. New Phytol 182:942–949

    PubMed  Google Scholar 

  • Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005) Arboreal ants build traps to capture prey. Nature 434:973

    CAS  PubMed  Google Scholar 

  • Du W, Yao Z, Li J, Sun C, Xia J, Wang B, Shi D, Ren L (2020) Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS One 15:e0229589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZY, Zienkiewicz K, Pol NV, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. eLife 8:e47815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng P, Lu Q, Najafzadeh MJ, van den Ende A, Sun J, Li R, Xi L, Vicente VA, Saunte DL, de Hoog HS (2012) Cyphellophora and its relatives in Phialophora: biodiversity and their possible role in human infection. Mycoses 55:255–255

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Gegenbauer C, Mayer VE, Zotz G, Richter A (2012) Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Ann Bot 110:757–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbushina AA, Beck A, Schulte A (2005) Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol Res 109:1288–1296

    PubMed  Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390

    PubMed  PubMed Central  Google Scholar 

  • Griffith W, Solly RH (1851) On the structure of the ascidia and stomata of Dischidia rafflesiana wall. Trans Linn Soc London 20:387–390

    Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  • Hametner C, Stocker-Wörgötter E, Grube M (2014) New insights into diversity and selectivity of trentepohlialean lichen photobionts from the extratropics. Symbiosis 63:31–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanshew AS, McDonald BR, Díaz CD, Djiéto-Lordon C, Blatrix R, Currie CR (2015) Characterization of actinobacteria associated with three ant–plant mutualisms. Microb Ecol 69:192–203

    PubMed  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Google Scholar 

  • de Hoog GS, Vicente V, Caligiorne RB, Kantarcioglu S, Tintelnot K, van den Ende AHGG, Haase G (2003) Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol 41:4767–4778

    PubMed  PubMed Central  Google Scholar 

  • Huxley CR (1978) Ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytol 80:231–268

    Google Scholar 

  • Janzen DH (1972) Protection of Barteria (Passifloraceae) by Pachysima ants (Pseudomyrmecinae) in a Nigerian rain forest. Ecology 53:885–892

    Google Scholar 

  • Janzen DH (1974) Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants. Biotropica 6:237–259

    Google Scholar 

  • Kaufmann E (2002) Southeast Asian ant-gardens. PhD Thesis. Goethe Universität, Frankfurt, Germany, 203 pp

  • Kaufmann E, Maschwitz U (2006) Ant-gardens of tropical Asian rainforests. Naturwissenschaften 93:216–227

    CAS  PubMed  Google Scholar 

  • Kerr AFG (1912) Notes on Dischidia rafflesiana wall. And Dischidia nummularia, Blume. Sci Proc R Dublin Soc 13:292–315

    Google Scholar 

  • Kokolo B, Atteke C, Ibrahim B, Blatrix R (2016) Pattern of specificity in the tripartite symbiosis between Barteria plants, ants and Chaetothyriales fungi. Symbiosis 69:169–174

    CAS  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660

    CAS  Google Scholar 

  • Leroy C, Jauneau A, Martinez Y, Cabin-Flaman A, Gibouin D, Orivel J, Séjalon-Delmas N (2017) Exploring fungus–plant N transfer in a tripartite ant–plant–fungus mutualism. Ann Bot 120:417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy C, Sejalon-Delmas N, Jauneau A, Ruiz-Gonzalez MX, Gryta H, Jargeat P, Corbara B, Dejean A, Orivel J (2011) Trophic mediation by a fungus in an ant-plant mutualism. J Ecol 99:583–590

    Google Scholar 

  • Livshultz T, Bach A, Bounphanmy S, Schott D (2005) Dischidia (Apocynaceae, Asclepiadoideae) in Laos and Vietnam. Blumea 50:113–134 

  • Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis v 3.31 http://mesquiteproject.org

  • Maschwitz U, Fiala B, Dumpert K, bin Hashim R, Sudhaus W (2016) Nematode associates and bacteria in ant-tree symbioses. Symbiosis 69:1–7

    Google Scholar 

  • Mayer VE, Frederickson ME, McKey D, Blatrix R (2014) Current issues in the evolutionary ecology of ant-plant symbioses. New Phytol 202:749–764

    PubMed  Google Scholar 

  • Mayer VE, Nepel M, Blatrix R, Oberhauser FB, Fiedler K, Schönenberger J, Voglmayr H (2018) Transmission of fungal partners to incipient Cecropia-tree ant colonies. PLoS One 13:e0192207

    PubMed  PubMed Central  Google Scholar 

  • Mayer VE, Voglmayr H (2009) Mycelial carton galleries of Azteca brevis (Formicidae) as a multi-species network. Proc R Soc B Biol Sci 276:3265–3273

    CAS  Google Scholar 

  • Miehe H (1911) Untersuchungen über die javanische Myrmecodia. Abhandlungen der Mathematisch-Physischen Klasse der Königlich-Sächsischen Gesellschaft der Wissenschaften 32:312–361

    Google Scholar 

  • Muggia L, Grube M (2018) Fungal diversity in lichens: from extremotolerance to interactions with algae. Life 8:15

    PubMed Central  Google Scholar 

  • Muggia L, Gueidan C, Knudsen K, Perlmutter G, Grube M (2013) The lichen connections of black fungi. Mycopathologia 175:523–535

    CAS  PubMed  Google Scholar 

  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56

    CAS  PubMed  Google Scholar 

  • Nepel M, Voglmayr H, Blatrix R, Longino JT, Fiedler K, Schönenberger J, Mayer VE (2016) Ant-cultivated Chaetothyriales in hollow stems of myrmecophytic Cecropia sp. trees - diversity and patterns. Fungal Ecol 23:131–140

    Google Scholar 

  • Nepel M, Voglmayr H, Schönenberger J, Mayer VE (2014) High diversity and low specificity of Chaetothyrialean fungi in carton galleries in a neotropical ant–plant association. PLoS One 9:e112756

    PubMed  PubMed Central  Google Scholar 

  • Pearson HHW (1902) On some species of Dischidia with double pitchers. Bot J Linn Soc 35:375–390

    Google Scholar 

  • Peeters C, Wiwatwitaya D (2014) Philidris ants living inside Dischidia epiphytes from Thailand. Asian Myrmecol 6:49–61

    Google Scholar 

  • Piñar G, Sterflinger K, Ettenauer J, Quandt A, Pinzari F (2015) A combined approach to assess the microbial contamination of the Archimedes palimpsest. Microb Ecol 69:118–134

    PubMed  Google Scholar 

  • Rintz RE (1980) The peninsular Malayan species of Dischidia (Asclepiadaceae). Blumea 26:81–126

    Google Scholar 

  • Ruiz-González MX, Male PJG, Leroy C, Dejean A, Gryta H, Jargeat P, Quilichini A, Orivel J (2011) Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants. Biol Lett 7:475–479

    PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera G, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EB, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-Ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SS, Martin MP, May TW, McTaggart AR, Methven AS et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schremmer VF (1984) Untersuchungen und Beobachtungen zur Ökoethologie der Pflanzenameise Pseudomyrmex triplarinus, welche die Ameisenbäume der Gattung Triplaris bewohnt. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 111:385–410

    Google Scholar 

  • Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, De Hoog GS, Crous PW (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shattuck SO (1992) Generic revision of the ant subfamily Dolichoderinae (Hymenoptera: Formicidae). Sociobiology 21:1–181

    Google Scholar 

  • Thaithong O, Kidyoo M, Kidyoo A (2018) Handbook of Asclepiads of Thailand. Amarin Printing and Publishing, Bangkok

    Google Scholar 

  • Thompson JN (1981) Reversed animal-plant interactions: the evolution of insectivorous and ant-fed plants. Biol J Linn Soc Lond 16:147–155

    Google Scholar 

  • Treseder KK, Davidson DW, Ehleringer JR (1995) Absorption of ant-provided carbon-dioxide and nitrogen by a tropical epiphyte. Nature 375:137–139

    CAS  Google Scholar 

  • Vasse M, Voglmayr H, Mayer V, Gueidan C, Nepel M, Moreno L, de Hoog S, Selosse M-A, McKey D, Blatrix R (2017) A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales). Proc R Soc LondonB Biol Sci 284:20162519

    Google Scholar 

  • Vicente VA, Najafzadeh MJ, Sun J, Gomes RR, Robl D, Marques SG, Azevedo C, de Hoog GS (2014) Environmental siblings of black agents of human chromoblastomycosis. Fungal Divers 65:47–63

    Google Scholar 

  • Voglmayr H, Mayer V, Maschwitz U, Moog J, Djiéto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115:1077–1091

    PubMed  Google Scholar 

  • Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154

    CAS  PubMed  Google Scholar 

  • Ward PS, Brady SG, Fisher BL, Schultz TR (2010) Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst Biol 59:342–362

    CAS  PubMed  Google Scholar 

  • Webber BL, Moog J, Curtis AS, Woodrow IE (2007) The diversity of ant–plant interactions in the rainforest understorey tree, Ryparosa (Achariaceae): food bodies, domatia, prostomata, and hemipteran trophobionts. Bot J Linn Soc 154:353–371

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Yang H, Ariyawansa HA, Wu H-X, Hyde KD (2014) The genus Leptoxyphium (Capnodiaceae) from China. Phytotaxa 176:174–183

    Google Scholar 

  • Yek SH, Mueller UG (2011) The metapleural gland of ants. Biol Rev 86:774–791

    PubMed  Google Scholar 

  • Xu M, De Boer H, Olafsdottir ES, Omarsdottir S, Heidmarsson S (2020) Phylogenetic diversity of the lichenized algal genus Trebouxia (Trebouxiophyceae, Chlorophyta): a new lineage and novel insights from fungal-algal association patterns of Icelandic cetrarioid lichens (Parmeliaceae, Ascomycota). Bot J Linn Soc 194:460–468. https://doi.org/10.1093/botlinnean/boaa050

    Article  Google Scholar 

  • Zhu H, Hu Z, Liu G (2017) Morphology and molecular phylogeny of Trentepohliales (Chlorophyta) from China. Eur J Phycol 52(3):330–341

    Google Scholar 

Download references

Acknowledgments

We thank all the reviewers for their time spent and their constructive criticisms. We thank Marie-Pierre Dubois for providing facilities for molecular biology bench work. We also thank Phattaravee Prommanut for his enthusiastic help during fieldwork. Data used in this work were partly produced through the GEMEX technical facilities of the Centre d’Ecologie Fonctionnelle et Evolutive with the support of LabEx CeMEB, an ANR Investissements d’avenir program (ANR-10-LABX-04-01).This research was supported by the ‘Franco-Thai Mobility Programme (PHC SIAM, France) 2018–2019’ (project number 40533RA), by the programme ‘International Emerging Actions’ of the CNRS, France (project FOOLFLY 2020-2021), and by Chulalongkorn University: CU-GR_61_020_23_007.

Code availability

Not applicable.

Funding

This research was supported by ‘Franco-Thai Mobility Programme (PHC SIAM, France) 2018–2019’ (project number 40533RA), by the programme ‘International Emerging Actions’ of the CNRS, France (project FOOLFLY 2020–2021), and by Chulalongkorn University: CU-GR_61_020_23_007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aroonrat Kidyoo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blatrix, R., Kidyoo, A., Kidyoo, M. et al. The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates. Symbiosis 83, 305–315 (2021). https://doi.org/10.1007/s13199-021-00751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00751-x

Keywords

Navigation