Skip to main content
Log in

Low specificity and high variability of ectomycorrhizal association in Salix humboldtiana along its southern latitudinal distribution

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The preference in the ectomycorrhizal (ECM) - plant association exhibits a wide degree of variation and depends on the identity of the plant but also of the fungal species. Evaluating the degree of specificity of the plant species toward ECM symbionts is an important clue for understanding the functioning of the ECM symbiosis itself. In this work we set out to investigate the patterns of association and specificity of Salix humboldtiana in a wide range of distribution. To do this, we evaluated in a greenhouse experiment if this species establishes symbiosis with ECM fungi belonging to its own rhizosphere (using soil from three provenances of S. humboldtiana distribution in: north, center and south of Argentina) and the rhizosphere of Alnus acuminata and Nothofagaceae species, with which share distribution in the north and the south of Argentina, respectively. Trees of S. humboldtiana associate with ECM fungi belonging to its rhizosphere in the north, center and south of Argentina and from the A. acuminata rhizosphere, but not with those belonging to the Nothofagaceae rhizosphere. Furthermore, PERMANOVA showed that the composition of the associated ECM fungi differed between inoculum provenances. Our results suggest that S. humboldtiana shows low specificity on ECM symbiosis, associating with a small group of fungi that differ in abundance and composition throughout their distribution in Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The code used in the current study is available from the corresponding author on reasonable request.

References

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris IR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Elsevier, London, pp 25–73

    Chapter  Google Scholar 

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 685–734

    Chapter  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Webb D (1997) Gapped BLAST and PSI BLAST: a new generation in protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arraiano-Castilho R, Bidartondo MI, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz LM (2020) Plant-fungal interactions in hybrid zones: ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. Fungal Ecol 45:100–936. https://doi.org/10.1016/j.funeco.2020.100936

    Article  Google Scholar 

  • Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM (2021) Habitat specialisation controls ectomycorrhizal fungi above the treeline in the european Alps. New Phytol 229(5):2901–2916. https://doi.org/10.1111/nph.17033

    Article  PubMed  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193(2):465–473. https://doi.org/10.1111/j.1469-8137.2011.03927.x

    Article  PubMed  Google Scholar 

  • Becerra A, Pritsch K, Arrigo N, Palma M, Bartoloni N (2005a) Ectomycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters. Ann For Sci 62(4):325–332. https://doi.org/10.1051/forest:2005027

    Article  Google Scholar 

  • Becerra A, Zak MR, Horton TR, Micolini J (2005b) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15(7):525–531. https://doi.org/10.1007/s00572-005-0360-7

    Article  PubMed  Google Scholar 

  • Becerra A, Nouhra E, Daniele G, Domínguez L, McKay D (2005c) Ectomycorrhizas of Cortinarius helodes and Gyrodon monticola with Alnus acuminata from Argentina. Mycorrhiza 15(1):7–15. https://doi.org/10.1007/s00572-003-0278-x

    Article  PubMed  Google Scholar 

  • Becerra A, Nouhra ER, Silva MP, McKay D (2009a) Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience 50(5):343–352. https://doi.org/10.1007/s10267-009-0490-4

    Article  Google Scholar 

  • Becerra A, Menoyo E, Lett I, Li CY (2009b) Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium. Symbiosis 47(2):85–92

    Article  Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant symbiosis. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of biological process. Horizon Scientific Press, Wymondham, pp 207–224

    Google Scholar 

  • Bogar LM, Dickie IA, Kennedy PG (2015) Testing the co-invasion hypothesis: ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand. Divers Distrib 21:268–278. https://doi.org/10.1111/ddi.12304

    Article  Google Scholar 

  • Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C, Wang Y, Arroyo Moreno B, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS ONE 8(1):e52765. https://doi.org/10.1371/journal.pone.0052765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brundrett MC, Tedersoo L (2020) Resolving the mycorrhizal status of important northern hemisphere trees. Plant Soil 454:3–34. https://doi.org/10.1007/s11104-020-04627-9

    Article  CAS  Google Scholar 

  • Camacho-Rico F, Trejo I, Bonfil C (2006) Estructura y composición de la vegetación ribereña de la barranca del río Tembembe, Morelos, México. Bol Soc Bot México 78:17–31. https://doi.org/10.17129/botsci.1718

    Article  Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15(6):405–416. https://doi.org/10.1007/s00572-004-0342-1

    Article  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • de Mendiburu F (2021) Package ‘agricolae’: Statistical Procedures for Agricultural Research. R package version 1.3-5

  • Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi M, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Exp Bot 14(1):63–70. https://doi.org/10.1111/j.1654-1103.2003.tb02128.x

    Article  Google Scholar 

  • Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manag 255(7):2973–2980. https://doi.org/10.1016/j.foreco.2008.02.003

    Article  Google Scholar 

  • Erlandson SR, Savage JA, Cavender-Bares JM, Peay KG (2016) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. Microbiol Ecol 92(1). https://doi.org/10.1093/femsec/fiv148

  • Fernández NV, Marchelli P, Gherghel F, Kost G, Fontenla SB (2015) Ectomycorrhizal fungal communities in Nothofagus nervosa (Raulí): a comparison between domesticated and naturally established specimens in a native forest of Patagonia, Argentina. Fungal Ecol 18:36–47. https://doi.org/10.1016/j.funeco.2015.05.011

    Article  Google Scholar 

  • Fracchia S, Aranda A, Gopar A, Silvani V, Fernandez L, Godeas A (2009) Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina. Mycorrhiza 19(3):205–214. https://doi.org/10.1007/s00572-009-0231-8

    Article  PubMed  Google Scholar 

  • Gallo LA, Amico I, Bozzi J, Gazo MC, Cerrillo T, Datri L, Hansen M, Leyer I, López H, Machelli P, Martínez A, Mikuc JP, Orellana I, Pomponio F, Puntieri J, Salgado M, Torales S, Vincon S, Ziegenhagen B (2021) Salix humboldtiana: a very ancient willow and the only native to Argentina. In: Pastorino MJ, Marchelli P (eds) Low intensity breeding of native forest trees in Argentina. Springer Nature Switzerland AG, pp 192–214

  • García-Guzmán OM, Garibay-Orijel R, Hernández E, Arellano-Torres E, Oyama K (2017) Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 27:811–822. https://doi.org/10.1007/s00572-017-0793-9

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol 2(2):113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  Google Scholar 

  • Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on Pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. Am J Bot 81(12):1509–1516. https://doi.org/10.1002/j.1537-2197.1994.tb11461.x

    Article  Google Scholar 

  • Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol 23(10):2452–2472. https://doi.org/10.1111/mec.12765

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Haskins KE, Gehring CA (2005) Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils. Oecologia 145(1):123–131. https://doi.org/10.1007/s00442-005-0115-3

    Article  PubMed  Google Scholar 

  • Hauenstein E, González M, Peña-Cortés F, Muñoz-Pedreros A (2005) Diversidad vegetal en humedales costeros de la Región de la Araucanía. In: Smith-Ramírez C, Armesto JJ, Valdovinos C (eds) Historia, Biodiversidad y Ecología de los Bosques Costeros de Chile. Editorial Universitaria, Santiago, Chile, pp 60–72

    Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier. Alaska Mycorrhiza 8(6):297–304. https://doi.org/10.1007/s005720050250

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C, Niedojadło J, Dahm H (2009) Promotion of mycorrhiza formation and growth of willows by the bacterial strain Sphingomonas sp. 23L on fly ash. Biol Fertil Soils 45:385–394. https://doi.org/10.1007/s00374-008-0346-7

    Article  Google Scholar 

  • Hrynkiewicz K, Toljander YK, Baum C, Fransson PMA, Taylor AFS, Weih M (2012) Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands. Mycorrhiza 22:603–613. https://doi.org/10.1007/s00572-012-0437-z

    Article  PubMed  Google Scholar 

  • Hrynkiewicz K, Szymańska S, Piernik A, Thiem D (2015) Ectomycorrhizal community structure of Salix and Betula spp. at a saline site in Central Poland in relation to the seasons and soil parameters. Wat Air and Soil Poll 226:99. https://doi.org/10.1007/s11270-015-2308-7

    Article  CAS  Google Scholar 

  • Ishida TA, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19:329–335. https://doi.org/10.1007/s00572-008-0219-9

    Article  PubMed  Google Scholar 

  • Isla F, Miglioranza K, Ondarza P, Shimabukuro V, Menone M, Espinosa M, Quiroz Londoño M, Ferrante A, Aizpún J, Moreno V (2010) Sediment and pollutant distribution along the Negro River: Patagonia, Argentina. Int J River Basin Manag 8(3–4):319–330. https://doi.org/10.1080/15715124.2010.526122

    Article  Google Scholar 

  • Kennedy PG, Garibay-Orijel R, Higgins LM, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21(6):559–568. https://doi.org/10.1007/s00572-011-0366-2

    Article  PubMed  Google Scholar 

  • Kennedy PG, Walker JK, Bogar LM (2015) Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus. In: Horton T (ed) Mycorrhizal networks. Ecological Studies, vol 224. Springer, Dordrech, pp 227–254

    Chapter  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, …, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  Google Scholar 

  • Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L (2015) Phylogenetic relationships of american willows (Salix L., Salicaceae). PLoS ONE 10(4):e0121965. https://doi.org/10.1371/journal.pone.0138963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 23(5):349–358. https://doi.org/10.1007/s00572-012-0474-7

    Article  CAS  PubMed  Google Scholar 

  • Lugo MA, Becerra AG, Nouhra ER, Ochoa AC (2012) Mycorrhizal diversity in native and exotic willows (Salix humboldtiana and S. alba) in Argentina. In: Pagano M (ed) Mycorrhiza: occurrence in Natural and restored environments. Nova Science Publishers, New York, pp 201–222

    Google Scholar 

  • Martinez Arbizu P (2017) Package ‘pairwiseAdonis’: Pairwise multilevel comparison using Adonis. R package version 0.4

  • Mazzarino MJ, Gobbi ME (2005) Indicadores de circulación de nutrientes en bosques Andino-Patagónicos. Ediciones INTA IDIA XXI 5:15–18

    Google Scholar 

  • Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 79–105

    Google Scholar 

  • Molina R, Horton TR (2015) Mycorrhiza specificity: its role in the development and function of common mycelial networks. In: Horton TR (ed) Mycorrhizal networks. Springer, Dordrecht, pp 1–39

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moreira-Muñoz A (2011) Nothofagus, key genus in plant geography. In: Werger MJA (ed) Plant Geography of Chile. Plant and vegetation, vol 5. Springer, Dordrecht, pp 249–266

    Chapter  Google Scholar 

  • Nara K (2006) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171(1):187–198. https://doi.org/10.1111/j.1469-8137.2006.01744.x

    Article  PubMed  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85(6):1700–1707. https://doi.org/10.1890/03-0373

    Article  Google Scholar 

  • Newsholme C (1992) In: Batsford BT (ed) Willows: the genus Salix. Timber Press Inc, Portland, pp 224–241

    Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2018) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):259–264. https://doi.org/10.1093/nar/gky1022

    Article  CAS  Google Scholar 

  • Nouhra ER, Urcelay C, Longo S, Fontenla S (2012a) Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina. Mycologia 104(1):45–52. https://doi.org/10.3852/11-098

    Article  PubMed  Google Scholar 

  • Nouhra ER, Hernández Caffot ML, Pastor N, Crespo EM (2012b) The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia 104(2):488–495. https://doi.org/10.3852/11-082

    Article  PubMed  Google Scholar 

  • Nouhra E, Urcelay C, Longo S, Tedersoo L (2013) Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza 23(6):487–496. https://doi.org/10.1007/s00572-013-0490-2

    Article  PubMed  Google Scholar 

  • Nouhra E, Pastor N, Becerra A, Areitio ES, Geml J (2015) Greenhouse seedlings of Alnus showed low host intrageneric specificity and a strong preference for some Tomentella ectomycorrhizal associates. Microb Ecol 69(4):813–825. https://doi.org/10.1007/s00248-014-0522-2

    Article  PubMed  Google Scholar 

  • Nouhra ER, Palfner G, Kuhar F, Pastor N, Smith ME (2019) Ectomycorrhizal fungi in South America: their diversity in past, present and future research. In: Pagano M, Lugo M (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham, pp 73–95. https://doi.org/10.1007/978-3-030-15228-4_4

    Chapter  Google Scholar 

  • Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano. Japan Mycorrhiza 17:209–215. https://doi.org/10.1007/s00572-006-0097-y

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) Package ‘vegan’: Community Ecology Package. R package version 2.5-7

  • Parádi I, Baar J (2006) Mycorrhizal fungal diversity in willow forests of different age along the river Waal, the Netherlands. For Ecol Manag 237:366–372. https://doi.org/10.1016/j.foreco.2006.09.059

    Article  Google Scholar 

  • Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P-H, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Naadel T (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198(4):1239–1249. https://doi.org/10.1111/nph.12170

    Article  CAS  PubMed  Google Scholar 

  • Pritsch K, Becerra A, Polme S, Tedersoo L, Schloter M, Agerer R (2010) Description and identification of Alnus acuminata ectomycorrhizae from argentinean alder stands. Mycologia 102(6):1263–1273. https://doi.org/10.3852/09-311

    Article  PubMed  Google Scholar 

  • Püttsepp U, Rosling A, Taylor AFS (2004) Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. Clones in a short-rotation forestry plantation. For Ecol Manag 196:413–424. https://doi.org/10.1016/j.foreco.2004.04.003

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  • Ragonese AE, Rial Alberti F, Ciocchini RG, García A (1987) Fitotecnia de Salicáceas en el Centro Nacional de Investigaciones Agropecuarias Castelar (INTA). Anales de la Acad Nac de Agron y. Vet de Bs As 41:5–30

    Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual. Springer, Dordrecht, pp 183–190. https://doi.org/10.1007/978-94-011-0511-8_12

    Chapter  Google Scholar 

  • Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau PA, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198(4):1228–1238. https://doi.org/10.1111/nph.12212

    Article  CAS  PubMed  Google Scholar 

  • Russo RO (1989) Evaluating alder-endophyte (Alnus acuminata-Frankia-mycorrhizae) interactions. Plant Soil 118(1–2):151–155. https://doi.org/10.1007/BF02232801

    Article  Google Scholar 

  • Ryberg M, Larsson E, Molau U (2009) Ectomycorrhizal diversity on Dryas octopetala and Salix reticulata in an alpine cliff ecosystem. Arct Antarct Alp Res 41(4):506–514. https://doi.org/10.1657/1938-4246-41.4.506

    Article  Google Scholar 

  • Ryberg M, Andreasen M, Björk RG (2011) Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza 21(4):289–296. https://doi.org/10.1007/s00572-010-0335-1

    Article  PubMed  Google Scholar 

  • Schmidt NM, Baittinger C, Kollmann J, Forchhammer MC (2010) Consistent dendrochronological response of the dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types. Arct Antarct Alp Res 42(4):471–475. https://doi.org/10.1657/1938-4246-42.4.471

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, New York

    Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174(4):847–863. https://doi.org/10.1111/j.1469-8137.2007.02040.x

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Yuzawa T, HuiPing M, Yamamoto F, Yamanaka N (2021) Plantation soil inoculation combined with straw checkerboard barriers enhances ectomycorrhizal colonization and subsequent growth of nursery grown Pinus tabulaeformis seedlings in a dryland. Ecol Eng 163:106191. https://doi.org/10.1016/j.ecoleng.2021.106191

    Article  Google Scholar 

  • Taylor AFS (2008) Recent advances in our understanding of fungal ecology. Coolia 51(4):197–212

    Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27(3–4):83–99. https://doi.org/10.1016/j.fbr.2013.09.001

    Article  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008a) Strong host preference of ectomycorrhizal fungi in a tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180(2):479–490. https://doi.org/10.1111/j.1469-8137.2008.02561.x

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008b) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10(5):1189–1201. https://doi.org/10.1111/j.1462-2920.2007.01535.x

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Gates G, Dunk CW, Lebel T, May TW, Kõljalg U, Jairus T (2009a) Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in australian wet temperate forests: does fruit-body type. matter? Mycorrhiza 19(6):403–416. https://doi.org/10.1007/s00572-009-0244-3

    Article  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Ostonen I, Põlme S (2009b) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182(3):727–735. https://doi.org/10.1111/j.1469-8137.2009.02792.x

    Article  PubMed  Google Scholar 

  • Tedersoo L, May T, Smith M (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. https://doi.org/10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21(17):4160–4170. https://doi.org/10.1111/j.1365-294X.2012.05602.x

    Article  PubMed  Google Scholar 

  • Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199(3):822–831. https://doi.org/10.1111/nph.12328

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  • Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Moretto A (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214(3):913–919. https://doi.org/10.1111/nph.14509

    Article  PubMed  Google Scholar 

  • Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, Smith ME (2019) Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol 222(4):1936–1950. https://doi.org/10.1111/nph.15714

    Article  CAS  PubMed  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64. https://doi.org/10.1016/j.soilbio.2015.02.011

    Article  CAS  Google Scholar 

  • Wen Z, Murata M, Xu Z, Chen Y, Nara K (2015) Ectomycorrhizal fungal communities on the endangered chinese Douglas-fir (Pseudotsuga sinensis) indicating regional fungal sharing overrides host conservatism across geographical regions. Plant Soil 387(1–2):189–199. https://doi.org/10.1007/s11104-014-2278-3

    Article  CAS  Google Scholar 

  • Weng C, Bush MB, Chepstow-Lusty AJ (2004) Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. J Quat Sci 19(7):685–691. https://doi.org/10.1002/jqs.882

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • Wicaksono CY, Aguirre-Guiterrez J, Nouhra E, Pastor N, Raes N, Pacheco S, Geml J (2017) Contracting montane cloud forests: a case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica 49(2):141–152. https://doi.org/10.1111/btp.12394

    Article  Google Scholar 

  • Wickham H (2016) ggplot2. Elegant graphics for data analysis, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_9

    Book  Google Scholar 

  • Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D (2021) Package ‘ggplot2’: Create Elegant Data Visualisations Using the Grammar of Graphics. R package version 3.3.5

Download references

Acknowledgements

This study was supported by Universidad Nacional de Córdoba (UNC), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) both of which provided the facilities used. This work was financially supported by Secretaría de Ciencia y Técnica (UNC) and Fondo para la Investigación Científica y Tecnológica (FONCYT). We are grateful to Francisco Kuhar, Lisandro Fernández and Nataly Gómez Montoya for helping in the recollection of soil used as inoculum and to the other members of the Laboratorio de Micología (Instituto Multidisciplinario de Biología Vegetal, CONICET - UNC) for the support. We are grateful to Daihana Argibay for the elaboration of the sample sites map. We thank anonymous reviewers for their comments on the manuscript.

Funding

This work was financially supported by Secretaría de Ciencia y Técnica (UNC) and Fondo para la Investigación Científica y Tecnológica (FONCYT).

Author information

Authors and Affiliations

Authors

Contributions

The study design, soil collection, greenhouse experiment and analysis of samples were carried out by SL, EN and MB. The statistical analysis was performed by GG. The first draft of the manuscript was written by SL, EN and MB, and all authors revised and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Magali Burni.

Ethics declarations

Financial interests

None.

Non-financial interests

None.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burni, M., Longo, S., Grilli, G. et al. Low specificity and high variability of ectomycorrhizal association in Salix humboldtiana along its southern latitudinal distribution. Symbiosis 90, 39–51 (2023). https://doi.org/10.1007/s13199-023-00918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00918-8

Keywords

Navigation