Skip to main content
Log in

Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Species of the Botryosphaeriaceae are important pathogens causing cankers and die-back on many woody plants. In Uruguay, Neofusicoccum eucalyptorum, N. ribis and B. dothidea have previously been associated with stem cankers on plantation-grown Eucalyptus globulus. However, very little is known regarding the occurrence and species diversity of Botryosphaeriaceae in native Myrtaceae forests or what their relationship is to those species infecting Eucalyptus in plantations. The objectives of this study were to identify the Botryosphaeriaceae species present as endophytes or associated with cankers in both introduced and native tree hosts in Uruguay, and to test the pathogenicity of selected isolates obtained from native trees on Eucalyptus. Symptomatic and asymptomatic material was collected countrywide from Eucalyptus plantations and native Myrtaceae trees. Single spore cultures were identified based on conidial morphology and comparisons of DNA sequences of the ITS and EF1-α regions. Six Botryosphaeriaceae species were identified. Botryosphaeria dothidea, N. eucalyptorum and specimens residing in the N. parvum-N. ribis complex were isolated from both introduced Eucalyptus and native Myrtaceae trees, whereas Lasiodiplodia pseudotheobromae was found only on Myrcianthes pungens. Diplodia pseudoseriata sp. nov. and Spencermartinsia uruguayensis sp. nov. are novel species found only on native myrtaceous hosts. Pathogenicity tests showed that isolates obtained from native trees and identified as L. pseudotheobromae, N. eucalyptorum and the N. parvum-N.ribis complex are pathogenic to E. grandis. Interestingly, Lasiodiplodia pseudotheobromae has not previously been found on Eucalyptus in Uruguay and represents a potential threat to this host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso R (2004) Estudio de Botryosphaeria spp. en Eucalyptus globulus en Uruguay: endofitismo o patogenicidad? (Studies of Botryosphaeria spp. in Eucalyptus globulus in Uruguay: endophytism or pathogenicity?). Tesis de Maestría en Biología. PEDECIBA, Uruguay, p 52

    Google Scholar 

  • Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28:1–13

    Google Scholar 

  • Balmelli G, Resquin F (2005) Efecto de enfermedades del fuste en Eucalyptus globulus. Revista Forestal 27:9–14

    Google Scholar 

  • Balmelli G, Marroni V, Altier N, Garcia R (2004) Potencial del mejoramiento genético para el manejo de enfermedades en Eucalyptus globulus. INIA, Serie Técnica, 143

    Google Scholar 

  • Barber P, Burgués T, Hardy G, Slippers B, Keane P, Wingfield M (2005) Botryosphaeria species from Eucalyptus in Australia are pleoanamorphic, producing Dichomera synanamorphs in culture. Mycol Res 109:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Barnard E, Geary T, English J, Gilly S (1987) Basal cankers and coppice failure of Eucalyptus grandis in Florida. Plant Dis 71:358–361

    Article  Google Scholar 

  • Bettucci L, Alonso R (1997) A comparative study of fungal populations in healthy and symptomatic twigs of Eucalyptus grandis in Uruguay. Mycol Res 101:1060–1064

    Article  Google Scholar 

  • Bettucci L, Simeto S, Alonso R, Lupo S (2004) Endophytic fungi of twigs and leaves of three native species of Myrtaceae in Uruguay. Sydowia 56:8–23

    Google Scholar 

  • Brussa CA, Grela IA (2007) Flora arbórea del Uruguay con énfasis en las especies de Rivera y Tacuarembo. COFUSA. Mosca. Montevideo, Uruguay, p 543

    Google Scholar 

  • Burgess T, Barber P, Hardy G (2005) Botryosphaeria spp. associated with eucalypts in Western Australia, including the description of Fusicoccum macroclavatum sp. nov. Australas Plant Pathol 34:557–567

    Article  Google Scholar 

  • Burgess TI, Sakalidis ML, Hardy GEStJ (2006) Gene flow of the canker pathogen Botryosphaeria australis between Eucalyptus globulus plantation and native eucalypt forests in Western Australia. Austral Ecology 31:559–566

    Article  Google Scholar 

  • Coutinho T, Wingfield MJ, Alfenas A, Crous P (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  Google Scholar 

  • Curlevski NJA, Chambers SM, Anderson IC, Cairney JWG (2009) Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microbiol Ecol 67:411–420

    Article  CAS  PubMed  Google Scholar 

  • Desprez-Loustau ML, Marcais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612

    Article  Google Scholar 

  • De Wet J, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2008) Phylogeny of the Botryosphaeriaceae reveals patterns of host association. Mol Phylogenet Evol 46:116–126

    Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia liliifera. Fungal Divers 23:121–138

    Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley Interscience, USA, p 680

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistonia chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECD (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13

    Article  PubMed  Google Scholar 

  • Gure A, Slippers B, Stenlid J (2005) Seed-borne Botryosphaeria spp. from native Prunus and Podocarpus trees in Ethiopia, with a description of the anamorph Diplodia rosulata sp. nov. Mycol Res 109:1005–1014

    Article  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:142–152

    Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. TREE 11:152–158

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  PubMed  Google Scholar 

  • Lazzizera C, Frisullo S, Alves A, Lopes J, Phillips AJL (2008) Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum sp. nov. Fungal Divers 31:63–71

    Google Scholar 

  • Mohali S, Burgess TI, Wingfield MJ (2005) Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathol 35:385–396

    Article  Google Scholar 

  • Mohali S, Slippers B, Wingfield M (2007) Identification of Botryosphaeriaceae from Eucalyptus, Acacia, and Pinus in Venezuela. Fungal Divers 25:103–125

    Google Scholar 

  • Mohali S, Slippers B, Wingfield M (2009) Pathogenicity of seven species of Botryosphaeriaceae on Eucalyptus clones in Venezuela. Australas Plant Pathol 38:135–140

    Article  Google Scholar 

  • Müllen JM, Gilliam CH, Hagen AK, Morgan Jones G (1991) Lasiodiplodia theobromae cancer of dogwood, a disease influenced by drought stress or cultivar selection. Plant Dis 75:886–889

    Google Scholar 

  • Nikolcheva LG, Bärlocher F (2005) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–280

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emergent sequencing technologies. FEMS Microbiol Lett 296:97–101

    Article  CAS  PubMed  Google Scholar 

  • Nylander JA (2004) MrModeltest v2.2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • Old K, Davison E (2000) Canker diseases of eucalypts. In: Keane P, Kile G, Podger F, Brown B (eds) Diseases and Pathogens of Eucalypts. CSIRO Publishing, Collingwood, Australia, pp 247–257

    Google Scholar 

  • Old K, Gibbs R, Craig I, Myers B, Yuan Z (1990) Effect of drought and defoliation on the susceptibility of eucalypts to cankers caused by Endothia gyrosa and Botryosphaeria ribis. Aust J Bot 38:571–581

    Article  Google Scholar 

  • Pavlic D, Slippers B, Coutinho T, Wingfield M (2007) Botryosphaeriaceae occurring on native Syzygium cordatum in South Africa and their potential threat to Eucalyptus. Plant Pathol 56:624–636

    Article  CAS  Google Scholar 

  • Pavlic D, Slippers B, Coutinho T, Wingfield M (2009) Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol Phylogenet Evol 51:259–268

    Article  CAS  PubMed  Google Scholar 

  • Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA (2009) Neofusicoccum eucalyptorum, a Eucalyptus pathogen, on native Myrtaceae in Uruguay. Plant Pathol 58:964–970

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Punithalingam E (1976) Botryodiplodia theobromae. CMI Descriptions of pathogenic fungi and bacteria. Commonwealth Mycological Institute, Kew, Surrey, N°519

    Google Scholar 

  • Pusey P (1989) Influence of water stress on susceptibility of non-wounded peach bark to Botryosphaeria dothidea. Plant Dis 73:1000–1003

    Article  Google Scholar 

  • Rodas CA, Roux RJ, van Wyk M, Wingfield BD, Wingfield MJ (2008) Ceratocystis neglecta sp. nov., infecting Eucalyptus trees in Colombia. Fungal Divers 28:73–84

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Biometrics 19:1572–1574

    CAS  Google Scholar 

  • Sakalidis M (2004) Resolving the Botryosphaeria ribis-B. parva species complex; a molecular and phenotypic investigation. Honors thesis. School of Biological Sciences and Biotechnology, Murdoch University, Western Australia

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Seixas C, Barreto R, Alfenas A, Ferreira F (2004) Cryphonectria cubensis on an indigenous host in Brazil: a possible origin for Eucalyptus canker disease? Mycologist 18:39–45

    Article  Google Scholar 

  • Simeto S, Balmelli G, Altier N, Dini B, Bennadji Z (2007) Desarrollo de protocolos de inoculación artificial para la caracterización sanitaria de Eucalyptus globulus. INIA, Uruguay, p 26, Serie Técnica 169

    Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Article  Google Scholar 

  • Slippers B, Crous P, Denman S, Coutinho T, Wingfield B, Wingfield M (2004a) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96:83–101

    Article  CAS  Google Scholar 

  • Slippers B, Fourie G, Crous P, Coutinho T, Wingfield B, Carnegie A, Wingfield M (2004b) Speciation and distribution of Botryosphaeria spp. on native and introduced Eucalyptus trees in Australia and South Africa. Stud Mycol 50:343–358

    Google Scholar 

  • Slippers B, Pavlic D, Maleme H, Wingfield MJ (2007) A diverse assemblage of Botryosphaeriaceae infect Eucalyptus in introduced and native environments. In: Proceedings of IUFRO Conference 22–26 October, 2007. Durban, South Africa

  • Smith H, Kemp G, Wingfield M (1994) Canker and die-back of Eucalyptus in South Africa caused by Botryosphaeria dothidea. Plant Pathol 43:1031–1034

    Article  Google Scholar 

  • Smith H, Wingfield M, Petrini O (1996) Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. For Ecol Manag 89:189–195

    Article  Google Scholar 

  • Smith H, Crous P, Wingfield M, Coutinho T, Wingfield B (2001) Botryosphaeria eucalyptorum sp. nov., a new species in the B. dothidea-complex on Eucalyptus in South Africa. Mycologia 93:277–285

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10a. Sinauer Associates, Sunderland, MA

  • Tao G, Liu ZY, Hyde KD, Lui XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Wene E, Schoeneweiss D (1980) Localized freezing predisposition to Botryosphaeria dothidea in differentially frozen woody stems. Can J Bot 58:1455–1458

    Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wingfield M (2003) Increasing threat of disease to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australas Plant Pathol 32:133–139

    Article  Google Scholar 

  • Wingfield M, Rodas C, Myburg H, Venter M, Wright J, Wingfield B (2001) Cryphonectria canker on Tibouchina in Colombia. Forest Pathol 31:297–306

    Article  Google Scholar 

  • Yuan Z, Mohammed C (1999) Pathogenicity of fungi associated with stem cankers of Eucalyptus in Tasmania, Australia. Plant Dis 83:1063–1069

    Article  Google Scholar 

  • Zhou XD, Xie YJ, Chen SF, Wingfield MJ (2008) Diseases of eucalypt plantations in China: challenges and opportunities. Fungal Divers 32:1–7

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by INIA-Uruguay, project FPTA221. We also thank Forestal Oriental, Rivermol, Stora Enso and Weyerhaeuser financial and logistic support. We appreciate the assistance of Andrés Berrutti, Ana Terzaghi, Oscar Bentancur, Sofia Simeto, Gustavo Balmelli, Hugh Glen and Marieka Gryzenhout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, C.A., Wingfield, M.J., Slippers, B. et al. Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Diversity 41, 53–69 (2010). https://doi.org/10.1007/s13225-009-0014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-009-0014-8

Keywords

Navigation