Skip to main content
Log in

Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The diversity and biological activities of fungi associated with the two sponges, Haliclona simulans and Gelliodes carnosa, were investigated using a culture-dependent method followed by analysis of the fungal rDNA-ITS sequences. The two sponges were collected from the coastal waters of Lingshui Bay of Hainan Island in the South China Sea. A total of 37 independent fungal isolates corresponding to 30 different species were obtained from the two sponges. Nearly two thirds of the strains (n = 24, 64.9%) had close affiliations (identity (ID) or similarity ≥ 98%) with their best matches in GenBank. Another one third of the isolates (n = 13, 35.1%) were distantly related to their closest relatives (ID < 98%), implying that these species are possibly different from those previously reported. The two sponges possessed similar fungal diversities. Haliclona simulans harbored a mainly different fungal consortium as compared with that of the same sponge species collected from Irish coastal waters, suggesting that the fungal diversity associated with the sponges is more dependent on the surrounding environment than on the sponge species. Biological activities of the fungal culture extracts were tested against the human tumor cell lines, mainly, a human lung carcinoma cell line (A-549), a human liver carcinoma cell line (Bel-7402), and a human colon carcinoma cell line (HCT-8), and against the Gram positive bacterium Bacillus subtilis. A relatively high proportion of positive results were obtained in this study, demonstrating that fungi isolated from sponges could be a rich source of new biologically active natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Lateff A, Elkhayat ES, Fouad MA, Okino T (2009) Aureobasidin, new antifouling metabolite from marine-derived fungus Aureobasidium sp. Nat Prod Commun 4:389–394

    PubMed  CAS  Google Scholar 

  • Abdel-Wahab MA, Asolkar RN, Inderbitzin P, Fenical W (2007) Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016. Phytochemistry 68:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Amnuaykanjanasin A, Punya J, Paungmoung P, Rungrod A, Tachaleat A, Pongpattanakitshote S, Cheevadhanarak S, Tanticharoen M (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol Lett 251:125–136

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  PubMed  CAS  Google Scholar 

  • Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547

    Article  PubMed  CAS  Google Scholar 

  • Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244

    Article  PubMed  CAS  Google Scholar 

  • Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET (2006) Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Divers 23:51–66

    Google Scholar 

  • Brück WM, Sennett SH, Pomponi SA, Willenz P, McCarthy PJ (2008) Identification of the bacterial symbiont Entotheonella sp. in the mesohyl of the marine sponge Discodermia sp. ISME J 2:335–339

    Article  PubMed  CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  PubMed  CAS  Google Scholar 

  • Burgess TI, Webster JL, Ciampini JA, White D, Hardy GE, Stukely MJC (2009) Re-evaluation of Phytophthora species isolated during 30 years of vegetation health surveys in western australia using molecular techniques. Plant Dis 93:215–223

    Article  CAS  Google Scholar 

  • Chen Y, Cai X, Pan J, Gao J, Li J, Yuan J, Fu L, She Z, Lin Y (2009) Structure elucidation and NMR assignments for three anthraquinone derivatives from the marine fungus Fusarium sp. (No. ZH-210). Magn Reson Chem 47:362–365

    Article  PubMed  CAS  Google Scholar 

  • Cole RJ, Kirksey JW, Moore JH, Blankenship BR, Diener UL, Davis ND (1972) Tremorgenic Toxin from Penicillium verruculosum. Appl Mcrobiol 24:248–256

    CAS  Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnology, New York, N.Y. doi:10.1007/s10126-009-9187-0

    Google Scholar 

  • Díaz-Muñoz G, Montalvo-Rodríguez R (2005) Halophilic black yeast Hortaea werneckii in the Cabo Rojo SolarSalterns: its first record for this extreme environment in Puerto Rico Caribbean. J Sci 41:360–365

    Google Scholar 

  • Du L, Zhu T, Li L, Cai S, Zhao B, Gu Q (2009) Cytotoxic sorbicillinoids and bisorbicillinoids from a marine-derived fungus Trichoderma sp. Chem Pharmaceut Bull 57:220–223

    Article  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia liliifera. Fungal Divers 23:121–138

    Google Scholar 

  • Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian sea-fans in the marine sponge Spongia obscura. The ISME J 3:752–755

    Google Scholar 

  • Fell JW (1966) Sterigmatomyces, a new fungal genus from marine areas. Antonie Van Leeuwenhoek 32:99–104

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Fonseca A, Sampaio JP, Inácio J, Fell JW (2000) Emendation of the basidiomycetous yeast genus Kondoa and the description of Kondoa aeria sp. nov. Antonie Van Leeuwenhoek 77:293–302

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  PubMed  CAS  Google Scholar 

  • Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S (2005) Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J Nat Prod 68:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2001) Detection and identification of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequence. Mol Phylogenet Evol 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  PubMed  CAS  Google Scholar 

  • Haruta S, Ueno S, Egawa I, Hashiguchi K, Fujii A, Nagano M, Ishii M, Igarashi Y (2006) Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int J Food Microbiol 109:79–87

    Article  PubMed  CAS  Google Scholar 

  • Hay DB, Hart BJ, Douglas AE (1993) Effects of the fungus Aspergillus penicillioides on the house dust mite Dermatophagoides pteronyss’mus: an experimental re-evaluation. Med Vet Entomol 7:271–274

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth T, Piel J (2009) Polyketide synthases of bacterial symbionts in sponges-Evolution-based applications in natural products research. Phytochemistry 70:1841–1849

    Google Scholar 

  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    Google Scholar 

  • Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Hooper JNA, van Soest RWM (2002) Systema porifera: a guide to the classification of sponges, Vol. 1. In: Hooper JNA, van Soest RWM (eds). Plenum Publishers, New York

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chiniese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Pointing SB (2000) Marine mycology-a practical approach. Fungal Divers Res Ser 1:1–377

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte deilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jensen PR, Fenical W (2002) Secondary metabolites from marine fungi. In: Hyde KD (ed) Fungi in marine environments, vol 7. Fungal Diversity Press, Hong Kong, pp 293–315

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009a) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009b) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen TR (2007) Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot 70:2916–2934

    PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  PubMed  CAS  Google Scholar 

  • Kauserud H, Mathiesen C, Ohlson M (2008) High diversity of fungi associated with living parts of boreal forest bryophytes. Botany 86:1326–1333

    Article  Google Scholar 

  • Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY (2009) Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int J Food Microbiol 131:265–271

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto K (2002) Molecular biology of the Koji molds. Adv Appl Microbiol 51:129–153

    Article  PubMed  CAS  Google Scholar 

  • Kohlmeyer J (1974) On the definition and taxonomy of higher marine fungi. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven. Supplement 5:263–286

    Google Scholar 

  • Kohlmeyer J (1984) Tropical marine fungi. Marine Ecol 5:329–378

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic Press, New York, London

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–35

    Article  Google Scholar 

  • König GM, Kehraus S, Seiber SF, Abdel-Lateff A, Muller D (2006) Natural products from marine organism and their associated microbes. Chembiochem 7:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Kwon SI, Dohlen CDV, Anderson AJ (2001) Gene sequence analysis of an opportunistic wheat pathogen, an isolate of Fusarium proliferatum. Can J Bot 79:1115–1121

    Article  CAS  Google Scholar 

  • Lang AS, Rise ML, Culley AI, Steward GF (2009) RNA viruses in the sea. FEMS Microbiol Rev 33:295–323

    Article  PubMed  CAS  Google Scholar 

  • Lemloh ML, Fromont J, Brümmer F, Usher KM (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol 9:4

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Article  PubMed  CAS  Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li Y, Ye D, Chen X, Lu X, Shao Z, Zhang H, Che Y (2009) Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J Nat Prod 75:912–916

    Google Scholar 

  • Logares R, Rengefors K, Kremp A, Shalchian-Tabrizi K, Boltovskoy A, Tengs T, Shurtleff A, Klaveness D (2007) Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb Ecol 53:549–561

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M, Cortadellas N, Trillas MI, Rutzler K (2005) Endosymbiotic yeast maternally transmitted in a marine sponge. Biololgical and Pharmaceutical Bulletion 209:94–106

    CAS  Google Scholar 

  • Meklin T, Haugland RA, Reponen T, Varma M, Lummus Z, Bernstein D, Wymer LJ, Vesper SJ (2004) Quantitative PCR analysis of house dust can reveal abnormal mold conditions. J Environ Monitor 6:615–620

    Article  CAS  Google Scholar 

  • Meyer B, Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microb Ecol 56:306–321

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Mussodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Müller WE, Müller IM (2003) Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. Prog Mol Subcell Biol 37:1–33

    PubMed  Google Scholar 

  • Müller WE, Belikov SI, Kaluzhnaya OV, Chernogor L, Krasko A, Schröder HC (2009) Symbiotic interaction between dinoflagellates and the demosponge Lubomirskia baicalensis: aquaporin-mediated glycerol transport. Progr Mol Subcell Biol 47:145–170

    Article  Google Scholar 

  • Park HG, Managbanag JR, Stamenova EK, Jong SC (2004) Comparative analysis of common indoor Cladosporium species based on molecular data and conidial characters. Mycotaxon 89:441–451

    Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Schnaiderman A, Aluma A, Carmeli S, Ilan M, Yarden O (2009) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers doi:10.1007/s13225-010-0020-x

  • Pendle S, Weeks K, Priest M, Gill A, Hudson B, Kotsiou G, Pritchard R (2004) Phaeohyphomycotic soft tissue infections caused by the coelomycetous fungus Microsphaeropsis arundinis. J Clin Microbiol 42:5315–5319

    Article  PubMed  Google Scholar 

  • Proksch P, Ebel R, Edrada RA, Wray V, Steube K (2003) Bioactive natural products from marine invertebrates and associated fungi. In: Müller WEG (ed) Sponges. Springer-Verlag, Heidelberg, Berlin, Germany, pp 117–142

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar C, D’Souza-Ticlo D, Verma AK (2008) Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit Rev Microbiol 34:189–206

    Article  PubMed  CAS  Google Scholar 

  • Reiswig HM (1974) Water transport respiration and energetics of 3 tropical marine sponges. J Exp Mar Biol Ecol 14:231–249

    Article  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Skory CD, Chang PK, Cary J, Linz JE (1992) Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol 58:3527–3537

    PubMed  CAS  Google Scholar 

  • Smith G (1931) The identification of fungi causing mildew in cotton goods: The Genus Aspergillus Part-II. J Text Inst 22:110–116

    Google Scholar 

  • Suezawa Y, Kimura I, Inoue M, Gohda N, Suzuki M (2006) Identification and typing of miso and soy sauce fermentation yeasts, Candida etchellsii and C. versatilis, based on sequence analyses of the D1D2 domain of the 26S ribosomal RNA gene, and the region of internal transcribed spacer 1, 5.8 S ribosomal RNA gene and internal transcribed spacer 2. Biosci Biotechnol Biochem 70:348–354

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhou X, Cai M, Tao K, Zhang Y (2009) Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresour Technol 100:4244–4251

    Google Scholar 

  • Sung OS, Junta S (1994) Phylogenetic placement of the basidiomycetous yeasts Kondoa malvinella and Rhodosporidium dacryoidum, and the anamorphic yeast Sympodiomycopsis paphiopedili by means of 18S rRNA gene sequence analysis. Mycoscience 35:367–375

    Article  Google Scholar 

  • Swatzell LJ, Powell MJ, Kiss JZ (1996) The relationship of endophytic fungi to the gametophyte of the fern Schizaea pusilla. Int J Plant Sci 157:53–62

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2004) PAUP*. Phylogenetic analysis using parsimony (and other methods), Version 4.01. Sinauer, Sunderland, Massachusetts

  • Tao G, Liu ZY, Hyde KD, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Trisuwan K, Rukachaisirikul V, Sukpondma Y, Preedanon S, Phongpaichit S, Sakayaroj J (2009) Pyrone derivatives from the marine-derived fungus Nigrospora sp. PSU-F18. Phytochemistry 70:554–557

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto S, Kato H, Greshock TJ, Hirota H, Ohta T, Williams RM (2009) Isolation of notoamide E, a key precursor in the biosynthesis of prenylated indole alkaloids in a marine-derived fungus, Aspergillus sp. J Am Chem Soc 131:3834–3835

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J (1975) Electron microscope study of the association between bacteria and sponges of the genus Verongia Dictyoceratida. J Microsc Biol Cell 23:271–288

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Verkley GJM, Starink-Willemse M, van Iperen A, Abeln ECA (2004) Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. Mycologia 96:558–571

    Article  CAS  Google Scholar 

  • Vogel S (1977) Current induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069–2071

    Article  PubMed  CAS  Google Scholar 

  • Vogel G (2008) The inner lives of sponges. Science 320:1028–1030

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in northeast China based on rDNA sequences. Fungal Divers 20:235–260

    CAS  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Blackall LL (2009) What do we really know about sponge-microbial symbioses? ISME J 3:1–3

    Article  PubMed  CAS  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2007) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic Press Inc, San Diego, USA, pp 315–322

    Google Scholar 

  • Wirsel SG, Runge-Froböse C, Ahrén DG, Kemen E, Oliver RP, Mendgen KW (2002) Four or more species of Cladosporium sympatrically colonize Phragmites australis. Fungal Genet Biol 35(2):99–113

    Article  PubMed  CAS  Google Scholar 

  • Xie LW, Ouyang YC, Zou K, Wang GH, Chen MJ, Sun HM, Dai SK, Li X (2009) Isolation and difference in Anti-Staphylococcus aureus bioactivity of curvularin derivates from fungus Eupenicillium sp. Appl Biochem Biotechnol 159:284–293

    Google Scholar 

  • Zandjanakou-Tachin M, Vroh-Bi I, Ojiambo PS, Tenkouano A, Gumedzoe YM, Bandyopandhyay R (2009) Identification and genetic diversity of Mycosphaerella species on banana and plantain in Nigeria. Plant Patholology 58:536–546

    Article  CAS  Google Scholar 

  • Zhao WY, Zhu TJ, Han XX, Fan GT, Liu HB, Zhu WM, Qun GuQ (2009) A new gliotoxin analogue from a marine-derived fungus Aspergillus fumigatus Fres. Nat Prod Res 23:203–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Jin-He Li at the Institute of Oceanology, Chinese Academy of Science for the sponge identification, and gratefully acknowledge the help of the personnel at Sanya Nanfan Sci-Tech institute during sampling of the sponges. For anti-cancer testing thanks go to Ms. Juan-Juan Hu and Ms. Wan-Qi Zhou at the Pharmacological Department of our Institute. Finally, we thank Dr. Yanan Jiang from the University of Nevada, Las Vagas, Ms. Sara A. Brinson from the Tulane University and the reviewers for their proofreading, grammatical revision and valuable suggestions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhu.

Additional information

W. C. Liu and C. Q. Li contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.C., Li, C.Q., Zhu, P. et al. Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Diversity 42, 1–15 (2010). https://doi.org/10.1007/s13225-010-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0022-8

Keywords

Navigation