Skip to main content
Log in

Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae)

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Molecular phylogenetic analyses of a four-gene sequence matrix (LSU, SSU, rpb2, tef1) demonstrate monophyly of the genus Massaria, which is placed as most basal lineage within Pleosporales. Data from microscopic morphology, pure cultures, and phylogenetic analyses of partial SSU-ITS-LSU rDNA and tef1 sequences revealed 17 taxa of Massaria, seven of which are described as new (M. ariae, M. aucupariae, M. campestris, M. mediterranea, M. parva, M. platanoidea, M. vindobonensis). Massarina macra is formally combined into Massaria. Synonymy of the genus Aglaospora with Massaria is confirmed, and the generic type Massaria inquinans is lecto- and epitypified. Massaria vomitoria, M. gigaspora and M. pyri, commonly considered as conspecific with M. inquinans, are shown to be distinct species. Due to homonymy, the new name M. gigantispora is introduced for M. gigaspora Fuckel. Several species are lecto- and/or epitypified. A key to all treated species is provided. Most Massaria species revealed by molecular phylogenetic analyses can be well characterised by a suite of morphological traits like ascospore shape, ascospore length and width, ascospore colour in the intact ascus vs. after ejection, size of pseudothecia, presence or absence of a black stromatic zone delimiting the pseudostroma, and staining of the substrate. Two different modes of ascospore germination were observed in pure culture, i.e. hyphal or by ejection of a naked protoplast, the former developing into hyphal colonies and the latter into meristematically growing colonies. Modes of ascospore germination and colony growth were found to be characteristic for the respective species. All species were found to be highly host-specific, disproving the wide host range given for Massaria inquinans in the literature. Biodiversity of Massaria was found to be centred on the genus Acer (seven species), where up to four species can occur on the same host species, and on Rosaceae (four species). Evidence for a hemibiotrophic life style and weak parasitism of Massaria is provided and discussed. Geographic distribution of species is reconsidered, concluding that Europe may be the centre of Massaria biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aptroot A (1991) A monograph of the Pyrenulaceae (excluding Anthracothecium and Pyrenula) and the Requienellaceae, with notes on the Pleomassariaceae, the Trypetheliaceae and Mycomicrothelia. Bibl Lichenol 44:1–178

    Google Scholar 

  • Aptroot A (1998) A world revision of Massarina (Ascomycota). Nova Hedwig 66:89–162

    Google Scholar 

  • Barr ME (1979) On the Massariaceae in North America. Mycotaxon 9:17–37

    Google Scholar 

  • Barr ME (1990) V. Massariaceae. In North American Flora, ser. II (13): Melanommatales (Loculoascomycetes). New York Botanical Garden, New York, pp 66–82

  • Berkeley MJ (1876) Notices of North American fungi. Grevillea 4(32):141–162 [nos 903–1005]

    Google Scholar 

  • Cesati V, De Notaris G (1863) Schema di classificazione degli sferiacei Italici aschigeri piu o meno appartenenti al genere Sphaeria nell’ antico significato attribuitogli de Persoon. Comment. Soc. Crittogamol. Ital. 1(4):177–240

    Google Scholar 

  • Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–116

    Google Scholar 

  • Chen CY, Hsieh WH (1996) New records of Ascomycetes from Taiwan. Fungal Sci 11:17–29

    Google Scholar 

  • De Notaris G (1844) Cenni sulla tribù dei Pirenomiceti sferiacei e descrizione di alcuni generi spettanti alla medesima. G Bot Ital 1:322–335

    Google Scholar 

  • Del Prado R, Schmitt I, Kautz S, Palice Z, Lücking R, Lumbsch HT (2006) Molecular data place Trypetheliaceae in Dothideomycetes. Mycol Res 110:511–520

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Ellis JB, Everhart BM (1892) The North American Pyrenomycetes. Newfield

  • Eriksson OE (1981) The families of bitunicate ascomycetes. Opera Bot 60:1–220

    Google Scholar 

  • Eriksson OE (1989). NaClO, sodium hypochlorite, a powerful agent in studies of ascospore morphology. Syst Ascomycetum 8:29–57

    Google Scholar 

  • Eriksson OE, Hawksworth DL (1986) Notes on ascomycete systematics. Nos. 1–224. Syst Ascomycetum 5:113–174

    Google Scholar 

  • Eriksson OE, Baral HO, Currah RS, Hansen K, Kurtzman CP, Rambold G, Laessøe T (2001) Outline of Ascomycota – 2001. Myconet 7:1–88

    Google Scholar 

  • Fries EM (1823) Systema mycologicum, sistens fungorum ordines, genera et species hucusque cognitas, quas ad normam methodi naturalis determinavit, disposuit atque descripsit 2. Mauritius, Greifswald

  • Fuckel KWGL (1873) Symbolae Mycologicae. Zweiter Nachtrag. Jahrb Nassau Ver Naturkd 27–28:1–99 [‘1874’]

    Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch C, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1054–1065

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis. program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harris RC (1986) The family Trypetheliaceae (Loculoascomycetes: lichenized Melanommatales) in Amazonian Brazil. Acta Amazon Supl 14:55–80

    Google Scholar 

  • Harris RC (1989) A sketch of the family Pyrenulaceae (Melanommatales) in Eastern North America. Mem N Y Bot Gard 49:74–107

    Google Scholar 

  • Hazslinsky von Hazslin FA (1892) Magyarországés társországainak sphaeriái. Mathematikai és Természettudimányi Közlemények Vonatkozólag a Hazai Vizsonyokra 25(2):333, 15 tabs

  • Hein B (1984) Originalmaterial und Hinweise zu den von G. Otth beschriebenen Fungi-Arten und subspezifischen Taxa im Herbar des Botanischen Museums Berlin-Dahlem. Willdenowia 14:413–416

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • de Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? Journal of Zhejiang University, Science B 9(10):842–846

    Article  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    Article  PubMed  Google Scholar 

  • Jaklitsch WM, Voglmayr H (2011) Nectria eustromatica sp. nov., an exceptional species with a hypocreaceous stroma. Mycologia 103 (in press)

  • Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2006) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97:1365–1378 [‘2005’]

    Article  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Kruys Å, Eriksson OE, Wedin M (2006) Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycol Res 110:527–536

    Article  CAS  PubMed  Google Scholar 

  • Landvik S, Egger K, Schumacher T (1997) Towards a subordinal classification of the Pezizales (Ascomycota): phylogenetic analyses of SSU rDNA sequences. Nord J Bot 17:403–418

    Article  CAS  Google Scholar 

  • Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Google Scholar 

  • Luck-Allen ER, Cain RF (1975) Additions to the genus Delitschia. Can J Bot 53:1827–1887

    Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (ed) (2007) Outline of Ascomycota – 2007. Myconet 13:1–58

    Google Scholar 

  • Michalopoulos-Skarmoutsos H, Skarmoutsos G (1999) Pathogenicity of fungi affecting black locust (Robinia pseudoacacia) in Greece. Phytoparasitica 27:233–234

    Article  Google Scholar 

  • Miyake I (1916) On the fungi inhabiting mulberry tree (in Japanese). Tech. Rep. Imp. Sericult. Exp. Stat. 1:301–361

    Google Scholar 

  • Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583

    Article  CAS  PubMed  Google Scholar 

  • Otth G (1869) Sechster Nachtrag zu dem in Nr. 15–23 der Mittheilungen enthaltenen Verzeichnisse schweizerischer Pilze. Mitth Natforsch Ges Bern 1868:37–70

    Google Scholar 

  • Petrak F (1921) Mykologische Notizen. II. Anns Mycol 19:17–128

    Google Scholar 

  • Réblová M, Svrček M (1997) New records of Pyrenomycetes from the Czech Republic I. Czech Mycol 49:193–206

    Google Scholar 

  • Riethmüller A, Voglmayr H, Göker M, Weiß M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849

    Article  PubMed  Google Scholar 

  • Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42:1–248

    Google Scholar 

  • Saccardo PA (1877) Fungi Veneti novi vel critici vel mycologiae Venetae addendi. Series VI. Michelia 1:1–72

    Google Scholar 

  • Saccardo PA (1878) Fungi Italici Autographice Delineati. Fascs 9–12: tabs 321–480. Padova

  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker RA, Kokko EG (1977a) Aglaospora profusa. Fungi Canadenses No. 101. National Mycological Herbarium, Ottawa

  • Shoemaker RA, Kokko EG (1977b) Massaria inquinans. Fungi Canadenses No. 104. National Mycological Herbarium, Ottawa

  • Shoemaker RA, Kokko EG (1977c) Massaria lantanae. Fungi Canadenses No. 105. National Mycological Herbarium, Ottawa

  • Shoemaker RA, Kokko EG (1977d) Massaria zanthoxyli. Fungi Canadenses No. 106. National Mycological Herbarium, Ottawa

  • Shoemaker RA, LeClair PM (1975) Type studies of Massaria from the Wehmeyer collection. Can J Bot 53:1568–1598

    Article  Google Scholar 

  • Søchting U, Lutzoni F (2003) Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae). Mycol Res 107:1266–1276

    Article  PubMed  Google Scholar 

  • Spatafora JW, Mitchell TG, Vilgalys R (1995) Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens. J Clin Microbiol 33:1322–1326

    CAS  PubMed  Google Scholar 

  • Stamatakis E (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

  • Tanaka T (1917a) New Japanese Fungi. Notes and translations – II. Mycologia 9:249–253

    Article  Google Scholar 

  • Tanaka T (1917b) New Japanese Fungi. Notes and translations – III. Mycologia 9:365–368

    Article  Google Scholar 

  • Tanaka K, OokiY HS, Harada Y, Barr ME (2005) Pleosporales in Japan (5): Pleomassaria, Asteromassaria, and Splanchnonema. Mycoscience 46:248–260

    Article  Google Scholar 

  • Thiers B (2010) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/

  • Tode F (1791) Fungi Mecklenburgenses selecti, Fasciculus 2. F. Lemke, Lüneburg

  • Treigienė A, Rukšėnienė J (2005) The genus Massaria (Ascomycota) in Lithuania. Bot Lith 111:55–61

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  Google Scholar 

  • Voglmayr H, Jaklitsch WM (2008) Prosthecium species with Stegonsporium anamorphs on Acer. Mycol Res 112:885–905

    Article  PubMed  Google Scholar 

  • von Schweinitz LD (1832) Synopsis fungorum in America boreali media degentium. Trans Am Philos Soc II 4:141–316

    Article  Google Scholar 

  • Wallroth FW (1833) Flora Cryptogamica Germaniae 2. J. L. Schrag, Nürnberg

    Google Scholar 

  • Wehmeyer LE (1941) A revision of Melanconis, Pseudovalsa, Prosthecium and Titania. Univ. Michigan Stud., Sci. Ser. 14:1–161

    Google Scholar 

  • Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Walter Gams for hospitality and excursion support in Italy; Tom Gräfenhan for collecting and sending Canadian material of M. anomia and M. zanthoxyli; Jacques Fournier and Björn Wergen for sending European Massaria specimens; Irmgard Greilhuber and her family for organising and participating in numerous collecting trips together with HV; the fungarium curators of B, BILAS, F, K, L, M, PAD, S, UPS, W and WI for the loan of specimens; Walter Till (WU) for managing the herbarium loans; the EU SYNTHESYS for a grant (GB-TAF-4625) funding a research stay at Royal Botanic Gardens Kew enabling HV to collect M. inquinans and M. vomitoria; and Mariko Parslow for organising a collecting trip during the stay of HV at Kew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Voglmayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voglmayr, H., Jaklitsch, W.M. Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae). Fungal Diversity 46, 133–170 (2011). https://doi.org/10.1007/s13225-010-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0078-5

Keywords

Navigation