Skip to main content
Log in

What are the common anthracnose pathogens of tropical fruits?

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Species of Colletotrichum are associated with anthracnose of a wide range of host plants including cultivated and wild tropical fruits. The genetic and ecological diversity of species associated with wild fruits are poorly explored, as compared to those associated with pre and postharvest diseases of cultivated fruits. In the present study, isolates of Colletotrichum were obtained from commercially available cultivated fruits, wild fruits (from native trees in natural habitats) and a few herbaceous hosts collected in northern Thailand. These isolates were initially characterized based on analysis of complete sequences of nuclear ribosomal internal transcribed spacer (ITS), into the genetically defined species complexes of Colletotrichum gloeosporioides, C. acutatum, C. boninense and C. truncatum. The isolates were primarily identified in the C. gloeosporioides species complex, based on a strongly supported clade within the ITS gene tree and were further characterized using multi-gene phylogenetic analyses and morphology. Phylogenetic analyses of ITS, partial sequences of actin (ACT), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS) and β-tubulin (TUB2) genetic markers were performed individually and in combination. Colletotrichum gloeosporioides sensu stricto was identified from lime (Citrus aurantifolia) and rose apple (Syzygium samarangense). Colletotrichum fructicola was isolated from dragon fruit (Hylocerous undatus) and jujube (Ziziphus sp.). Colletotrichum endophytica was found only from an unknown wild fruit. We observed a considerable genetic and host diversity of species occurring on tropical fruits within the clade previously known as Colletotrichum siamense sensu lato. The clade consists of isolates identified as pre and postharvest pathogens on a wide range of fruits, including coffee (Coffea arabica), custard apple (Annona reticulata), Cerbera sp., figs (Ficus racemosa) mango (Mangifera indica), neem (Azadirachta indica) and papaya (Carica papaya) and was the dominant group of species among most wild fruits studied. With the exception of one isolate from banana, which grouped in the C. siamense clade, all the other isolates were identified as Colletotrichum musae. A new species, Colletotrichum syzygicola, associated with Syzygium samarangense in Thailand, is introduced with descriptions and illustrations. This study highlights the need to re-assess the evolutionary relationships of Colletotrichum species occurring on cultivated and wild fruits with emphasis on their ecology and cryptic diversification including sampling at regional and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abang MM, Winter S, Green KR, Hoffmann P, Mignouna HD et al (2002) Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathol 51:63–71

    Article  Google Scholar 

  • Adikaram NKB (1986) A survey of postharvest losses in some fruits and vegetables and the fungi associated with them. Ceylon J Sci (Bio Sci) 19:1–10

    Google Scholar 

  • Adikaram NKB, Karunanayake C, Abayasekara C (2010) Role of pre-formed antifungal compounds in the resistance of fruit to postharvest pathogens. In: Gullino ML, Prusky D (eds) Postharvest pathology. ISBN 978-1-4020-8931-2, Springer, pp 1–11

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, New York

    Google Scholar 

  • Aidoo KE (1993) Postharvest storage and preservation of tropical crops. Int Biodeterior Biodegrad 32:161–173

    Article  Google Scholar 

  • Alahakoon PW, Brown AE (1994) Host-range of Colletotrichum gloeosporioides on tropical fruit crops in Sri Lanka. Int J Pest Manage 40:23–26

    Article  Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J et al (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cai L, Udayanga D, Manamgoda DS, Maharachchikumbura SSN, Liu XZ, Hyde KD (2011) The need to carry out re-inventory of tropical plant pathogens. Trop Plant Pathol 36:205–213

    Article  Google Scholar 

  • Cannon PF, Buddie AG, Bridge PD (2008) The typification of Colletotrichum gloeosporioides. Mycotaxon 104:189–204

    Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum – current status and future directions. Stud Mycol 73:181–213

    Article  PubMed  CAS  Google Scholar 

  • Carbone I, Kohn L (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Choi KJ, Kim WG, Kim HG, Choi HW, Lee YK, et al (2011) Morphology, molecular phylogeny and pathogenicity of Colletotrichum panacicola causing anthracnose of Korean ginseng. Plant Pathology J 27:1–7

    Google Scholar 

  • Choudhury ML (2006) Recent developments in reducing postharvest losses in the Asia-Pacifi c region. In: Rolle RS (ed) Reports of the APO seminar on reduction of postharvest losses of fruit and vegetables. Tokyo, Japan, pp 15–22

  • Chung W-H, Ishii H, Nishimura K, Fukaya M, Yano K et al (2006) Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis 90:506–512

    Article  CAS  Google Scholar 

  • Crouch JA, Tomaso-Peterson M (2012) Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloa, a new fungal species closely related to Colletotrichum sublineola. Mycologia 104:108–1096

    Article  Google Scholar 

  • Crouch JA, Clarke BB, Hillman BI (2006) Unraveling evolutionary relationships among the divergent lineages of Colletotrichum causing anthracnose disease in turfgrass and maize. Phytopathology 96:46–60

    Article  PubMed  CAS  Google Scholar 

  • Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB (2009a) Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycol Res 113:1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Crouch JA, Clarke BB, Hillman BI (2009b) What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101:648–656

    Article  PubMed  Google Scholar 

  • Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45–87

    Google Scholar 

  • Damm U, Barroncelli R, Cai L, Kubo Y, O’Connell R, Weir B, Yoshino K, Cannon PF (2010) Colletotrichum: species, ecology and interactions. IMA Fungus 1:161–165

    Article  PubMed  Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012a) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113

    Article  PubMed  CAS  Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir B et al (2012b) The Colletotrichum boninense species complex. Stud Mycol 73:1–36

    Article  PubMed  CAS  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Dinh SQ, Chongwungse J, Pongam P, Sangchote S (2003) Fruit infection by Colletotrichum gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Australas Plant Pathol 32:533–538

    Article  Google Scholar 

  • Doyle VP, Oudemans PV, Rehner SA, Litt A (2013) Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s.l. from wild and agricultural landscapes in North America. PLoS One 8(5):e62394

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Minz D, Jurkevitch E, Maymon M, Shabi E (2000) Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathology 90:608–614

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Minz D, Maymon M, Zveibil A (2001) Genetic diversity within Colletotrichum acutatum sensu Simmonds. Phytopathology 91:586–592

    Article  PubMed  CAS  Google Scholar 

  • Galván GA, Wietsma WA, Putrasemedja S, Permadi AH, Kik C (1997) Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz.) in Allium cepa and its wild relatives. Euphytica 95:173–178

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed  CAS  Google Scholar 

  • Gunawardhana PLT, Seneviratne AMWK, Adikaram NKB, Yakandawala DMD (2009) A phonetic analysis of Colletotrichum gloeosporioides (Penz.) Penz & Sacc. Cey J Sci (Bio Sci) 38:57–66

    Google Scholar 

  • Gupta VK, Pandey A, Kumar P, Pandey BK, Gaur RK, Bajpai V, Sharma N, Sharma S (2010) Genetic characterization of mango anthracnose pathogen Colletotrichum gloeosporioides Penz. by random amplified polymorphic DNA analysis. Afr J Biotechnol 9:4009–4013

    CAS  Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Huang F, Chen GQ, Hou X, Fu YS, Cai L, Hyde KD, Li HY (2013) Colletotrichum species associated with cultivated Citrus in China. Fungal Divers (in press). doi:10.1007/s13225-013-0232-y

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD (2003) Mycology in the future in the Asia-Pacific region. Fungal Divers 13:59–68

    Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ et al (2009a) Colletotrichum: a catalogue of confusion. Fungal Divers 39:1–17

    Google Scholar 

  • Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Goodwin PH, Chen H, Johnston PR, Jones EBG, Liu ZY, McKenzie EHC, Moriwaki J, Noireung P, Pennycook SR, Pfenning LH, Prihastuti H, Sato T, Shivas RG, Tan YP, Taylor PWJ, Weir BS, Yang YL, Zhang JZ (2009b) Colletotrichum—names in current use. Fungal Divers 39:147–182

    Google Scholar 

  • Hyde KD, Udayanga D, Manamgoda DS, Tedersoo L, Larsson E, Abarenkov K, Bertrand YJK, Oxelman B, Hartmann M, Kauserud H, Ryberg M, Kristiansson E, Nilsson RH (2013) Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Curr Res Environ Appl Mycol 3:1–32

    Google Scholar 

  • Johnston PR, Jones D (1997) Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia 89:420–430

    Article  CAS  Google Scholar 

  • Karunarathna SC, Udayanga D, Maharachchikumbura SN, Pilkington M, Manamgoda DS, Wijayawardene DNN, Ariyawansa HA, Bandara AR, Chukeatirote E, McKenzie EHC, Hyde KD (2012) Current status of knowledge of Sri Lankan mycota. Curr Res Environ Appl Mycol 2:18–29

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. doi:10.1093/molbev/mst010

    PubMed  Google Scholar 

  • Ko Ko TW, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120

    Article  Google Scholar 

  • Li HL (1970) The origin of cultivated plants in Southeast Asia. Econ Bot 24:3–19

    Article  Google Scholar 

  • Lima NB, Batista A, Vinicius M, Morais MA Jr, Barbosa AGM, Michereff S, Jand Hyde KD, Câmara MPS (2013) Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers (in press). doi:10.1007/s13225-013-0237-6

  • Liu F, Cai L, Crous PW, Damm U (2013) Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigram. Mycologia 12:315

    Google Scholar 

  • Maharaj A, Rampersad SN (2012) Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting. Mol Biotechnol 50:237–249

    Article  PubMed  CAS  Google Scholar 

  • Manamgoda DS, Udayanga D, Cai L, Chukeatirote E, Hyde KD (2013) Endophtic Colletotrichum associated with tropical grasses with a new species C. endophytica. Fungal Divers (accepted): FUDI-S-13-00098

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1–8

  • Mills PR, Hodson A, Brown AE (1992) Molecular differentiation of Colletotrichum gloeosporioides isolates infecting tropical fruits. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI, Wallingford, pp 269–288

    Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity:what do we know? What we can predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Mukherjee A, Khandker S, Islam MR, Sonia B, Shahid J (2011) Efficacy of some plant extracts on the mycelial growth of Colletotrichum gloeosporioides. Bangladesh Agric Univ 9:43–47

    Google Scholar 

  • Nelson SC (2008) Mango anthracnose (Colletotrichum gloeosporioides). Plant Dis 48. College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai at Mänoa, Honolulu, Hawai. www.ctahr.hawaii.edu/oc/freepubs/pdf/pd-48.pdf

  • Noireung P, Phoulivong S, Liu F, Cai L, Mckenzie EHC, Chukeatirote E, Jones EBG, Bahkali AH, Hyde KD (2012) Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogam Mycol 33:347–362

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center, Uppsala University

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Dugayé M-T et al (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J et al (2012) Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065

    Article  PubMed  Google Scholar 

  • O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78

    Article  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peng L, Yang Y, Hyde KD, Bahkali AH, Liu Z (2012) Colletotrichum species on Citrus leaves in Guizhou and Yunnan Provinces, China. Cryptogam Mycol 33:267–283

    Article  Google Scholar 

  • Peng LJ, Sun T, Yang YL, Cai L, Hyde KD, Bahkali AH, Liu ZY (2013) Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience 54:29–41

    Article  Google Scholar 

  • Photita W, Taylor PWJ, Ford R, Lumyong P, McKenzie HC et al (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Phoulivong S, Cai L, Chen H, McKenzie EHC, Abdelsalam K et al (2010a) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers 44:33–43

    Article  Google Scholar 

  • Phoulivong S, Cai L, Parinn N, Chen H, Abd-Elsalam K et al (2010b) A new species of Colletotrichum from Cordyline fruticosa and Eugenia javanica causing anthracnose disease. Mycotaxon 114:247–257

    Article  Google Scholar 

  • Phoulivong S, McKenzie EHC, Hyde KD (2012) Cross infection of Colletotrichum species; a case study with tropical fruits. Curr Res Environ Appl Mycol 2:99–111

    Google Scholar 

  • Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers 39:89–109

    Google Scholar 

  • Rambaut A, Drummond A (2008) FigTree: tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh

  • Rampersad SN (2011) Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Dis 95:1244–1254

    Article  Google Scholar 

  • Rayner RW (1970) A mycological colour chart. - Commonw. Mycol. Inst., Kew

  • Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA et al (2010) Colletotrichum gloeosporioides s. l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish pathogen and endophyte clades. Mycologia 102:318–1338

    Article  Google Scholar 

  • Rolle RS (2006) Improving postharvest management and marketing in the Asia-Pacifi c region: issues and challenges trends in the fruit and vegetable sector. In: Rolle RS (ed) Reports of the APO seminar on reduction of postharvest losses of fruit and vegetables. Tokyo, Japan, pp. 23–31

  • Romberg M, Roberts D (2008) Phytosanitary regulations shape fruit and vegetable trade patterns. Amber Waves 6:36–37

    Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) Mrbayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rossman AY (2013) Colletotrichum: Complex speciesor species complexes? [Review of the book Colletotrichum: Complex species or species complexes? 2012. U.Damm, P.F. Cannon, P.W. Crous (Eds.). CBS Studies in Mycology No.73. CBS Fungal Biodiversity Centre]. Inoculum 64:21

    Google Scholar 

  • Rossman AY, Palm-Hernández ME (2008) Systematics of plant pathogenic fungi: why kit matters. Plant Dis 92:1376–1386

    Article  Google Scholar 

  • Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD (2013) Apmat gene can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers (in press)

  • Shivas RG, Tan YP (2009) A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers 39:111–122

    Google Scholar 

  • Silva DN, Talhinas P, Várzea V, Cai L, Paulo OS, Batista D (2012a) Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia 104:396–409

    Article  PubMed  CAS  Google Scholar 

  • Silva DN, Talhinhas P, Cai L, Manuel L, Gichuru EK, Loureiro A, Várzea V, Paulo OS, Batista D (2012b) Host-jump drives rapid and recent ecological speciation the emergent fungal pathogen Colletotrichum kahawae. Mol Ecol 21:2655–2670

    Article  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stephenson SA, Green JR, Manners JM, Maclean DJ (1997) Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Curr Genet 31:447–454

    Article  PubMed  CAS  Google Scholar 

  • Su YY, Noireung P, Liu F, Hyde KD, Moslem MA et al (2011) Epitypification of Colletotrichum musae, the causative agent of banana anthracnose. Mycoscience 52:376–382

    Article  Google Scholar 

  • Swofford DL (2002) PAUP 4.0b10: phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Templeton MD, Rikkerink EHA, Solon SL, Crowhurst RN (1992) Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenaseencoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 122:225–230

    Article  PubMed  CAS  Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008a) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57:562–572

    Article  Google Scholar 

  • Than PP, Shivas RG, Jeewon R, Pongsupasamit S, Marney TS et al (2008b) Epitypification and phylogeny of Colletotrichum acutatum J.H. Simmonds. Fungal Divers 28:97–108

    Google Scholar 

  • Udayanga D, Liu XZ, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171

    Article  Google Scholar 

  • Waller JM, Lenné JM, Waller SJ (2002) Plant pathologists’s pocketbook. CABI, Wallingford

    Google Scholar 

  • Weir B, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic press Inc. Harcourt Brace Javanovich publishers, New York. pp 315–322

  • Wijesundera RLC, Bailey JA, Byrde RJW, Fielding AH (1989) Cell wall degrading enzymes of Colletotrichum lindemuthianum: their role in the development of bean anthracnose. Physiol Mol Plant Pathol 34:403–413

    Article  CAS  Google Scholar 

  • Xie L, Zhang JZ, Cai L, Hyde KD (2010) Biology of Colletotrichum horii, the causal agent of persimmon anthracnose. Mycology 1:242–253

    Google Scholar 

  • Yaacob O, Subhadrabandhu S (1995) The production of economic fruits in south east Asia pp. 443

  • Yang YL, Liu ZY, Cai L, Hyde KD, Yu ZN, McKenzie EHC (2009) Colletotrichum anthracnose of Amaryllidaceae. Fungal Divers 39:123–146

    Google Scholar 

  • Zhang Y, Hyde KD (2008) Epitypification: Should we epitypify? J Zhejiang Univ-Sc B 9:842–846

    Google Scholar 

  • Zhang N, Rossman AY, Seifert K, Bennett JW, Cai G, Cai L, Hillman B, Hyde KD, Luo J, Manamgoda D, Meyer W, Molnar T, Schoch C, Tadych M, White JF Jr (2013) Impacts of the International Code of Nomenclature for algae, fungi and plants (Melbourne Code) on the scientific names of plant pathogenic fungi. Online. APSnet Feature. American Phytopathological Society, St. Paul

    Google Scholar 

Download references

Acknowledgments

Dhanushka Udayanga thanks the State Key Lab of Systematic Mycology, the Chinese Academy of Sciences, Beijing for a visiting postgraduate scholarship (2010-2011). This project is supported by the Chinese Academy of Sciences, Beijing (NFSC Y2JJ011002). Kevin D. Hyde thanks the National Research Council of Thailand for the award of grant No. 54201020003 and a grant from the National Plan of Science and Technology, King Abdulaziz City of Science and Technology, Riyadh, Saudi Arabia, project No. 10-Bio-965-02 to study Colletotrichum. Sawonee Wikee, Samantha Karunarathna and Phongeun Sysouphanthong (MFLU, Thailand) are thanked for providing specimens. Cai Lei (Chinese Academy of Sciences, Beijing) is thanked for suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udayanga, D., Manamgoda, D.S., Liu, X. et al. What are the common anthracnose pathogens of tropical fruits?. Fungal Diversity 61, 165–179 (2013). https://doi.org/10.1007/s13225-013-0257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0257-2

Keywords

Navigation