Skip to main content
Log in

Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Understanding how many species exist and the processes by which they form remains a central topic of ecological and evolutionary biology, but represents a special challenge within microbial groups. The lichen-forming fungi represent one of the best examples in which species evolution and diversity create patterns of high phenotypic plasticity coupled with wide geographic distributions. We sampled the lichen-forming species Tephromela atra and related species at a world-wide scale to reconstruct a phylogenetic hypothesis using three nuclear markers. Samples were also studied for morphological and chemical traits to assess how well the phenotypic relationships with species, previously segregated from T. atra, agrees with molecular data. We used a genealogical concordance approach and identified 15 monophyletic clades, which may represent independent lineages. By combining morphological and chemical characters, ecological preferences and geographic origin we distinguish six different species. Although subtle phenotypical traits are frequently used for describing previously cryptic species in fungi, the continuum of variability found in morphology and chemical patterns in T. atra prevents the description of new taxa with characteristic traits. We observed that phenotypic characters arise in parallel at local or regional scale but are not correlated with genetic isolation. Therefore, they are insufficient for characterizing species with broad geographic ranges within T. atra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE. doi:10.1371/journal.pone.0004437

    PubMed Central  PubMed  Google Scholar 

  • Avise JC, Ball RM (1990) Principle of genealogical concordance in species concepts and biological taxonomy. Oxf Surv Evol Biol 7:45–67

    Google Scholar 

  • Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Monographs in Systematic Botany from the Missouri Botanical Garden 53:289–303

  • Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Bryant D, Moulton V (2002) NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: Guig R, Gus D (eds) Algorithms in bioinformatics, WABI 2002, volume LNCS 2452, pp 375, 391

  • Buckley PTR, Arensburger CS, Chambers GK (2002) Combined data, Bayesian phylogenetics, and the origin of the New Zealand Cicada genera. Syst Biol 51:4–18

    Article  PubMed  Google Scholar 

  • Clauzade G, Roux Cl (1985) Likenoj de Okcidenta Europo. Illustrita Determinlibro. Bulletin de la Société Botanique du Centre Ouest, Nouvelle Série-Numéro Spécial 7:1–893

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Crespo A, Pérez-Ortega S (2009) Cryptic species and species pair in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. An Jard Bot Madr 66:71–81

    Article  Google Scholar 

  • Crespo A, Molina MC, Blanco O, Schroeter B, Sancho LG, Hawksworth DL (2002) RDNA ITS and b-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycol Res 106:788–795

    Article  CAS  Google Scholar 

  • Crous P, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) Mycobank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium stored and lichenized fungi. Plant Syst Evol 217:243–249

    Article  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz K (1999) The general lineage concept of species and the defining proprties of the species categories. In: Wilson RA (ed) Species. New interdisciplinary essay. MIT Press, Cambridge, pp 49–89

    Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Dettman JR, Jacobs DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–2720

    PubMed  Google Scholar 

  • Divakar PK, Blano O, Hawksworth DL, Crespo A (2005) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. Lichenologist 37:55–65

    Article  Google Scholar 

  • Elix JA (2009) Tephromela. In: McCarthy PM (ed) Flora of Australia volume 57. Lichens 5. ABRS and CSIRO Publishing, Canberra and Melbourne. xx + 687 pages, pp 74–83

  • Elix JA (2012) Four new species and a new record of Tephromela (lichenized Ascomycota) from Australia. Australas Lichenol 71:3–11

    Google Scholar 

  • Elix JA (2013) Further new species and new records of Tephromela (lichenized Ascomycota) from Australia. Australas Lichenol 71:20–31

    Google Scholar 

  • Elix JA, Kalb K (2006) Two new species of Tephromela (Lecanoraceae, lichenized Ascomycota) from Australia. Australas Lichenol 58:27–31

    Google Scholar 

  • Elix JA, Kalb K (2008) Additional new lichen taxa (lichenized Ascomycota) from Australia. Australas Lichenol 63:30–36

    Google Scholar 

  • Fryday AM (2008) Three new species of lichenized fungi with cephalodia from the southern New Zealand shelf islands (Campbell Plateau). Lichenologist 40:283–294

    Google Scholar 

  • Fryday AM (2011) New species and combinations in Calvitimela and Tephromela from the southern subpolar region. Lichenologist 43:225–239

    Article  Google Scholar 

  • Fryday AM, Coppins BJ (2007) A second species of Lithographa with submuriform ascospores. Lichenologist 39:245–250

    Article  Google Scholar 

  • Galloway DJ (2005) Placopsis fusciduloides (Ascomycota: Agyriaceae), a new lichen from Aoteraroa New Zealand, British Columbia and Bolivia. Australas Lichenol 57:16–20

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes. Application for the identification of mycorrhizae and rust. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gaya E, Redelings BD, Naverro-Rosines P, Llimona X, De Caceres M, Lutzoni F (2011) Align or not align? Resolving species complexes within the Caloplaca saxicola group as a case study. Mycologia 103:361–378

    Article  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grube M, Kroken S (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycol Res 104:1284–1294

    Article  CAS  Google Scholar 

  • Grube M, Lindblom L, Mayrhofer H (2001) Contribution to the lichen flora of Crete: a compilation of references and some new records. Stud Geobot 20:41–59

    Google Scholar 

  • Hafellner J (1992) A new checklist of lichenized and lichenicolous fungi of the Madeira Archipelago. Institut für Botanik der Karl-Franzens-Universität, Graz, p 29

    Google Scholar 

  • Hale ME (1961) Lichen handbook. Smithsonian Institution, Washington, D.C., p 178

    Google Scholar 

  • Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Holland BR, Huber KT, Moulton V, Lockhart PJ (2004) Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 21:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evol Int J Org Evol 56:1557–1565

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  Google Scholar 

  • Huneck S, Porzel A, Lumbsch HT (1996) Zur Chemie von Hypotrachyna rachista und Tephromela atra var. cypria. Herzogia 12:39–43

    Google Scholar 

  • Huson DH, Bryant D (2006) Estimating phylogenetic trees and networks using SplitsTree 4, software available from http://ab.informatik.uni-tuebingen.de/software

  • Kalb K (1991) Lichenes Neotropici ausgegeben von Klaus Kalb. Fascikel XII (No. 476–525), Neumarkt/OPf.. pp 16

  • Kalb K (2008) New or otherwise interesting lichens. IV. Neue oder anderweitig interessante Flechten. IV. Sauteria 15:239–248

    Google Scholar 

  • Kalb K, Hafellner J (1992) Bemerkenswerte Flechten und lichenicole Pilze von der Insel Madeira. Herzogia 9:45–102

    Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Leavitt SD, Johnson LA, Goward T, St Clair LL (2011a) Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in Nord America. Mol Phylogenet Evol 98:175–188

    Google Scholar 

  • Leavitt SD, Frankhauser JD, Leavitt DH, Porter LD, Johnson LA, St Clair LL (2011b) Complex pattern of speciation in cosmopolitan “rock posy” lichens—discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 59:587–602

    Article  PubMed  Google Scholar 

  • Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT (2012) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evol Biol 12:176–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Leavitt SD, Esslinger TL, Spribile T, Divakar PK, Lumbsch HT (2013a) Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): insights on the diversity, distribution and a comparison of species tree and concatenated topology. Mol Phylogenet Evol 66:138–152

    Article  PubMed  Google Scholar 

  • Leavitt SD, Fernández-Mendoza F, Pérez-Ortega S, Sohrabi M, Divakar PK, Vondrák J, Lumbsch HT, St. Clair LL (2013b) Local representation of global diversity in a cosmopolitan lichen-forming fungal species complex (Rhizoplaca, Ascomycota). J Biogeogr. doi:10.1111/jbi.1211

    Google Scholar 

  • Li Y, Jiao L, Yao YJ (2013) Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Mol Phylogenet Evol 68:373–379

    Article  PubMed  Google Scholar 

  • Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740

    Article  PubMed  Google Scholar 

  • Litterski B, Mayrhofer H (1998) Catalogue of lichenized and lichenicolous fungi of Cyprus. Stud Geobot 16:57–70

    Google Scholar 

  • Lumbsch HT, Leavitt SD (2011) Goodby morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72

    Article  Google Scholar 

  • McBreen K, Lockhart PJ (2006) Reconstructing evolutionary histories on plants. Trends Plant Sci 11:388–404

    Article  Google Scholar 

  • Miadłikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R et al (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    Article  PubMed  Google Scholar 

  • Molina MC, Del-Prado R, Divakar PK, Sánchez-Meta D, Crespo A (2010) Another example of cryptic speciation in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Permeliaceae). Org Divers Evol 11:331–342

    Article  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160

    Article  Google Scholar 

  • Muggia L, Zellnig G, Rabensteiner J, Grube M (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51:149–160

    Article  Google Scholar 

  • Nimis PL, Martellos S (2003) A second checklist of the Lichens of Italy with a Thesaurus of Synonyms. Monografie del Museo Regionale di Scienze Naturali, 4th edn. Museo Regionale di Scienze Naturali Saint-Pierre, Valle d’Aosta, Aosta

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. - British Lichen Society. 101 pp

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pérez-Vargas I, Hernández-Padrón C, Pérez de Paz PL, Elix JA (2010) Tephromela follmannii (lichenized Ascomycota), a new species from the Canary Islands. Mycotaxon 112:9–14

    Article  Google Scholar 

  • Poelt J, Grube M (1993) Beitrage zur Kenntnis der Flechtenflora des Himalaya VI- die Gattung Tephromela (mit Bemerkungen zum Genus Heppsora). Nova Hedwig 57:1–17

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest—testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond A (2007) Tracer. Available from: http://beast.bio.ed.ac.uk/Tracer

  • Rambold G (1989) A Monograph of the Saxicolous Lecideoid Lichens of Australia (Excl. Tasmania). Bibliotheca Lichenologica, No. 34. J. Cramer, Berlin-Stuttgart. 345 pp

  • Ronquist F, Huelsenbeck JP, Van der Mark P (2005) MrBayes 3.1 Manual. http://mrbayes.csit.fsu.edu/mb3.1_manual.pdf

  • Santesson R (1993) The lichens and lichenicolous fungi of Sweden and Norway. Lund, Sweden

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  • Spribille T, Muggia L (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota). Fungal Divers 58:171–184

    Article  Google Scholar 

  • Spribille T, Pérez-Ortega S, Tønsberg T, Schirokauer D (2010) Lichens and lichenicolous fungi of the Klondike Gold Rush National Historic Park, Alaska, in a global biodiversity context. Bryologist 113:439–515

    Article  Google Scholar 

  • Spribille T, Goffinet B, Klug B, Muggia L, Obermayer W, Mayrhofer H (2011) Molecular support for the recognition of the Mycoblastus fucatus group as the new genus Violella (Tephromelataceae, Lecanorales). Lichenologist 43:445–466

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-iii: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    Article  CAS  PubMed  Google Scholar 

  • Stukenbrock EH (2013) Evolution, selection and isolatiom: a genomic view of speciation in fungal plant pathogens. New Phytol. doi:10.1111/nph.12374

    PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Truong C, Divakar PK, Yahr R, Crespo A, Clerc P (2013) Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus Usnea (Parmeliaceae, Ascomycota). Mol Phylogenet Evol 68:357–372

    Article  CAS  PubMed  Google Scholar 

  • Wedin M, Jørgensen PM, Ekman S (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes). Lichenologist 43:67–72

    Article  Google Scholar 

  • White TJ, Burns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenies. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wirth V (2007) Tephromela nashii Kalb in Afrika. In: Frisch A, Lange U, Staiger B (eds) Lichenologische Nebenstunden. Contributions to Lichen Taxonomy and Ecology in Honour of Klaus Kalb. Bibliotheca Lichenologica 96, Cramer, Berlin-Stuttgart, pp. 311–313

  • Xia X (2013) DAMBE 5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M Vandamme AM (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny, 2nd edn. Cambridge University Press, pp 615–630

Download references

Acknowledgments

LM, MG and TS are grateful to the Austrian Science Foundation for financial support (LM for FWF Herta-Firnberg Project T481-B20; TS for FWF P25237). SPO is supported by the grant CTM2012-38222-C02-02 from the Spanish Ministry of Economy and Competitiveness. We thank colleague and friends for shipping specimens from their regions: Paul Kirika (Africa), Curtis Bjork and Bruce McCune (North America); Maria Ines Messuti (South America); Rebecca Yahr, Ave Suija, Mats Wedin, Jan Vondrak, Jaroslav Šoun, Philip Resl, Sergio Favero-Longo, Filipp Högnabba, Richard Tafner, Helmut Mayrhofer (Europe); Lidia Yakovchenko (Asian Russia); Yoshihito Ohmura (Japan); Jack Elix (Australia) and Gintaras Kantvilas (Tasmania). LM thanks Josef Hafellner for constructive discussions and joint field work and Theodora Kopun for the help in the lab work. This research received support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the FP7 “Capacities” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Muggia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Saturation plots showing accumulation of transcription (s) and transversion (v) over Felsenstein 84 distance in protein coding sequences calculated with DAMBE (Xia 2013): A, B) beta-tubulin including the whole sequence (A) and the third codon position only (B); C, D) mcm7 including the whole sequences (C) and the third codon position only (D). In beta-tubulin (B) a transition plateau is reached at an F84 distance of about 0.18 indicating that saturation has been reached at that position; a continuous near-linear divergence of transitions and transversions is visible in the mcm7 third codon. Substitution saturation indexes report little saturation for both loci, being Iss<Issc both for symmetrical and asymmetrical trees. (JPEG 43 kb)

High resolution image (TIFF 646 kb)

Table S1

Tephromela species analysed in this study and used in molecular analyses. The samples are reported according the lineages identified in the phylogenetic hypothesis of Fig. 3. Species name, DNA extraction numbers, geographic origin, voucher ID, herbarium references and substrate of growth are reported. NCBI accessions for the sequenced loci beta-tub, ITS and mcm7 are reported. Dashes indicate lack of sequence data; samples represented by a single locus in the molecular analyses are marked by an asterisk. (DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muggia, L., Pérez-Ortega, S., Fryday, A. et al. Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra . Fungal Diversity 64, 233–251 (2014). https://doi.org/10.1007/s13225-013-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0271-4

Keywords

Navigation