Skip to main content
Log in

Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Inaccurate taxonomic placement of fossils can lead to the accumulation of errors in molecular clock studies and their generated evolutionary lineages. There are limited fossil data that can be used in divergence time estimations. Therefore, reliable morphological characterization and taxonomical identification of fossil fungi are extremely important. Most fossils of Dothideomycetes and Sordariomycetes are from the early Cenozoic (66–23 Mya), with fewer from the late Mesozoic (174–145 Mya). However, it is hard to distinguish some fossil descriptions as photographs and illustrations are unclear; thus, the validity of using these fossils in calibrations of molecular clocks is problematic. This study brings scattered paleobiological data on selected fossil Ascomycota, using descriptions, fossil images and illustrations, coupled with recent age estimations, and taxonomic and phylogenetic affinity of extant species. As an integrated approach, this study summarizes a historical fossil outline with a reliable minimum age for 16 calibrating points viz. crown of Aigialus, Anzia, Aspergillus, Asterina, Calicium chlorosporumC. nobile, Capnodiales, Chaenotheca, Colletotrichum, Diaporthales, Meliola, Ophiocordyceps, Microthyriales, Microthyrium, Muyocopron, Pezizomycotina and Stigmatomyces. A scheme of Ascomycota ancient lineages is also provided in order to improve divergence time estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Aguileta G, Giraud T (2012) Codon models applied to the study of fungal genomes. In: Cannarozzi G, Schneider A (eds) Codon evolution—mechanisms and models. Oxford University Press, New York, pp 164–186

    Chapter  Google Scholar 

  • Allen P, Alvin KL, Andrews JE, Batten DJ, Charlton WA, Cleevely RJ, Ensom PC, Evans SE, Francis JE, Hailwood EA, Harding IC (1998) Purbeck-Wealden (early Cretaceous) climates. Proc Geol Assoc 109:197–236

    Article  Google Scholar 

  • Alvin KL, Muir MD (1970) An epiphyllous fungus from the lower Cretaceous. Biol J Linn Soc 2:55–59

    Article  Google Scholar 

  • Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE 6:e28161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoine PO, De Franceschi D, Flynn JJ, Nel A, Baby P, Benammi M, Calderón Y, Espurt N, Goswami A, Salas-Gismondi R (2006) Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proc Natl Acad Sci USA 103:13595–13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud G (1918) Les Astérinées. Ann Écol Nat Agric Montpellier 16:127

    Google Scholar 

  • Arup U, Ekman S, Grube M, Mattsson JE, Wedin M (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99:42–49

    Article  CAS  PubMed  Google Scholar 

  • Axsmith BJ, Taylor TN, Taylor EL (1998) Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. Am J Bot 85:704–713

    Article  CAS  PubMed  Google Scholar 

  • Barr ME (1987) New taxa and combinations in the Louculoascomycetes. Mycotaxon 29:501–505

    Google Scholar 

  • Barr ME, Ohr HD, Murphy MK (1989) The genus Serenomyces on palms. Mycologia 81(1):47–51

    Article  Google Scholar 

  • Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dorfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398

    Article  PubMed  Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry EW (1916) Remarkable fossil fungi. Mycologia 8:73–79

    Article  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3. 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Blair JE (2009) Fungi. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, New York, pp 215–219

    Google Scholar 

  • Blumenstengel H (2004) Zur Palynologie und Stratigraphie der Bitterfelder Bernsteinvorkommen (Tertiär). Exkursionsführer und Veröffentlichung der Deutschen Gesellschaft für Geowissenschaften 224:17

    Google Scholar 

  • Blumenstengel H, Volland L, Krutzsch W (1999) Zur Stratigraphie und Fazies des Tertiärs im Bitterfelder Raum—Referenzprofile tertiärer Ablagerungen in den Tagebauen Goitsche. Golpa-Nord und Göbern, Geologisches Landesamt Sachsen-Anhalt, Halle

    Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    Article  CAS  PubMed  Google Scholar 

  • Bromham L, Phillips MJ, Penny D (1999) Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends Ecol Evolut 14:113–118

    Article  CAS  Google Scholar 

  • Bronson AW, Klymiuk AA, Stockey RA, Tomescu AMF (2013) A perithecial sordariomycete (Ascomycota, Diaporthales) from the Lower Cretaceous of Vancouver Island, British Columbia, Canada. Int J Plant Sci 174:278–292

    Article  Google Scholar 

  • Buczkowski EL, Stockey RA, Atkinson BA, Rothwell GW (2016) Cunninghamia beardii sp. nov. (Cupressaceae: Cunninghamioideae), anatomically preserved pollen cones from the Eocene of Vancouver island, British Columbia. Canada. Int J Plant Sci 177:103–114

    Article  Google Scholar 

  • Cai L, Udayanga D, Manamgoda DS, Maharachchikumbura SSN, McKenzie EHC, Guo LD, Liu XZ, Bahkali A, Hyde KD (2011) The need to carry out re-inventory of plant pathogenic fungi. Trop Plant Pathol 36:205–213

    Article  Google Scholar 

  • Carr M, Baldauf SL (2011) The protistan origins of animals and fungi. In: Karl E (ed) The Mycota. Springer, Heidelberg Dordrecht London, New York

    Google Scholar 

  • Chandra A, Kumar M (1998) Palynology of the Late Tertiary sediments (DSDP Site 218) in the Bengal Fan, Indian Ocean. Palaeobotanist 46:51–69

    Google Scholar 

  • Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA, Salamov AA, Grigoriev IV, Spatafora JW, Berbee ML (2015) Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7:1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SC, Koyama T, Liang SY (2000) Smilax L. and Heterosmilax Kunth. In: Wu ZY, Raven PH (eds) Flora of China, vol 24. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis, pp 96–117

    Google Scholar 

  • Chirouze F, Dupont-Nivet G, Huyghe P, van der Beek P, Chakraborti T, Bernet M, Erens V (2012) Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh. India. J. Asian Earth Sci 44:117–135

    Article  Google Scholar 

  • Clarke JT, Warnock RC, Donoghue PC (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    Article  PubMed  Google Scholar 

  • Clements FE, Shear CL (1931) Genera of Fungi, 2nd edn, i–vii, 58 plates. H.W. Wilson Company, New York, p 496

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) The ICS International Chronostratigraphic Chart (updated 2018/08). Episodes 36:199–204

    Google Scholar 

  • Condamine FL, Nagalingum NS, Marshall CR, Morlon H (2015) Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 15:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Cookson IC (1947) Fossil fungi from Tertiary deposits in the Southern Hemisphere. Part I. Proc Linn Soc N S W 72:207–214

    Google Scholar 

  • Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshank RD, Ko K (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. J Asian Earth Sci 21:441–455

    Article  Google Scholar 

  • Currah RS, Stockey RA, LePage BA (1998) An Eocene tar spot on a fossil palm and its fungal hyperparasite. Mycologia 90:667–673

    Article  Google Scholar 

  • Daghlian CP (1978) A new melioloid fungus from the Early Eocene of Texas. Palaeontology 21:171–176

    Google Scholar 

  • Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, McKenzie EH, Jayasiri SC, Tibpromma S, Bhat JD, Liu XZ (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165

    Article  Google Scholar 

  • Dayarathne MC, Maharachchikumbura SSN, Jones EBG, Goonasekara ID, Bulgakov TS, Al-Sadi AM, Hyde KD, Lumyong S, McKenzie EHC (2017) Neophyllachora gen nov. (Phyllachorales), three new species of Phyllachora from Poaceae and resurrection of Polystigmataceae (Xylariales). Mycosphere 8:1598–1625

    Article  Google Scholar 

  • Dilcher DL (1965) Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica 116B:1–54

    Google Scholar 

  • Dillhoff RM, Dillhoff TA, Greenwood DR, DeVore ML, Pigg KB (2013) The Eocene Thomas Ranch flora, Allenby Formation, Princeton, British Columbia, Canada. Botany 91:514–529

    Article  Google Scholar 

  • Ding ST, Sun BN, Wu JY, Li XC (2011) Miocene Smilax leaves and associated epiphyllous fungi from Zhejiang, East China and their paleoecological implications. Rev Palaeobot Palyno 165:209–223

    Article  Google Scholar 

  • Divakar PK, Crespo A, Kraichak E, Leavitt SD, Singh G, Schmitt I, Lumbsch HT (2017) Using a temporal phylogenetic method to harmonize family-and genus-level classification in the largest clade of lichen-forming fungi. Fungal Divers 84:101–117

    Article  Google Scholar 

  • Doidge EM (1942) South African Microthyriaceae. Bothalia 4:273–344

    Google Scholar 

  • Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109:956–960

    Article  PubMed  Google Scholar 

  • Dörfelt H, Schmidt AR, Wunderlich J (2000) Rosaria succina spec. nov.–a fossil cyanobacterium from Tertiary amber. J Basic Microbiol 40:327–332

    Article  PubMed  Google Scholar 

  • Doubinger J, Pons D (1975) Les champignons épiphylles de la formation Guaduas (Maestrichtien, bassin de Boyecá, Colombie); 95e Congrès national des Société savantes, Reims, 1970. Sciences 3:145–162

    Google Scholar 

  • Du BX, Yan DF, Sun BN, Li XC, Dao KQ, Li XQ (2012) Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, S.E. China and their palaeoecological implications. Rev Palaeobot Palyno 182:32–43

    Article  Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142

    Article  PubMed  Google Scholar 

  • Edwards WN (1922) An Eocene microthyriaceous fungus from Mull. Scotland. Trans Br mycol Soc 8:66

    Article  Google Scholar 

  • Ekanayaka AH, Ariyawansa HA, Hyde KD, Jones EBG, Daranagama DA, Phillips AJL, Hongsanan S, Jayasiri SC, Zhao Q (2017) Discomycetes: the apothecial representatives of the phylum Ascomycota. Fungal Divers 87:237–298

    Article  Google Scholar 

  • Eriksson OE, Hawksworth DL (1993) Notes on ascomycete systematics – Nos 1418–1529. Systema Ascomycetum 11:163–194

    Google Scholar 

  • Eriksson OE, Winka K (1997) Supraordinal taxa of Ascomycota. Myconet 1:1–16

    Google Scholar 

  • Fanton JCM, Ricardi-Branco F, Silva AM (2012) Terminalia palaeopubescens sp. nov. (Combretaceae) Da Formação Fonseca (Eoceno/Oligoceno) De Minas Gerais, Brasil: Morfologia Foliar, fungos epifilicos associados e Paleoclima. Ameghiniana 49:273–288

    Article  Google Scholar 

  • Félix Z (1894) Deutsche Geol. Gesell 46:276

    Google Scholar 

  • Ferencova Z, Cubas P, Divakar PK, Molina MC, Crespo A (2014) Notoparmelia, a new genus of Parmeliaceae (Ascomycota) based on overlooked reproductive anatomical features, phylogeny and distribution pattern. The Lichenologist 46:51–67

    Article  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal gemones. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Gaigalas A, Halas S (2009) Stable isotopes (H, C, S) and the origin of Baltic amber. Geochronometria 33:33–36

    Article  Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL (2008) Selection of fossils for calibration of molecular dating models 1. Ann Mo Bot Gard 95:34–42

    Article  Google Scholar 

  • Garnica S, Riess K, Schön ME, Oberwinkler F, Setaro SD (2016) Divergence times and phylogenetic patterns of Sebacinales, a highly diverse and widespread fungal lineage. PLoS ONE 11:e0149531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaya E, Fernández-Brime S, Vargas R, Lachlan RF, Gueidan C, Ramírez-Mejía M, Lutzoni F (2015) The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift. Proc Natl Acad Sci USA 112:11600–11605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser DM, LoBuglio KF, Gueidan C (2015) 5 Pezizomycotina: Eurotiomycetes. In Systematics and evolution. Springer, Berlin, pp 121–141

  • Girard V, Schmidt AR, Struwe S, Perrichot V, Breton G, Néraudeau D (2009) Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas 31:153–162

    Article  Google Scholar 

  • Goldmann L, Weir A (2018) Molecular phylogeny of the Laboulbeniomycetes (Ascomycota). Fungal Biol 122:87–100

    Article  CAS  PubMed  Google Scholar 

  • Guatimosim E, Firmino AL, Bezerra JL, Pereira OL, Barreto RW, Crous PW (2015) Towards a phylogenetic reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes). Persoonia 35:230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, Ruibal C, De Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and Middle Triassic. Fungal Biol 115:987–996

    Article  PubMed  Google Scholar 

  • Guterres DC, Galvão-Elias S, de Souza BCP, Pinho DB, dos Santos MDDM, Miller RNG, Dianese JC (2018) Taxonomy, phylogeny, and divergence time estimation for Apiosphaeria guaranitica, a Neotropical parasite on bignoniaceous hosts. Mycologia 110:526–545

    Article  PubMed  Google Scholar 

  • Hansford CG (1961) The Meliolaceae a monograph. Sydowia Beih 2:1–806

    Google Scholar 

  • Hernández EM, Ortiz ACT (1989) Esporas, hifas y otros restos de hongos fósiles de la cuenca carbonífera de Fuentes-Río Escondido (Campaniano-Maastrichtiano), Estado de Coahuila. Revista mexicana de ciencias geológicas 8:235–242

    Google Scholar 

  • Hibbett DS, Blackwell M, James TY, Spatafora JW, Taylor JW, Vilgalys R (2018) Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus 9:291–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho SY, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380

    Article  PubMed  Google Scholar 

  • Hofmann TA (2010) Plant parasitic Asterinaceae and Microthyriaceae from the Neotropics (Panama). PhD Thesis, Faculty of Biological Sciences, Johann Wolfgang Goethe-University, Germany

  • Hofmann TA, Piepenbring M (2006) New records and host plants of fly-speck fungi from Panama. Fungal Divers 22:55–70

    Google Scholar 

  • Hofmann TA, Piepenbring M (2008) New species and records of Asterina from Panama. Mycol Prog 7:87–98

    Article  Google Scholar 

  • Hofmann TA, Piepenbring M (2011) Biodiversity of Asterina species on Neotropical host plants: new species and records from Panama. Mycologia 103:1284–1301

    Article  CAS  PubMed  Google Scholar 

  • Hongsanan S, Hyde KD (2017) Phylogenetic placement of Micropeltidaceae. Mycosphere 8:1930–1942

    Google Scholar 

  • Hongsanan S, Bahkali AH, McKenzie EHC, Chukeatirote E, Hyde KD (2014a) Trichopeltinaceae (Dothideomycetes), an earlier name for Brefeldiellaceae, with a new species of Trichopeltina. Phytotaxa 176:270–282

    Article  Google Scholar 

  • Hongsanan S, Li YM, Liu JK, Hofmann T, Piepenbring M, Bhat JD, Boonmee S, Doilom M, Singtripop C, Tian Q, Mapook A (2014b) Revision of genera in Asterinales. Fungal Divers 68:1–68

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Peršoh D, Zeng XY, Hyde KD, Chomnunti P, Boonmee S, Bahkali AH, Wen TC (2015) Meliolales. Fungal Divers 74:91–141

    Article  Google Scholar 

  • Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA, Zhao RL, Hyde KD (2016) The evolution of fungal epiphytes. Mycosphere 7:1690–1712

    Article  Google Scholar 

  • Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH (2017a) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Article  Google Scholar 

  • Hongsanan S, Zhao RL, Hyde KD (2017b) A new species of Chaetothyrinan on branches of mango, and introducing Phanothecoidiellaceae fam. nov. Mycosphere 8:137–146

    Article  Google Scholar 

  • Hosagoudar VB (2010) Anamorphs of Asterinales. J Theor Exp Biol 6:199–211

    Google Scholar 

  • Hosagoudar VB (2012) Asterinales of India. Mycosphere 2:617–852

    Article  Google Scholar 

  • Hosagoudar VB, Abraham TK (2000) A list of Asterina Lév species based on the literature. J Econ Tax Bot 24:557–587

    Google Scholar 

  • Hosagoudar VB, Abraham TK, Crane GL (1998) Two new asterinaceous fungi from Kerala, India. Mycotaxon 68:19–22

    Google Scholar 

  • Hosagoudar VB, Robin PJ, Shivaraju B (2010) Foliicolous fungi from the Achankovil forests in Kollam District of Kerala State, India. J Threat Taxa 2:760–761

    Article  Google Scholar 

  • Hsieh HM, Lin CR, Fang MJ, Rogers JD, Fournier J, Lechat C, Ju YM (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54:957–969

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Soytong K (2007) Understanding microfungal diversity-a critique. Cryptogamie Mycolo 28:1–9

    Google Scholar 

  • Hyde KD, Cannon PF, Barr ME (1997) Phaeochoraceae, a new ascomycete family from palms. Syst Ascomycetum 15:117–120

    Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, McKenzie EHC, Photita W, Lumyong S (2007) Biodiversity of saprobic fungi. Biodivers Conserv 16:17–35

    Google Scholar 

  • Hyde KD, Jones EBG, Liu JK, Ariyawansha H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous P, Dai DQ, DiederichP Dissanayake A, Doilom M, DoveriF Hongsanan S, JayawardenaR Lawrey JD, Li YM, Liu YX, Lücking R, Monkai J, Nelsen MP, Phookamsak R, Muggia L, Pang KL, Senanayake I, Shearer CA, WijayawardeneN WuHX, Thambugala M, Suetrong S, Tanaka K, Wikee S, Zhang Y, Hudson BA, Alias SA, Aptroot A, Bahkali AH, Bezerra LJ, Bhat JD, Camporesi E, Chukeatirote E, Hoog SD, Gueidan C, Hawksworth DL, Hirayama K, Kang JC, Knudsen K, Li WJ, Liu ZY, McKenzie EHC, Miller AN, Nadeeshan D, Phillip AJL, Mapook A, Raja HA, Tian Q, Zhang M, Scheuer C, Schumm F, Taylor J, Yacharoen S, Tibpromma S, Wang Y, Yan J, Li X (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, de Santiago ALCMA, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu HX, Yang J, Zeng XY, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar AM, Araujo-Neta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev S, Buyck B, da Silva GA, de Lima CLF, de Oliveira RJV, de Souza CAF, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liimatainen K, Liu ZY, Liu XZ, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Stadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen TC, Xu JC, Zhang ZK, Zhao YC, Zhou JZ, Zhu L (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270

    Article  Google Scholar 

  • Hyde KD, Maharachchikumbura SS, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, Liu JK (2017) The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23

    Article  Google Scholar 

  • Index Fungorum (2019) http://www.indexfungorum.org/Names/Names.asp. Accessed 02 Apr 2019

  • Iturralde-Vinent MA (2001) Geology of the amber-bearing deposits of the Greater Antilles. Carib J Sci 3:141–167

    Google Scholar 

  • Iturralde-Vinent MA, Mac Phee RDE (1996) Age and paleogeographical origin of Dominican amber. Science 273:1850–1852

    Article  CAS  Google Scholar 

  • Jain KP, Gupta RC (1970) Some fungal remains from the Tertiaries of Kerala Coast. Palaeobotanist 18:177–182

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • Jarzembowski EA, Azar D, Nel AN (2008) A new chironomid (Insecta: Diptera) from Wealden amber (Lower Cretaceous) of the Isle of Wight (UK). Geologica Acta: Int J Earth Sci 6:285–291

    Google Scholar 

  • Jayalal U, Wolseley P, Gueidan C, Aptroot A, Wijesundara S, Karunaratne V (2012) Anzia mahaeliyensis and Anzia flavotenuis, two new lichen species from Sri Lanka. The Lichenologist 44:381–389

    Article  Google Scholar 

  • Jha N, Aggarwal N (2011) First find of Trichothyrites, Notothyrites and Frasnacritetrus from Permian Gondwana sediments of Godavari Graben, India. Phytomorphology 61:61–67

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kalgutkar RM (1985) Fossil fungal fructifications from Bonnet Plume Formation, Yukon Territory. Curt Res B Geol Sure Can Pap 85-1B:259–268

  • Kalgutkar RM (1997) Fossil fungi from the lower Tertiary Iceberg Bay Formation, Eukeka Sound Group, Axel Heiberg Island, Northwest Territories. Canada. Rev. Palaeobot. Palynol 97:197–226

    Article  Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. American Association of Stratigraphic Palynologists Foundation, Dallas, p 429

    Google Scholar 

  • Kar RK, Saxena RK (1976) Algal and fungal microfossils from Matanomadh Formation (Paleocene) Kutch, India. Palaeobotanist 23:1–15

    Google Scholar 

  • Kar RK, Singh RY, Sah SCD (1970) On some algal and fungal remains from Tura Formation of Garo Hills, Assam. Palaeobotanist 19:146–154

    Google Scholar 

  • Kar RK, Sharma N, Verma UK (2004) Plant pathogen Protocolletotrichum from a Deccan intertrappean bed (Maastrichtian), India. Cretac Res 25:945–950

    Article  Google Scholar 

  • Kar R, Mandaokar BD, Kar RK (2010) Fungal taxa from the Miocene sediments of Mizoram, northeast India. Rev Palaeobot Palynol 158:240–249

    Article  Google Scholar 

  • Kemen AC, Agler MT, Kemen E (2015) Host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism. New Phytol 206:1207–1228

    Article  CAS  PubMed  Google Scholar 

  • Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, New York

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby’s Dictionary of the fungi, 9th edn. CAB international, Wallingford, UK

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, UK

    Book  Google Scholar 

  • Knuth G, Koch T, Rappsilber I, Volland L (2002) Concerning amber in the Bitterfeld region-geologic and genetic aspects. Hallesches Jahrbuch für Geowissenschaften 24:35–46

    Google Scholar 

  • Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong SB, Frisvad JC, Samson RA (2016) Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 85:199–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Krassilov VA (1967) Early Cretaceous flora of the southern Primorsk and its significance for the stratigraphy (in Russian). Academy of Sciences of the USSR Siberian Branch, Far East Geological Institute, Moscow, p 264

    Google Scholar 

  • Kumar P (1990) Fungal remains from the Miocene Quilon Beds of Kerala State, South India. Rev Palaeobot Palynol 63:13–28

    Article  Google Scholar 

  • Lange RT (1969) Recent and fossil epiphyllous fungi of the Manginula-Shortensis Group. Aust J Bot 17:565–574

    Article  Google Scholar 

  • Lange RT (1978) Southern Australian Tertiary epiphyllous fungi, modern equivalents in the Australasian region, and habitat indicator value. Can J Bot 56:532–541

    Article  Google Scholar 

  • Lee MSY (1999) Molecular clock calibrations and metazoan divergence dates. J Mol Evol 49:385–391

    Article  CAS  PubMed  Google Scholar 

  • LePage BA, Currah RS, Stockey RA (1994) The fossil fungi of the Princeton chert. Int J Plant Sci 155:828–836

    Article  Google Scholar 

  • Léveillé JH (1845) Champignons exotiques. Ann Sci Nat Bot 3:58

    Google Scholar 

  • Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Li QR, Liu LL, Zhang X, Shen XC, Kang JC (2017) Xylaria spinulosa sp. nov. and X. atrosphaerica from southern China. Mycosphere 8:1070–1079

    Article  Google Scholar 

  • Liu JK, Hyde KD, Jeewon R, Phillips AJ, Maharachchikumbura SS, Ryberg M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Article  Google Scholar 

  • Liu NG, Lin CG, Liu JK, Samarakoon MC, Hongsanan S, Bhat DJ, Hyde KD, McKenzie EH, Jumpathong J (2018) Lentimurisporaceae, a new Pleosporalean family with divergence times estimates. Cryptogamie Mycol 39:259–282

    Article  CAS  Google Scholar 

  • Lücking R, Nelsen MP (2018) Ediacarans, protolichens, and lichen-derived Penicillium: a critical reassessment of the evolution of lichenization in fungi. Academic Press, In Transformative Paleobotany, pp 551–590

    Google Scholar 

  • Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT (2009) Fungi evolved right on track. Mycologia 101:810–822

    Article  PubMed  Google Scholar 

  • Lücking R, Dal Forno M, Moncada B, Coca LF, Vargas-Mendoza LY, Aptroot A, Arias LJ, Besal B, Bungartz F, Cabrera-Amaya DM, Cáceres ME (2017) Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Divers 84:139–207

    Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Outline of Ascomycota 2009. Myconet 14:1–64

    Google Scholar 

  • Luttrell ES (1973) Loculoascomycetes. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi. Academic Press, New York and London, An advanced treatise, pp 135–219

    Google Scholar 

  • Ma FJ, Sun BN, Wang QJ, Dong JL, Yang GL, Yang Y (2015) A new species of Meliolinites associated with Buxus leaves from the Oligocene of Guangxi, southern China. Mycologia 107:505–511

    Article  PubMed  Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453

    Article  PubMed  Google Scholar 

  • Maharachchikumbura SS, Hyde KD, Jones EBG, McKenzie EHC, Huang SK, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu JK, Liu ZY, Norphanphoun C, Pang KL, Perera RH, Senanayake IC, Shang Q, Shenoy BD, Xiao YP, Bahkali AH, Kang JC, Somrothipol S, Suetrong S, Wen TC, Xu JC (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301

    Article  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat DJ, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao YP, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang JC, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen TC, Wijayawardene NN (2016) Families of Sordariomycetes. Fungal Divers 79:1–317

    Article  Google Scholar 

  • Mallesham C, Ramakrishna H, Ramanujam CGK (1989) Fungal assemblage from the subsurface Miocene sediments of East Coast of southern India. In: Patil GV et al (eds) Proceedings of the fifth all India symposium on palynology, Nagpur, 1979. Department of Botany, Institute of Science, Nagpur, pp 15–18

  • Mandal A, Samajpati N, Bera S (2011) A new species of Meliolinites (fossil Meliolales) from the Neogene sediments of sub-Himalayan West Bengal, India. Nova Hedwigia 92:435–440

    Article  Google Scholar 

  • Mapook A, Hyde KD, Dai DQ, Li J, Jones EG, Bahkali AH, Boonmee S (2016a) Muyocopronales, ord. nov. (Dothideomycetes, Ascomycota) and a reappraisal of Muyocopron species from northern Thailand. Phytotaxa 265:225–237

    Article  Google Scholar 

  • Mapook A, Hyde KD, Hongsanan S, Phukhamsakda C, Li JF, Boonmee S (2016b) Palawaniaceae fam. nov., a new family (Dothideomycetes, Ascomycota) to accommodate Palawania species and their evolutionary time estimates. Mycosphere 7:1732–1745

    Article  Google Scholar 

  • Mardones M, Trampe-Jaschik T, Oster S, Elliott M, Urbina H, Schmitt I, Piepenbring M (2017) Phylogeny of the order Phyllachorales (Ascomycota, Sordariomycetes): among and within order relationships based on five molecular loci. Persoonia 39:74–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CR (1990) The fossil record and estimating divergence times between lineages: maximum divergene times and the importance of reliable phylogenies. J Mol Evol 30:400–408

    Article  CAS  PubMed  Google Scholar 

  • Martínez A (1968) Fossil Microthyriales (fungi, Ascomycetes) from the lower Cretaceous of Santa Cruz Province, Argentina; Revista de la Associación Paleontológica Argentina. Ameghiniana 5:257–263

    Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MA, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Mindell RA, Stockey RA, Beard G, Currah RS (2007) Margaretbarromyces dictyosporus gen. sp. nov.: a permineralized corticolous ascomycete from the Eocene of Vancouver Island. British Columbia. Mycol Res 111:680–684

    Article  PubMed  Google Scholar 

  • Mindell RA, Stockey RA, Beard G (2014) Cascadiacarpa exilis sp. nov.: new fruits of Fagaceae from the Eocene of British Columbia. Botany 92:377–387

    Article  CAS  Google Scholar 

  • Mitra S, Bera S, Banerjee M (2000) Palynofloral assemblage from Siwalik Foredeep Neogene sediments of Darjeeling Foot Hills, Eastern Himalaya. Geophytology 28:121–127

    Google Scholar 

  • Moore RT (1958) Deuteromycetes I: the Sporidesmium complex. Mycologia 50:681–692

    Article  Google Scholar 

  • Moss PT, Greenwood DR, Archibald SB (2005) Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia Washington State) from palynology. Can J Earth Sci 42:187–204

    Article  Google Scholar 

  • Mukherjee D (2012) Facultative fungal remains from Miocene lignite coal of Neyveli Tamil Nadu, India. Int J Geol Agric Environ Sci 2:1–15

    Google Scholar 

  • Müller E, von Arx JA (1962) Die Gattungen der didymosporen Pyrenomyceten. Beitr KryptFl Schweiz 11:1–922

    Google Scholar 

  • Near TJ, Sanderson MJ (2004) Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil–based model selection. Philos Trans R Soc Lond B Biol Sci 359:1477–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Néraudeau D, Perrichot V, Dejax J, Masure E, Nel A, Philippe M, Moreau P, Guillocheau F, Guyot T (2002) Un nouveau gisement à amber insectifère et à végétaux (Albien terminal probable): Archingeay (Charente-Maritime, France). Geobios 35:233–240

    Article  Google Scholar 

  • Nicolaysen K, Frey FA, Hodges KV, Weis D, Giret A (2000) 40 Ar/39 Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for Cenozoic eruption rates of the Kerguelen plume. Earth Planet Sci Lett 174:313–328

    Article  CAS  Google Scholar 

  • Ortega-Blanco J, Delclòs X, Engel MS (2011) Diverse stigmaphronid wasps in Early Cretaceous amber from Spain (Hymenoptera: Ceraphronoidea: Stigmaphronidae). Cretac Res 32:762–773

    Article  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JS (2011) Best practices for justifying fossil calibrations. Syst Biol 61:346–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil RS, Ramanujam CGK (1988) Fungal flora of the carbonaceous clays from Tonakkal area, Kerala. Geol Surv India 11:261–270

    Google Scholar 

  • Peñalver E, Delclòs X (2010) Spanish amber. In: Penney D (ed) Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, pp 236–270

    Google Scholar 

  • Peñalver E, Delclòs X, Soriano C (2007) A new rich amber outcrop with palaeobiological inclusions in the Lower Cretaceous of Spain. Cretac Res 28:791–802

    Article  Google Scholar 

  • Pérez-Ortega S, Garrido-Benavent I, Grube M, Olmo R, de los Ríos A (2016) Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomycete). Fungal Divers 80:285–300

    Article  Google Scholar 

  • Perrichot V, Néraudeau D, Tafforeau P (2010) Charentese amber. In: Penney D (ed) Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, pp 192–207

    Google Scholar 

  • Persoh D, Melcher M, Graf K, Fournier J, Stadler M, Rambold G (2009) Molecular and morphological evidence for the delimitation of Xylaria hypoxylon. Mycologia 101:256–268

    Article  CAS  PubMed  Google Scholar 

  • Petrak F (1952) Serenomyces, n. gen. eine neue Gattung der Ceratostomaceen. Sydowia 6:296–298

    Google Scholar 

  • Phadtare NR (1989) Palaeoecologic significance of some fungi from the Miocene of Tanakpur (U. P.) India. Rev Palaeobot Palynology 59:127–131

    Article  Google Scholar 

  • Phipps CJ (2007) Entopeltacites remberi sp. nov. from the Miocene of Clarkia, Idaho. USA. Rev Palaeobot Palynology 145:193–200

    Article  Google Scholar 

  • Phipps CJ, Rember WC (2004) Epiphyllous fungi from the Miocene of Clarkia, Idaho: reproductive structures. Rev Palaeobot Palynology 129:67–79

    Article  Google Scholar 

  • Phukhamsakda C, Hongsanan S, Ryberg M, Ariyawansa HA, Chomnunti P, Bahkali AH, Hyde KD (2016) The evolution of Massarineae with Longipedicellataceae fam. nov. Mycosphere 7:1713–1731

    Article  Google Scholar 

  • Pigg KB, DeVore ML (2016) A review of the plants of the Princeton chert (Eocene, British Columbia, Canada). Botany 94:661–681

    Article  Google Scholar 

  • Pirozynski KA (1976) Fossil fungi. Annu Rev Phytopathol 14:237–246

    Article  Google Scholar 

  • Pitman JK, Rowan ER (2012) Temperature and petroleum generation history of the Wilcox Formation, Louisiana. No. 2012–1046. US Geological Survey, pp i–55

  • Poinar GO (2014) Xylaria antiqua sp. nov. (Ascomycota: Xylariaceae) In Dominican Amber. J Bot Res Inst Texas 8:145–149

    Google Scholar 

  • Poinar GO Jr, Poinar R (1999) The Amber Forest: a reconstruction of a vanished world. Princeton University Press, Princeton

    Google Scholar 

  • Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in New World amber. Lichenologist 32:263–269

    Article  Google Scholar 

  • Pons D, Boureau E (1977) Les champignons epiphylles d’un Frenelopsis du Cenomanien Moyen de L’Anjou (France). Revue de Mycologie, Paris 41:349–362

    Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:e65576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto M, Wedin M (2017) Phylogeny, taxonomy and diversification events in the Caliciaceae. Fungal Divers 82:221–238

    Article  Google Scholar 

  • Prieto M, Baloch E, Tehler A, Wedin M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29:296–308

    Article  PubMed  Google Scholar 

  • Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, Evans HC, Hughes D, Humber R, Hywel-Jones N, Li Z, Luangsa-ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung G-H, Yao Y-J, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5:121–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajeh A, Lv J, Lin Z (2018) Heterogeneous rates of genome rearrangement contributed to the disparity of species richness in Ascomycota. BMC genomics 19:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanujam CGK (1963) Thyriothecia of Asterineae from the South Arcot lignite, Madras. Curr Sci 32:327–328

    Google Scholar 

  • Ramanujam CGK, Rao KP (1973) On some microthyraceous fungi from a Tertiary lignite of south India. The Palaeobotanist 20:203–209

    Google Scholar 

  • Rao AR (1958) Fungal remains from some Tertiary deposits of India. Palaeobotanist 7(1):43–46

    Google Scholar 

  • Rao MR (2004) Palynological investigation of the Sindhudurg Formation (Miocene) exposed at Kalviwadi, Sindhudurg District, Maharashtra, India. Palaeobotanist 53:123–135

    Google Scholar 

  • Rao KP, Ramanujam CGK (1976) A further record of microthyriaceous fungi from the Neogene deposits of Kerala in South India. Geophytology 6:98–104

    Google Scholar 

  • Read PB (2000) Geology and industrial minerals of the Tertiary basins, south-central British Columbia. Ministry of Energy & Mines, Victoria

    Google Scholar 

  • Réblová M, Untereiner WA, Štěpánek V, Gams W (2017) Disentangling Phialophora section Catenulatae: disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycol Prog 16:27–46

    Article  Google Scholar 

  • Reddy PR, Ramanujam CGK, Srisailam K (1982) Fungal fructifications from Neyveli lignite, Tamil Nadu – their stratigraphic and palaeoclimatic significance. Records of the Geological Survey of India 114:112–122

    Google Scholar 

  • Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18:265–289

    Article  Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036

    Article  PubMed  Google Scholar 

  • Rikkinen J, Poinar G (2000) A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous Fungi. Mycol Res 104:7–15

    Article  Google Scholar 

  • Rikkinen J, Poinar G (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol Res 106:984–990

    Article  Google Scholar 

  • Rikkinen J, Poinar G (2008) A new species of Phyllopsora (Lecanorales, lichenforming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen J, Schmidt AR (2018) Morphological convergence in forest microfungi provides a proxy for paleogene forest structure. In Transformative paleobotany. Academic Press, Cambridge, pp 527–549

  • Rikkinen J, Dorfelt H, Schmidt AR, Wunderlich J (2003) Sooty moulds from European Tertiary amber, with notes on the systematic position of Rosaria (Cyanobacteria). Mycol Res 107:251–256

    Article  PubMed  Google Scholar 

  • Rikkinen J, Tuovila H, Beimforde C, Seyfullah L, Perrichot V, Schmidt AR (2014) Chaenothecopsis neocaledonica sp. nov.: the first resinicolous mycocalicioid fungus from an araucarian conifer. Phytotaxa 173:49–60

    Article  Google Scholar 

  • Rikkinen J, Meinke SKL, Grabenhorst H, Gröhn C, Kobbert M, Wunderlich J, Schmidt AR (2018) Calicioid lichens and fungi in amber—tracing extant lineages back to the Paleogene. Geobios. https://doi.org/10.1016/j.geobios.2018.08.009

    Article  Google Scholar 

  • Rosendahl CO (1943) Some fossil fungi from Minnesota. Bull Torrey Bot Club 70:126–138

    Article  Google Scholar 

  • Rossi W, Kotrba M, Triebel D (2005) A new species of Stigmatomyces from Baltic amber, the first fossil record of Laboulbeniomycetes. Mycol Res 109:271–274

    Article  PubMed  Google Scholar 

  • Rossi W, Santamaría S, Andrade R (2013) Notes on the Laboulbeniales (Ascomycota) parasitic on Diptera from Portugal and other countries. Plant Biosystems 147:730–742

    Article  Google Scholar 

  • Roumeguère C (1880) Fungi Gallici exsiccati, cent. X. Revue Mycologique Toulouse 2:200–202

    Google Scholar 

  • Ruggiero MA, Gordon DP, Orrll TM, Bailly N, Bourgoin T, Bruscas RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015) A higher level classification of all living organisms. PLoS ONE 10:e0119248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, Kraemer MS (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc Natl Acad Sci 107:18360–18365

    Article  PubMed  PubMed Central  Google Scholar 

  • Saccardo PA (1883) Sylloge Fungorum 2:1–815

    Google Scholar 

  • Sadowski EM, Beimforde C, Gube M, Rikkinen J, Singh H, Seyfullah LJ, Heinrichs J, Nascimbene PC, Reitner J, Schmidt AR (2012) The anamorphic genus Monotosporella (Ascomycota) from Eocene amber and from modern Agathis resin. Fungal Biol 116:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Samant B (2000) Palynostratigraphy and age of the Bhavnagar lignite, Gujarat, India. Palaeobotanist 49:101–118

    Google Scholar 

  • Samant B, Phadtre NR (1997) Stratigraphic palynoflora of the early Eocene Rajpardi lignite, Gujarat and the lower age limit of the Tarkeshwar Formation of South Cambay Basin, India. Palaeontographica B 245:1–108

    Google Scholar 

  • Samant B, Tapaswi PM (2000) Fungal remains from Surat Lignite deposits (Early Eocene) of Gujarat, India. Gondwana Geol Magz 15:25–30

    Google Scholar 

  • Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S, Ariyawansa HA, Maharachchikumbura SSN, Daranagama DA, Stadler M, Mapook A (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746–1761

    Article  Google Scholar 

  • Sarkar S, Prasad V (2000) Palaeoenvironmental significance of dinoflagellate cysts from the Subathu Formation (Late Ypresian-Middle Lutetian) of Koshalia Nala Section, Shimla Hills, India. Himal Geol 21:167–176

    Google Scholar 

  • Sarkar S, Bhattacharyya AP, Singh HP (1994) Palynology of Middle Siwalik sediments (Late Miocene) from Bagh Rao, Uttar Pradesh. Palaeobotanist 42:199–209

    Google Scholar 

  • Saxena RK (2006) A catalogue of Tertiary fungi from India. Diamond Jubilee Special Publication, Birbal Sahni Institute of Palaeobotany, Lucknow

    Google Scholar 

  • Saxena RK, Khare S (1992) Fungal remains from the Neyveli Formation of Tiruchirapalli District, Tamil Nadu, India. Geophytology 21:37–43

    Google Scholar 

  • Saxena RK, Misra NK (1990) Palynological investigation of the Ratnagiri Beds of Sindhu Durg District, Maharashtra. Palaeobotanist 38:263–276

    CAS  Google Scholar 

  • Saxena RK, Sarkar S (2000) Palynological investigation of the Siju Formation (Middle Eocene) in the type area, South Garo Hills, India. Palaeobotanist 49:253–267

    Google Scholar 

  • Saxena RK, Singh HP (1982) Palynological investigation of the Upper Siwalik sediments exposed along Hoshiarpur-Una Road Section in Punjab and Himac. Geophytology 12:287–306

    Google Scholar 

  • Saxena RK, Tripathi SKM (2011) Indian fossil fungi. Palaeobotanist 60:1–208

    Google Scholar 

  • Saxena RK, Sarkar S, Singh HP (1984) Palynological investigation of Siwalik sediments of Bhakra-Nangal area, Himachal Pradesh. Geophytology 14:178–198

    Google Scholar 

  • Schlee D (1990) Das Bernstein-Kabinett. Stutt Beitr Naturk ser C 28:1–100

    Google Scholar 

  • Schmidt AR, Dörfelt H (2007) Evidence of Cenozoic Matoniaceae from Baltic and Bitterfeld amber. Rev Palaeobot Palynol 144:145–156

    Article  Google Scholar 

  • Schmidt W, Schäfer FP (1967) Blitzlampengepumpte farbstofflaser. Zeitschrift für Naturforschung A 22:1563–1566

    CAS  Google Scholar 

  • Schmidt AR, Beimforde C, Seyfullah LJ, Wege SE, Dorfelt H, Girard V, Grabenhorst H, Gube M, Heinrichs J, Nel A, Nel P, Perrichot V, Reitner J, Rikkinen J (2014) Amber fossils of sooty moulds. Rev Palaeobot Palyno 200:53–64

    Article  Google Scholar 

  • Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS Biodiversity Series 9:1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht

  • Selkirk DR (1972) Fossil Manginula-like fungi and their classification. Proc Linn Soc N S W 97:141–149

    Google Scholar 

  • Selkirk DR (1975) Tertiary fossil fungi from Kiandra, New South Wales. Proc Linn Soc N S W 100:70–94

    Google Scholar 

  • Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SS, Jeewon R, Phillips AJ, Bhat JD, Perera RH, Li QR, Li WJ, Tangthirasunun N (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Stud Mycol 86:217–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN, Norphanphoun C, Karunarathna A, Pem D, Perera RH, Camporesi E, McKenzie EHC, Hyde KD, Karunarathna SC (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers 93(1):241–443

    Article  Google Scholar 

  • Sharma OP (2006) Text book of fungi. Tata McGraw-Hill publishing company limited, New Delhi, pp 204–205

    Google Scholar 

  • Sheffy MV, Dilcher DL (1971) Morphology and taxonomy of fungal spores. Palaeontogr Abt B 133:34–51

    Google Scholar 

  • Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycol Res 110:916–928

    Article  CAS  PubMed  Google Scholar 

  • Sheth HC, Pande K, Bhutani R (2001) 40Ar-39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism. Geophys Res Lett 28:3513–3516

    Article  CAS  Google Scholar 

  • Shi GL, Zhou ZY, Xie ZM (2010) A new Cephalotaxus and associated epiphyllous fungi from the Oligocene of Guangxi, South China. Rev Palaeobot Palyno 161:179–195

    Article  Google Scholar 

  • Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Res 37:155–163

    Article  Google Scholar 

  • Singh RS, Kar R (2003) Palynological assemblage from Deccan intertrappean Bed, Lalitpur, Uttar Pradesh, India. Gondwana Geol Mag 6:217–223

    Google Scholar 

  • Singh HP, Sarkar S, Singh HP (1994) Palynostratigraphy of the Kasauli Formation (Lower Miocene), Himachal Pradesh, India. Geophytology 24:49–54

    Google Scholar 

  • Smith PH (1980) Trichothyriaceous fungi from the Early Tertiary of southern England. Palaeontology 23:205–212

    Google Scholar 

  • Smith AB, Peterson KJ (2002) Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30:65–88

    Article  CAS  Google Scholar 

  • Song ZC, Zheng Y, Li M, Zhang Y, Wang W, Wang D, Zhao C, Zhou S, Zhu Z, Zhao Y (1999) Fossil spores and pollen of China. In: Late cretaceous and tertiary spores and pollen 1. Science Press, Beijing (in Chinese; English summary)

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotss R, Lutznoi F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Shultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Standke G (1998) Die Tertiärprofile der Samländischen Bernsteinküste bei Rauschen. Schriftenreihe für Geowissenschaften 7:93–133

    Google Scholar 

  • Standke G (2008) Bitterfelder Bernstein gleich Baltischer Bernstein? – Eine geologische Raum-Zeit-Betrachtung und genetische Schlußfolgerungen. Exkurs.f. und Veröfftl. DGG 236:11–33

    Google Scholar 

  • Stevens FL, Ryan MH (1939) The Microthyriaceae. Ill Biol Monogr XVII:2

    Google Scholar 

  • Stockey RA, Rothwell GW, Little SA (2006) Relationships among fossil and living Dipteridaceae: anatomically preserved Hausmannia from the Lower Cretaceous of Vancouver Island. Int J Plant Sci 167:649–663

    Article  Google Scholar 

  • Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bahkali AH, Bhat DJ, McKenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province. China. Fungal Divers 80:375–409

    Article  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung GH, Poinar GO, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol Phylogenet Evol 49:495–502

    Article  PubMed  Google Scholar 

  • Suryawanshi RA (2014) Palynological studies of tertiary sediments of west coast of India to decipher provenance and environment of deposition. Int J Emerg Trends Sci Technol 12:526–530

    Google Scholar 

  • Swinscow TDV, Krog H (1981) The genus Phyllopsora, with a report on East African species. Lichenologist 13:203–247

    Article  Google Scholar 

  • Sydow H (1927) Fungi in itinere costaricensi III. Annales Mycologici 25:1–160

    Google Scholar 

  • Sydow H (1938) Novae fungoum species – XXVI. Annales Mycologici 36:156–197

    Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399:648

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the 400 million years old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Palaeobotany. Elsevier publication, Amsterdam, The biology and evolution of fossil plants

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2014) Fossil fungi. Academic Press, New York

    Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) 10 Fungal Diversity in the Fossil Record. Systematics and Evolution. Springer, Berlin, Heidelberg, pp 259–278

    Chapter  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Theissen F (1913) Uber einige mikrothyriaceen. Ann Mycol 11:499

    Google Scholar 

  • Theissen F (1914) Trichopeltaceae n. fam. Hemisphaerialium. Zentralblatt für Bakteriologie und Parasitenkunde Abteilung 2:625–640

    Google Scholar 

  • Tibell L, Vinuesa M (2005) Chaenothecopsis in a molecular phylogeny based on nuclear rDNA ITS and LSU sequences. Taxon 54:427–442

    Article  Google Scholar 

  • Tibpromma S, McKenzie EHC, Karunarathna SC, Mortimer PE, Xu J, Hyde KD, Hu DM (2016) Muyocopron garethjonesii sp. nov. (Muyocopronales, Dothideomycetes) on Pandanus sp. Mycosphere 7:1480–1489

    Article  Google Scholar 

  • Timdal E (2008) Studies on Phyllopsora (Ramalinaceae) in Peru. Lichenologist 40:337–362

    Article  Google Scholar 

  • Tripathi SKM (1989) Algal and fungal remains from Jowai-Sonapur Road Section (Palaeocene-Eocene), Meghalaya. Palaeobotanist 37:63–76

    Google Scholar 

  • Tripathi SKM (2009) Fungi from palaeoenvironments: Their role in environmental interpretations. In: Misra JK, Deshmukh SK (eds) Fungi from different environment. Science Publishers, Lucknow, pp 1–27

    Google Scholar 

  • Tripathi SKM (2012) The systematics and evolutionary perspectives of fossil fungi. In: Misra JK, Tewari JP, Deshmukh SK (eds) Systematics and evolution of fungi. CRC Press, Boca Raton, pp 15–28

    Chapter  Google Scholar 

  • Tripathi SKM, Saxena RK, Prasad V (2000) Palynological investigation of the Tura Formation (Early Eocene) exposed along Tura-Dalu Road, West Garo Hills, Meghalaya, India. Palaeobotanist 49:239–251

    Google Scholar 

  • Tuovila H, Cobbinah JR, Rikkinen J (2011) Chaenothecopsis khayensis, a new resinicolous calicioid fungus on African mahogany. Mycologia 103:610–615

    Article  PubMed  Google Scholar 

  • Tuovila H, Schmidt AR, Beimforde C, Dörfelt H, Grabenhorst H, Rikkinen J (2013) Stuck in time–a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Divers 58:199–213

    Article  Google Scholar 

  • van Geel B (2002) Non-pollen palynomorphs. Tracking environmental change using lake sediments. Springer, Dordrecht, pp 99–119

    Chapter  Google Scholar 

  • van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329

    Article  Google Scholar 

  • van Tuinen M, Torres CR (2015) Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families. Front Genet 6:203

    PubMed  PubMed Central  Google Scholar 

  • Venkatachala BS, Kar RK (1969) Palynology of the Laid sediments in Kutch-2. Epiphyllous fungal remains from the bore-hole No. 14. Palaeobotanist 17:179–183

    Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Vishnu A, Khan MA, Bera M, Dilcher DL, Bera S (2017) Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalik forest and their palaeoecological significance. Bot J Linn Soc 185:147–167

    Article  Google Scholar 

  • Visser AA, Ros VID, De Beer ZW, Debets AJM, Hartog E, Kuyper TW, Laessøe T, Slippers B, Aanen DK (2009) Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach. Mol Ecol 18:553–567

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr H, Fournier J, Jaklitsch WM (2019) Two new classes of Ascomycota: Xylobotryomycetes and Candelariomycetes. Persoonia 42:36–49

    Article  PubMed  Google Scholar 

  • von Arx JA, Müller E (1975) A re-evaluation of the bitunicate ascomycetes with key to families and genera. Stud Mycol 9:1–159

    Google Scholar 

  • Wang HY, Guo SY, Huang MR, Thorsten LH, Chun WJ (2010) Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci China Life Sci 53:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Goffinet B, Liu D, Liang MM, Shi HX, Zhang YY, Zhang J, Wang LS (2015) Taxonomic study of the genus Anzia (Lecanorales, lichenized Ascomycota) from Hengduan Mountains, China. Lichenologist 47:99–115

    Article  Google Scholar 

  • Wang Z, Sun B, Sun F, Wang J, Dong J, Sun M, Du B (2017) Identification of two new species of Meliolinites associated with Lauraceae leaves from the middle Miocene of Fujian, China. Mycologia 109:676–689

    Article  PubMed  Google Scholar 

  • Whitford AC (1914) IV. On a new fossil fungus from the Nebraska Pliocene. University Studies series (The University of Nebraska) 11:181–183

    Google Scholar 

  • Widdowson M, Pringle MS, Fernandez OA (2000) A post K-T boundary (Early Palaeocene) age for Deccan-type feeder dykes, Goa, India. J Petrol 41:1177–1194

    Article  CAS  Google Scholar 

  • Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Chomnunti P, Dai DQ, D’souza MJ, Diederich P, Dissanayake A, Doilom M, Hongsanan S, Jones EBG, Groenewald JZ, Jayawardena R, Lawrey JD, Liu JK, Lücking R, Madrid H, Manamgoda DS, Muggia L, Nelsen MP, Phookamsak R, Suetrong S, Tanaka K, Thambugala KM, Wikee S, Zhang Y, Aptroot A, Ariyawansa HA, Bahkali AH, Bhat JD, Gueidan C, De Hoog GS, Knudsen K, McKenzie EHC, Miller AN, Mortimer PE, Wanasinghe DN, Phillips AJL, Raja HA, Slippers B, Shivas RS, Taylor JE, Wang Y, Woudenberg JHC, Piątek M, Cai L, Jaklitsch WM, Hyde KD (2014) Naming and outline of Dothideomycetes – 2014 including proposals for the protection or suppression of generic names. Fungal Divers 69:1–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lücking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castañeda-Ruiz RF, Bahkali AH, Pang K-L, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidi E, Raja HA, Kodsueb R, Cáceres MES, Pérez-Ortega S, Fiuza PO, Monteiro JS, Vasilyeva LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfliegler WP, Sharma G, Oset M, Abdel-Wahab MA, Takamatsu S, Bensch K, de Silva NI, De Kese A, Karunarathna A, Boonmee S, Pfister DH, Lu Y-Z, Luo Z-L, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng X-Y, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera RH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma X, Tibpromma S, Gusmao LFP, Weerahewa D, Karunarathna SC (2017) Notes for genera-Ascomycota. Fungal Divers 86:1–594

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SS, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Article  Google Scholar 

  • Wong KM, Hyde KD (2001) Diversity of microfungi on six species of Gramineae and one species of Cyperaceae in Hong Kong. Mycol Res 105:1485–1491

    Article  Google Scholar 

  • Wood AR, Damm U, van der Linde EJ, Groenewald JZ, Cheewangkoon R, Crous PW (2016) Finding the missing link: resolving the Coryneliomycetidae within Eurotiomycetes. Persoonia 37:37–56

    Article  CAS  PubMed  Google Scholar 

  • Worobiec G (2003) New fossil floras from Neogene deposits in the Belchatow Lignite mine. Acta Palaeobot 3:3–133

    Google Scholar 

  • Worobiec G, Worobiec E (2017) Epiphyllous fungi from Miocene deposits of the Bełchatów Lignite Mine (Central Poland). Mycosphere 8:1003–1013

    Article  Google Scholar 

  • Wu HX, Schoch CL, Boonmee S, Bahkali AH, Chomnunti P, Hyde KD (2011) A reappraisal of Microthyriaceae. Fungal Divers 51:189–248

    Article  PubMed  Google Scholar 

  • Yoshimura I (1987) Taxonomy and speciation of A Anzia and Pannoparmelia. Bibl Lichenol 25:185–198

    Google Scholar 

  • Zeng XY, Wu HX, Hongsanan S, Jeewon R, Wen TC, Maharachchikumbura SSN, Putarak C, Hyde KD (2019) Taxonomy and the evolutionary history of Micropeltidaceae. Fungal Divers (unpublished)

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53:1–221

    Article  CAS  PubMed  Google Scholar 

  • Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers 84:43–74

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (NSFC 31600032) is acknowledged for funding this research work. Milan C. Samarakoon thanks the Mushroom Research Foundation (MRF), Chiang Mai, Thailand for providing a Postgraduate Scholarship. Kevin D. Hyde would like to thank the Grants entitled “The future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, Rhododendron species and Dracaena species” (Grant No: DBG6080013) and “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion” (Grant No: RDG6130001) for supporting this study. This research work was partially supported by Chiang Mai University. Authors thank S. C. Karunarathna, S. S. N. Maharachchikumbura, D. Q. Dai, D. N. Wanasinghe, R. S. Jayawardena, N. G. Liu, A. H. Ekanayaka, D. S. Tennakoon, A. Karunarathna, N. I. de Silva and R. H. Perera for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Kui (Jack) Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samarakoon, M.C., Hyde, K.D., Hongsanan, S. et al. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Diversity 96, 285–346 (2019). https://doi.org/10.1007/s13225-019-00423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-019-00423-8

Keywords

Navigation