Skip to main content
Log in

Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus black spot (Phyllosticta citricarpa) is an economically important disease of citrus in Australia. A closely related endophyte, P. capitalensis, also occurs on citrus in Australia, and the two fungi are known to co-exist in orchards. The diversity of other species of Phyllosticta on Citrus in Australia is unknown. Citrus black spot is managed by fungicide treatment and options such as biological control may be better economic alternatives. We studied the diversity of Phyllosticta on Citrus in Australia with a phylogenetic species hypothesis. We report P. paracapitalensis for the first time and confirm the presence of P. capitalensis in Queensland. Many examined isolates of Phyllosticta previously identified as P. capitalensis were reidentified as P. paracapitalensis. We also provide evidence through Koch’s postulates that the two endophytic species are non-pathogenic on citrus fruit. In addition, disease incidence and severity of citrus black spot was significantly reduced when fruit were pre-inoculated with one of the endophytes 14 days prior to pathogen inoculation on the same fruit. Our results indicate these endophytes may have potential antagonistic effects against P. citricarpa under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostini JP, Bushong PM, Timmer LW (2003) Greenhouse evaluation of products that induce host resistance for control of scab, melanose, and Alternaria brown spot of citrus. Plant Dis 87:69–74

    Article  CAS  PubMed  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G, Carroll GC, van der Aa HA, de Weerdt M, van Brouwershaven IR, Schutte GC, Maccheroni W, de Blanco CG, Azevedo JL (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    Article  CAS  PubMed  Google Scholar 

  • Baldassari RB, Reis RF, de Goes A (2006) Susceptibility of fruits of the ‘Valencia’ and ‘Natal’ sweet orange varieties to Guignardia citricarpa and the influence of the coexistence of healthy and symptomatic fruits. Fitopatol Bras 31:337–341

    Article  Google Scholar 

  • Baldassari RB, Wickert E, de Goes A (2008) Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. Eur J Plant Pathol 120:103–110

    Article  Google Scholar 

  • Benson AH (1895) Black spot of the orange. Agric Gaz NSW 6:249–251

    Google Scholar 

  • Bonants PJ, Carroll GC, de Weerdt M, van Brouwershaven IR, Baayen RP (2003) Development and validation of a fast PCR-based detection method for pathogenic isolates of the citrus black spot fungus, Guignardia citricarpa. Eur J Plant Pathol 109:503–513

    Article  CAS  Google Scholar 

  • Brentu FC, Oduro KA, Offei SK, Odamtten GT, Vicent A, Peres NA, Timmer LW (2012) Crop loss, aetiology, and epidemiology of citrus black spot in Ghana. Eur J Plant Pathol 133:657–670

    Article  Google Scholar 

  • Brodrick CJ, Rabie HR (1970) Light and temperature effects on symptom development and sporulation of Guignardia citricarpa Kiely, on Citrus sinensis (Linn.) Osbeck. Phytophylactica 2:157–164

    Google Scholar 

  • Burpee LL (1990) The influence of abiotic factors on biological control of soilborne plant pathogenic fungi. Can J Plant Pathol 12:308–317

    Article  Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655

    Article  CAS  PubMed  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Cunningham GP, Harden J (1998) Reducing spray volumes applied to mature citrus trees. Crop Prot 17:289–292

    Article  Google Scholar 

  • de Almeida TF (2009) Mancha preta dos citros: expressao dos sintomas em frutos pela inoculacao com conidios e controle do agente causal (Guignardia citricarpa). PhD thesis, Universidade Estadual Paulista "Júslio De Mesquita Filho"

  • de Capdeville G, Wilson CL, Beer SV, Aist JR (2002) Alternative disease control agents induce resistance to blue mold in harvested 'Red Delicious' apple fruit. Phytopathology 92:900–908

    Article  PubMed  Google Scholar 

  • de Goes A, Baldassari RB, Feichtenberger E, Aguilar-Vildoso CI, Spósito MB (2000) Cracked spot, a new symptom of citrus black spot (Guignardia citricarpa) in Brazil. Proc Int Congr Citricul, 145

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Article  Google Scholar 

  • Fourie P, Schutte T, Serfontein S, Swart F (2013) Modeling the effect of temperature and wetness on Guignardia pseudothecium maturation and ascospore release in citrus orchards. Phytopathology 103:281–292

    Article  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Gao F-K, Dai C-C, Liu X-Z (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Glienke C, Pereira OL, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas RG, Groenewald JZ, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 26:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnaccia V, Groenewald JZ, Li H, Glienke C, Carstens E, Hattingh V, Fourie PH, Crous PW (2017) First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe. Stud Mycol 87:161–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    Article  PubMed  Google Scholar 

  • Hannusch DJ, Boland GJ (1996) Interactions of air temperature, relative humidity and biological control agents on grey mold of bean. Eur J Plant Pathol 102:133–142

    Article  Google Scholar 

  • Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Bremer E, Hynes RK, Erickson RS (2000) Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol Control 18:270–276

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple. Phytopathology 91:1098–1108

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Ki K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiely TB (1948) Preliminary studies on Guignardia citricarpa, N. SP.: the ascigerous stage of Phoma citricarpa McAlp., and its relation to black spot of citrus. Proc Linnean Soc NSW 73:249–292

    Google Scholar 

  • Kotzé JM (1981) Epidemiology and control of citrus black spot in South Africa. Plant Dis 65:945–950

    Article  Google Scholar 

  • Lanza FE, Metzker TG, Vinhas T, Behlau F, Silva Junior GJ (2018) Critical fungicide spray period for citrus black spot control in Sao Paulo state, Brazil. Plant Dis 102:334–340

    Article  CAS  PubMed  Google Scholar 

  • Larran S, Simón M, Moreno M, Siurana MS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • McOnie KC (1964) Latent occurence in Citrus and other hosts of Guignardia easily confused with G. citricarpa citrus black spot pathogen. Phytopathology 54:40–43

    Google Scholar 

  • Miles AK, Willingham SL, Cooke AW (2004) Field evaluation of strobilurins and a plant activator for the control of citrus black spot. Australas Plant Pathol 33:371–378

    Article  CAS  Google Scholar 

  • Miles AK, Tan YP, Tan MK, Donovan NJ, Ghalayini A, Drenth A (2013) Phyllosticta spp. on cultivated Citrus in Australia. Australas Plant Pathol 42:461–467

    Article  CAS  Google Scholar 

  • Miles AK, Smith MW, Tran NT, Shuey TA, Drenth A, Dewdney MM (2016) Fruit inoculation studies with Phyllosticta citricarpa, the cause of citrus black spot. In: Mattos DJ, Carlos EF, Novelli VM, De Azevedo FA, Filho HDC, Zaccheo PVC (eds) Proc Int Citrus Congr, Foz do Iguacu, Brazil, pp 132

    Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert TS, Dewdney MM, Peres NA, Palm ME, Jeyaprakash A, Sutton B, Mondal SN, Wang N-Y, Rascoe J, Picton DD (2012) First report of Guignardia citricarpa associated with citrus black spot on sweet orange (Citrus sinensis L. Osbeck) in North America. Plant Dis 96:1225

    Article  CAS  PubMed  Google Scholar 

  • Schutte GC, Beeton KV, Kotzé JM (1997) Rind stippling on Valencia oranges by copper fungicides used for control of citrus black spot in South Africa. Plant Dis 81:851–854

    Article  CAS  PubMed  Google Scholar 

  • Schutte GC, Mansfield RI, Smith H, Beeton KV (2003) Application of azoxystrobin for control of benomyl-resistant Guignardia citricarpa on 'Valencia' oranges in South Africa. Plant Dis 87:784–788

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south-east Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effect of pesticides, alternative host plants and augmentative release. Exp Appl Acarol 12:195–217

    Article  CAS  Google Scholar 

  • Spósito MB, Amorim L, Bassanezi RB, Hau B (2008) Spatial pattern of black spot incidence within citrus trees related to disease severity and pathogen dispersal. Plant Pathol 57:103–108

    Google Scholar 

  • Stamatakis A, Alachiotis N (2010) Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26:i132–i139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    Article  CAS  PubMed  Google Scholar 

  • Timmer LW, Zitko SE, Albrigo LG (1998) Split applications of copper fungicides improve control of melanose on grapefruit in Florida. Plant Dis 82:983–986

    Article  CAS  PubMed  Google Scholar 

  • Tran NT, Miles AK, Dietzgen RG, Dewdney MM, Zhang K, Rollins JA, Drenth A (2017) Sexual reproduction in the citrus black spot pathogen, Phyllosticta citricarpa. Phytopathology 107:732–739

    Article  PubMed  Google Scholar 

  • Tran NT, Miles AK, Smith MW, Dietzgen RG, Drenth A (2018) Pathogenicity of Phyllosticta citricarpa ascospores on Citrus spp. Plant Dis 102:1386–1393

    Article  CAS  PubMed  Google Scholar 

  • Wager VA (1952) The black spot disease of citrus in South Africa. Science Bulletin, Department of Agriculture, South Africa 303:1–52

  • Wang X, Chen G, Huang F, Zhang J, Hyde KD, Li H (2012) Phyllosticta species associated with citrus diseases in China. Fungal Divers 52:209–224

    Article  Google Scholar 

  • Wikee S, Lombard L, Crous PW, Nakashima C, Motohashi K, Chukeatirote E, Alias SA, McKenzie EHC, Hyde KD (2013a) Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers 60:91–105

    Article  Google Scholar 

  • Wikee S, Lombard L, Nakashima C, Motohashi K, Chukeatirote E, Cheewangkoon R, McKenzie E, Hyde K, Crous P (2013b) A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud Mycol 76:1–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulandari NF, To-anun C, Hyde KD, Duong LM, De Gruyter J, Meffert JP, Groenewald JZ, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39

    Google Scholar 

  • Yonow T, Hattingh V, de Villiers M (2013) CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot 44:18–28

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Queensland for sponsoring N. T. Tran through Ernest Singer PhD stipend and Top-up scholarships, and UQI tuition fee scholarship. Research funds were provided by the Citrus Research and Development Foundation (Grant 715) through the University of Florida and Horticulture Innovation Australia (Grant CT13021). We thank T. A. Shuey for technical support, M. W. Smith and the team at Bundaberg Research Station for their assistance and use of their orchards. Thank you to M. Trott for the use of the orchard in Mundubbera, D. Mayer for helping with data analysis, Y. P. Tan and P. R. Campbell for helping with phylogenetic analyses, and A. R. McTaggart for critically reviewing the manuscript. This research was jointly supported by the Queensland Department of Agriculture and Fisheries and the University of Queensland through the Queensland Alliance for Agriculture and Food Innovation. Funds were also provided by Research and Development for Primary Industries Ptd. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nga T. Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.T., Miles, A.K., Dietzgen, R.G. et al. Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australasian Plant Pathol. 48, 281–296 (2019). https://doi.org/10.1007/s13313-019-00628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-019-00628-0

Keywords

Navigation