Skip to main content
Log in

Comparative analysis of antimicrobial, antioxidant activities and phytochemicals of Himalayan lichens

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The aim of the present study is to investigate the antimicrobial and antioxidant activities of lichens collected from Himalaya and to analyze their phytochemicals. Twelve species of lichens investigated in the present study are Cladonia rangiferina, Everniastrum cirrhatum, Flavoparmelia caperata, Lobaria retigera, Nephromopsis nephromoides, Parmotrema nilgherrense, Ramalina conduplicans, Ramalina sinensis, Stereocaulon foliolosum, Usnea longissima, Usnea orientalis and Usnea pangiana. The metabolites of lichens were extracted from acetone, ethyl acetate, chloroform and methanol solvents. The antimicrobial activities were tested against bacteria and fungi at 2 mg/ml concentration. The most active acetone and chloroform extracts of R. conduplicans showed the highest inhibition zone of 22.7 ± 0.2 and 23.3 ± 0.2 mm respectively against Acinetobacter baumannii. The methanol extract of U. longissima showed the maximum inhibitory activity (15.2 ± 2.5 mm) against P. aeruginosa. The principal component analysis of different lichen extracts complimented the result observed for antibacterial activities for various extracts. Usnea longissima showed strong antioxidant activity with IC50 of free radical scavenging activities 116.24 ± 1.8 µg/ml. The Usnea species exhibited the maximum contents of phytochemicals that may be responsible for antioxidant activities. Acetone and chloroform extracts of R. conduplicans and methanol extract of U. longissima were subjected to GC–MS. In the present study, GC–MS revealed that 4,6-diamino-O-cresol was at highest concentration of 75.37% in acetone extract, followed by 51.53% of methoxy benzyl alcohol in chloroform extract of R. conduplicans and benzoic acid, 2-hydroxy-4-methoxy-6-methyl-, methyl ester that was 44.5% in methanol extract of U. longissima. The presence of various compounds in extracts may be responsible for excellent bioactivities exhibited by the lichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and materials are available upon request.

References

  1. Lücking R, Hodkinson BP, Leavitt SD (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–approaching one thousand genera. Bryologist 119(4):361–416

    Article  Google Scholar 

  2. ZhaoY WM, Xu B (2021) A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. J Funct Foods 80:104283

    Article  Google Scholar 

  3. Nayaka S, Upreti DK, Khare R (2010) Medicinal lichens of India. Avishkar Publishers, Distributors, Drugs from plants. Jaipur, pp 1–54

    Google Scholar 

  4. Elkhateeb WA, El-Ghwas DE, Daba GM (2023) Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ 3(2):189–194. https://doi.org/10.37871/jbres1420

    Article  Google Scholar 

  5. Sutar RR, Gaikwad SB, Mapari SV, Behera BC (2021) Lichens: traditional use and biological activities. Bot Pac 10:69–82

    Article  Google Scholar 

  6. Upreti DK, Bajpai R, Nayaka S, Singh BN (2015) Ethnolichenological studies in India: future prospects. Indian Ethnobot Emerg Trends 195:231

    Google Scholar 

  7. Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86(12):559–570. https://doi.org/10.1007/s001140050676

    Article  Google Scholar 

  8. Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P (2020) Anticancer potential of lichens’ secondary metabolites. Biomolecules 10(1):87

    Article  Google Scholar 

  9. Ranković B, Kosanić M (2019) Lichens as a potential source of bioactive secondary metabolites. In: Lichen secondary metabolites: bioactive properties and pharmaceutical potential 2nd edn. 1–29. https://doi.org/10.1007/978-3-030-16814-81.

  10. Awasti DD (2007) A compendium of the macrolichens from India, Nepal, Dehra dun and Srilanka. -Bishen Singh Mahendra Pal Singh, Dehra-Dun, India; pp 580.

  11. Aydin S, Kinalioğlu K (2016) Comparison of antioxidant activity of Roccella phycopsis Ach. (Roccellaceae) and Flavoparmelia caperata L. Hale (Parmeliaceae) lichens. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 4(3):837–847.

  12. Ranković B, Ranković D, Kosanić M, Marić D (2010) Antioxidant and antimicrobial properties of the lichens Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Cent Eur J Biol 5:649–655

    Google Scholar 

  13. Drummond AJ, Waigh RD (2000) The development of microbiological methods for phytochemical screening. Recent Res Dev Phytochem 4:143–152

    Google Scholar 

  14. Tiwari P, Rai H, Upreti DK, Trivedi S, Shukla P (2011) Assessment of antifungal activity of some Himalayan foliose lichens against plant pathogenic fungi. Am J Plant Sci 2(6):841

    Article  Google Scholar 

  15. Khalipha AB, Ripon FA, Rahman MM (2012) Antioxidant and antidiarrhoeal potentiality of Diospyros blancoi. Int J Pharmacol 8(5):403–409

    Article  Google Scholar 

  16. Nugraha AS, Pratoko DK, Damayanti YD, Lestari ND, Laksono TA, Addy HS, Untari LF, Kusumawardani B, Wangchuk P (2019) Antibacterial and anticancer activities of nine lichens of Indonesian Java Island. J Biologically Active Prod Nat 9(1):39–46. https://doi.org/10.1080/22311866.2019.1567383

    Article  Google Scholar 

  17. Khandewal KR (2008) Practical Pharmacognocy. Nirali Prakashan, Pune. pp 220.

  18. Kokate CK, Purohit AP, Gokhale SB (2003) Carbohydrate and derived products, drugs containing glycosides, drugs containing tannins, lipids and protein alkaloids. Text Book Pharmacogn Pune Nirali Prakashan 8(66):1–624

    Google Scholar 

  19. Burkholder PR, Evans AW, McVeigh I, Thornton HK (1944) Antibiotic activity of lichens. Proc Natl Acad Sci 30(9):250–255. https://doi.org/10.1073/pnas.30.9.250

    Article  Google Scholar 

  20. Cansaran D, Kahya D, Yurdakulol E, Atakol O (2006) Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift für Naturforschung C 61(11–12):773–776. https://doi.org/10.1515/znc-2006-11-1202

    Article  Google Scholar 

  21. Avasthi S, Gautam AK, Bhadauria R (2010) Antifungal activity of plant products against Aspergillus niger: a potential application in the control of a spoilage fungus. In Biological Forum—An International Journal. 2(1): 53–55.

  22. Ranković B, Mišić M, Sukdolak S (2007) Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Br J Biomed Sci 64(4):143–148

    Article  Google Scholar 

  23. Sargsyan R, Gasparyan A, Tadevosyan G, Panosyan H (2021) Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express. 11:110–111. https://doi.org/10.1186/s13568-021-01271-z

    Article  Google Scholar 

  24. Aslan A, Güllüce M, Sökmen M, Adιgüzel A, Sahin F, Özkan H (2006) Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Everinia divaricata, Evernia prunastri, and Neofuscella pulla. Pharm Biol 44(4):247–52. https://doi.org/10.1080/13880200600713808

    Article  Google Scholar 

  25. Kosanić M, Ristić S, Stanojković T, Manojlović N, Ranković B (2018) Extracts of five Cladonia lichens as sources of biologically active compounds. Farmacia 66(4):644–651

    Article  Google Scholar 

  26. Mendili M, Essghaier B, Seaward MR, Khadhri A (2021) In-vitro evaluation of lysozyme activity and antimicrobial effect of extracts from four Tunisian lichens: Diploschistes ocellatus, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina. Arch Microbiol 203(4):1461–1469. https://doi.org/10.1007/s00203-020-02129-x

    Article  Google Scholar 

  27. Singh S, Upreti DK, Lehri A, Shukla V, Niranjan A, Paliwal AK (2020) Assessment of antioxidant potential and related structural diversity of polyphenols in Indian foliose lichens. Cryptogam Biodivers Assess 4(01):01–18. https://doi.org/10.21756/cab.v4i1.1

    Article  Google Scholar 

  28. Nguyen TTH, Dinh MH, Chi HT, Wang SL, Nguyen Q, Tran TD, Nguyen AD (2019) Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Res Chem Intermed 45:33–49

    Article  Google Scholar 

  29. Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halic M, Bayir Y (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 18(11):938–941

    Google Scholar 

  30. Kosanić M, Ranković B, Stanojković T, Rančić A, Manojlović N (2014) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT-Food Sci Technol 59(1):518–525. https://doi.org/10.1016/j.lwt.2014.04.047

    Article  Google Scholar 

  31. Kekuda TR, Vinayaka KS, Swathi D, Suchitha Y, Venugopal TM, Mallikarjun N (2011) Mineral composition, total phenol content and antioxidant activity of a macrolichen Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). J Chem 8(4):1886–1894. https://doi.org/10.1155/2011/420673

    Article  Google Scholar 

  32. Rashmi S, Rajkumar HG (2014) Preliminary phytochemical screening of different solvent extracts of lichens from Kodagu district, Karnataka. J Pharmacogn Phytochem 3(4):209–212

    Google Scholar 

  33. Kumar PSV, Prashith Kekuda TR, Vinayaka KS, Swathi D, Chinmaya A (2010) Insecticidal efficacy of Ramalina hossei H. Magn and G. Awasthi and Ramalina conduplicans vain. Macrolichens from Bhadra Wildlife Sanctuary, Karnataka. Biomedicine 30(1):100–102

    Google Scholar 

  34. NolvachaiMarriott Y (2013) GC for flavonoids analysis: past, current, and prospective trends. J Sep Sci 36(1):20–36

    Article  Google Scholar 

  35. Jenifer JA, Remya R, Velmurugan S, Michaelbabu M, Citarasu T (2018) Streptomyces castaneoglobisporus AJ9, A haloalkaliphilic actinomycetes isolated from solar salt works in southern India and its pharmacological properties. Indian J Geo Mar Sci 47(02):475–488. https://doi.org/10.1186/s13568-015-0143-2

    Article  Google Scholar 

  36. Lozano-Soria A, Picciotti U, Lopez-Moya F, Lopez-Cepero J, Porcelli F, Lopez-Llorca LV (2020) Volatile organic compounds from entomopathogenic and nematophagous fungi, repel banana black weevil (Cosmopolites sordidus). Insects 11(8):509. https://doi.org/10.3390/insects11080509

    Article  Google Scholar 

  37. Nandhini SU, Sangareshwari S, Lata K (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian J Pharmacol Clin Res 8(2):244–246

    Google Scholar 

  38. Ahsan T, Chen J, Zhao X, Irfan M, Wu Y (2017) Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 7(1):1–9. https://doi.org/10.1186/s13568-017-0351-z

    Article  Google Scholar 

  39. Idris OA, Wintola OA, Afolayan AJ (2019) Comparison of the proximate composition, vitamins (ascorbic acid, α-tocopherol and retinol), anti-nutrients (phytate and oxalate) and the GC-MS analysis of the essential oil of the root and leaf of Rumex crispus L. Plants 8(3):51. https://doi.org/10.3390/plants8030051

    Article  Google Scholar 

  40. Rao MR et al (2021) GC MS analysis of one ayurvedic medicine, mustakarishtam. Indian J Nat Sci 12:0976–0997

    Google Scholar 

  41. Papadopoulou P, Tzakou O, Vagias C, Kefalas P, Roussis V (2007) β-orcinol metabolites from the lichen Hypotrachyna revoluta. Molecules 12(5):997–1005

    Article  Google Scholar 

  42. Adhoni SA, Thimmappa SC, Kaliwal BB (2016) Phytochemical analysis and antimicrobial activity of Chorella vulgaris isolated from Unkal Lake. J Coast Life Med 4(5):368–373. https://doi.org/10.12980/jclm.4.2016J5-137

    Article  Google Scholar 

  43. Mordi RC, Fadiaro AE, Owoeye TF, Olanrewaju IO, Uzoamaka GC, Olorunshola SJ (2016) Identification by GC-MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Res J Phytochem 10(1):39–44. rjphyto.2016.39.44

  44. Carlo VO, Mckinney P, Pearson C, Heiny E, Gunawardena G (2018) The optimal extraction and stability of atranorin from lichens, in relation to solvent and pH. Lichenologist 50(4):499–512. https://doi.org/10.1017/S0024282918000075

    Article  Google Scholar 

  45. Kalra R, Conlan XA, Gupta M, Areche C, Bhat M, Goel M (2022) Evaluation of the anticancer potential of secondary metabolites from Pseudevernia furfuracea based on epidermal growth factor receptor inhibition. Nat Prod Res 36(24):6439–6442. https://doi.org/10.1080/14786419.2022.2037587

    Article  Google Scholar 

  46. Guo C, Valdés A, Sánchez-Martínez JD, Ibáñez E, Bi J, Cifuentes A (2022) Neuroprotective potential of thinned peaches extracts obtained by pressurized liquid extraction after different drying processes. Foods 11(16):2464. https://doi.org/10.3390/foods11162464

    Article  Google Scholar 

  47. Kumar A, Kaur S, Dhiman S, Singh PP, Thakur S, Sharma U, Kumar S, Kaur S (2021) 1, 2-benzenedicarboxylic acid, bis (2-methyl propyl) ester isolated from Onosma bracteata Wall. inhibits MG-63 cells proliferation via Akt-p53-cyclin pathway. Research Square. https://doi.org/10.21203/rs.3.rs-182390/v1

  48. Govindappa M, Channabasava R, Sadananda TS, Chandrappa CP, Umashankar T (2014) Identification of bioactive metabolites by GC-MS from an endophytic fungus, Alternaria alternata from Tabebuia argentea and their in vitro cytotoxic activity. Int J Biol Pharm Res 5(6):527–534. https://doi.org/10.1371/journal.pone.0214744

    Article  Google Scholar 

  49. Zayed MZ, Samling B (2016) Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. Int J Pharm Pharm Sci 8(12):174–179. https://doi.org/10.22159/ijpps.2016v8i12.11582

    Article  Google Scholar 

  50. Adeyemo R, Famuyide M (2022) Short Lecture “Isolation of antibacterial compounds from Searsia batophylla and their activity against diarrhoeagenic Escherichia coli”. Planta Med 88(15):1432. https://doi.org/10.1055/s-0042-1758988

    Article  Google Scholar 

  51. Saravanan S, Hari R, Sekar K (2022) In-vitro and in-silico cytotoxicity activity of Aconitum Heterophyllum Phyto niosomes and its ethyl acetate root extract: a comparative study. Int J Health Sci 6(S5):1473–1493. https://doi.org/10.53730/ijhs.v6nS5.8910

    Article  Google Scholar 

  52. Roy RN, Laskar S, Sen SK (2006) Dibutyl phthalate, the bioactive compound produced by streptomyces albidofavus 321.2. Microbiol Res 161(2):121–126. https://doi.org/10.1016/j.micres.2005.06.007

    Article  Google Scholar 

  53. Arora S, Kumar G (2018) Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. J Pharmacogn Phytochem 7(1):1445–1450

    Google Scholar 

  54. Tyagi T, Agarwal M (2017) Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharmacogn Phytochem 6(1):195–206

    Google Scholar 

  55. Muthukrishnan S, Prakathi P, Sivakumar T, Thiruvengadam M, Jayaprakash B, Baskar V, Rebezov M, Derkho M, Zengin G, Shariati MA (2022) Bioactive components and health potential of endophytic micro-fungal diversity in medicinal plants. Antibiotics 11(11):1533. https://doi.org/10.3390/antibiotics11111533

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Director, CSIR-NBRI for providing laboratory facility for study under the in-house project OLP 0114, to Vice-Chancellor, Dr. Ram Manohar Lohia Avadh University, Ayodhya for academic support. Thanks are due Dr. Rajesh Bajpai for providing lichens specimens of Cladonia rangiferina. Thanks to Mr. Sonik Anto, Senior Research Fellow (SRF) at CSIR-NBRI, Lucknow for helping in PCA analysis. Thanks to Mr. Pradeep Kumar, SRF at CSIR-CDRI, Lucknow for helping in compounds identification and classification. This manuscript carries number provided by institute’s publication ethics committee CSIR-NBRI_MS/2023/10/12.

Funding

A grant from the Counselling of Scientific and Industrial Research, New Delhi, India. Program from May 2018 to May 2023 to help this work in the form of JRF and SRF. Fellowship sr. no. 1121530676 and ref. no. 20/12/2015 (II) EU-V.

Author information

Authors and Affiliations

Authors

Contributions

PK: Investigation, conceptualization, writing, original draft preparation and reading analysis, SN: Investigation, analysis, writing—reviewing, editing and validation. TV: Conceptualization, validation, writing— reviewing and editing. AN: Resources, writing-reviewing and editing. DKU: Specimens identification and validation.

Corresponding author

Correspondence to Sanjeeva Nayaka.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Nayaka, S., Verma, T. et al. Comparative analysis of antimicrobial, antioxidant activities and phytochemicals of Himalayan lichens. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05315-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05315-9

Keywords

Navigation