Skip to main content
Log in

Pressure and Skin: A Review of Disease Entities Driven or Influenced by Mechanical Pressure

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Skin perceives and reacts to external mechanical forces to create resistance against the external environment. Excessive or inappropriate stimuli of pressure may lead to cellular alterations of the skin and the development of both benign and malignant skin disorders. We conducted a comprehensive literature review to delve into the pressure-induced and aggravated skin disorders and their underlying pressure-related mechanisms. Dysregulated mechanical responses of the skin give rise to local inflammation, ischemia, necrosis, proliferation, hyperkeratosis, impaired regeneration, atrophy, or other injurious reactions, resulting in various disease entities. The use of personal devices, activities, occupations, weight bearing, and even unintentional object contact and postures are potential scenarios that account for the development of pressure-related skin disorders. The spectrum of these skin disorders may involve the epidermis (keratinocytes and melanocytes), hair follicles, eccrine glands, nail apparatuses, dermis (fibroblasts, mast cells, and vasculature), subcutis, and fascia. Clarifying the clinical context of each patient and recognizing how pressure at the cellular and tissue levels leads to skin lesions can enhance our comprehension of pressure-related skin disorders to attain better management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hsieh CY, Tsai TF. Friction-aggravated skin disorders—a review of mechanism and related diseases. Dermatitis. 2023;34(4):287–96.

    Article  CAS  PubMed  Google Scholar 

  2. Hsieh CY, Tsai TF. Friction-induced skin disorders: a review. Dermatitis. 2023;34(4):278–86.

    Article  PubMed  Google Scholar 

  3. Lindberg M, Forslind B. The effects of occlusion of the skin on the Langerhans’ cell and the epidermal mononuclear cells. Acta Derm Venereol. 1981;61(3):201–5.

    Article  CAS  PubMed  Google Scholar 

  4. Wigger-Alberti W, Williams R, von Mackensen YL, Hoffman-Wecker M, Grossmann U, Staedtler G, et al. Comparison of occlusive and open application in a psoriasis plaque test design, exemplarily using investigations of Mapracorat 0.1% ointment versus vehicle and reference drugs. Skin Pharmacol Physiol. 2017;30(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  5. Arora G, Khandpur S, Bansal A, Shetty B, Aggarwal S, Saha S, et al. Current understanding of frictional dermatoses: a review. Indian J Dermatol Venereol Leprol. 2023;89:170–88.

    Article  PubMed  Google Scholar 

  6. Phillips S, Seiverling E, Silvis M. Pressure and friction injuries in primary care. Prim Care. 2015;42(4):631–44.

    Article  PubMed  Google Scholar 

  7. Menz HB, Zammit GV, Munteanu SE. Plantar pressures are higher under callused regions of the foot in older people. Clin Exp Dermatol. 2007;32(4):375–80.

    Article  CAS  PubMed  Google Scholar 

  8. Freeman DB. Corns and calluses resulting from mechanical hyperkeratosis. Am Fam Physician. 2002;65(11):2277–80.

    PubMed  Google Scholar 

  9. Itin PH, Fistarol SK. Palmoplantar keratodermas. Clin Dermatol. 2005;23(1):15–22.

    Article  PubMed  Google Scholar 

  10. Patel S, Zirwas M, English JC 3rd. Acquired palmoplantar keratoderma. Am J Clin Dermatol. 2007;8(1):1–11.

    Article  PubMed  Google Scholar 

  11. Guerra L, Castori M, Didona B, Castiglia D, Zambruno G. Hereditary palmoplantar keratodermas. Part II: syndromic palmoplantar keratodermas: diagnostic algorithm and principles of therapy. J Eur Acad Dermatol Venereol. 2018;32(6):899–925.

    Article  CAS  PubMed  Google Scholar 

  12. Miljković J, Kansky A, Vidmar G. Hereditary diffuse palmoplantar keratodermas in Slovenia: epidemiologic foci in remote rural areas. Wien Klin Wochenschr. 2006;118(Suppl. 2):35–7.

    Article  PubMed  Google Scholar 

  13. Thomas BR, O’Toole EA. Diagnosis and management of inherited palmoplantar keratodermas. Acta Derm Venereol. 2020;100(7):adv00094.

    Article  PubMed  Google Scholar 

  14. Khan MI, Choi S, Zahid M, Ahmad H, Ali R, Jelani M, et al. Whole-exome sequencing analysis reveals co-segregation of a COL20A1 missense mutation in a Pakistani family with striate palmoplantar keratoderma. Genes Genom. 2018;40(7):789–95.

    Article  CAS  Google Scholar 

  15. Jo JW, Jeong DS, Kim CY. Case of punctate palmoplantar keratoderma type I treated with combination of low-dose oral acitretin and topical salicylic acid and steroid. J Dermatol. 2018;45(5):609–12.

    Article  CAS  PubMed  Google Scholar 

  16. Ellis A, Risk JM, Maruthappu T, Kelsell DP. Tylosis with oesophageal cancer: diagnosis, management and molecular mechanisms. Orphanet J Rare Dis. 2015;10:126.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gwak MJ, Lee MH, Shin MK. Seven cases of senile gluteal dermatoses developed with ulcer. Ann Dermatol. 2017;29(6):799–801.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Chong WS. Not something to sit on: a case of senile gluteal dermatosis responding to calcipotriol ointment. Australas J Dermatol. 2022;63(3):e282–4.

    Article  MathSciNet  PubMed  Google Scholar 

  19. Liu HN, Wang WJ, Chen CC, Lee DD, Chang YT. Senile gluteal dermatosis: a clinicopathologic study of 12 cases and its distinction from anosacral amyloidosis. J Eur Acad Dermatol Venereol. 2012;26(2):258–60.

    Article  CAS  PubMed  Google Scholar 

  20. Liu HN, Wang WJ, Chen CC, Lee DD, Chang YT. Senile gluteal dermatosis: a clinical study of 137 cases. Int J Dermatol. 2014;53(1):51–5.

    Article  PubMed  Google Scholar 

  21. Niiyama S, Sakurai S, Katsuoka K. Hyperkeratotic lichenified skin lesion of gluteal region. J Dermatol. 2006;33(11):779–82.

    Article  PubMed  Google Scholar 

  22. Moon SH, Kang BK, Jeong KH, Shin MK, Lee MH. Analysis of clinical features and lifestyle in Korean senile gluteal dermatosis patients. Int J Dermatol. 2016;55(5):553–7.

    Article  PubMed  Google Scholar 

  23. Dethe G, Vasani R, Farande P, Barve A. Traumatic anserine folliculosis. Think smartphones, curious habits and postures! Clin Exp Dermatol. 2021;46(7):1348–50.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar R, Singh A, Badyal R, Jain SK, Yadav D. Clinico-epidemiological profile of patients with traumatic anserine folliculosis: a retrospective study from a tertiary care center in North India. Indian J Paediatr Dermatol. 2020;21(4):270–4.

    Article  Google Scholar 

  25. Rambhia KD, Wankhade V, Mukhi J, Singh RP. Traumatic anserine folliculosis. Indian Dermatol Online J. 2017;8(1):59–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dev T, Balaji G, Mehta N, Ramam M. Pressure-induced facial follicular papules: 15 cases of an under-recognised dermatosis. Indian J Dermatol Venereol Leprol. 2022;88(3):419–22.

    Article  PubMed  Google Scholar 

  27. Sil A, Das A. Traumatic anserine folliculosis. Indian Pediatr. 2020;57(6):597.

    Article  PubMed  Google Scholar 

  28. Vazquez-Lopez F, Gomez-Vila B, Vazquez-Losada B, Palacios Garcia L, Vivanco-Allende B, Gomez de Castro C. Chondrodermatitis nodularis helicis in the 21st century: demographic trends from a gender and age perspective. A single university hospital retrospective histopathological register study of 215 patients in Asturias, North Spain (2000–2017). J Eur Acad Dermatol Venereol. 2021;35(8):e506–7.

  29. Shah S, Fiala KH. Chondrodermatitis nodularis helicis: a review of current therapies. Dermatol Ther. 2017. https://doi.org/10.1111/dth.12434.

    Article  PubMed  Google Scholar 

  30. Sandison A. Update from the 5th edition of the World Health Organization Classification of Head and Neck Tumours: tumours of the ear. Head Neck Pathol. 2022;16(1):76–86.

  31. Di Berardino F, Zanetti D. The direct use of mobile phone and the occurrence of chondrodermatitis nodularis in the antihelix: an exemplificative case. Indian Dermatol Online J. 2018;9(6):438–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Whittington CP, Stowman AM, Morley KW. Chondrodermatitis nodularis helicis in a teenager caused by frequent headphone use. Dermatol Online J. 2021;27(1):13030/qt64d0n554.

    Article  PubMed  Google Scholar 

  33. Huffman C, Cardis MA. Image: atypical chondrodermatitis nodularis due to in-ear headphones. Br J Dermatol. 2021;185(6): e199.

    Article  CAS  PubMed  Google Scholar 

  34. Khurana U, Solanki LS, Dhingra M. A man with painful nodules on both ears: chondrodermatitis nodularis chronica helicis. JAMA Otolaryngol Head Neck Surg. 2015;141(5):481–2.

    Article  PubMed  Google Scholar 

  35. Grigoryants V, Qureshi H, Patterson JW, Lin KY. Pediatric chondrodermatitis nodularis helicis. J Craniofac Surg. 2007;18(1):228–31.

    Article  PubMed  Google Scholar 

  36. Kasitinon SY, Vandergriff T. Chondrodermatitis nodularis nasi. J Cutan Pathol. 2020;47(11):1046–9.

    Article  PubMed  Google Scholar 

  37. Reinhart JP, Isaq NA, Peters MS, Vidal NY. Continuous positive airway pressure device-associated nonhealing ulcer on the nasal dorsum: chondrodermatitis nodularis nasi. J Clin Sleep Med. 2023. https://doi.org/10.5664/jcsm.10518.

    Article  PubMed  Google Scholar 

  38. Bal A, Rashid Z, Shamma HN. Chondrodermatitis nodularis nasi: a case report of a rare variant of chondrodermatitis nodularis helicis. Am J Dermatopathol. 2022;44(2):115–7.

    Article  PubMed  Google Scholar 

  39. Rajan N, Langtry JA. The punch and graft technique: a novel method of surgical treatment for chondrodermatitis nodularis helicis. Br J Dermatol. 2007;157(4):744–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bruns NM, Hessam S, Valavanis K, Scholl L, Bechara FG. Surgical treatment of chondrodermatitis nodularis helicis via a retroauricular incision. J Dtsch Dermatol Ges. 2015;13(10):1049–51.

    PubMed  Google Scholar 

  41. Ali FR, Healy C, Mallipeddi R. Hemorrhoid cushions for chondrodermatitis nodularis helicis (CNH): piling off the pressure. J Am Acad Dermatol. 2016;75(2):e65–6.

    Article  PubMed  Google Scholar 

  42. Mohammed A, Isaacs M, Rahnama S. U-shaped neck pillow for chondrodermatitis nodularis helicis: a budget-friendly, simple alternative. J Am Acad Dermatol. 2020;82(2):e41–2.

    Article  PubMed  Google Scholar 

  43. Garcia-Malinis AJ, Turrion-Merino L, Perez-Garcia B, Saceda-Corralo D, Harto-Castano A, Gilaberte Y. Observational study of chondrodermatitis nodularis helicis treated with methyl aminolevulinate photodynamic therapy. J Am Acad Dermatol. 2017;76(6):1103–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pellegrino M, Taddeucci P, Mei S, Peccianti C, Fimiani M. Chondrodermatitis nodularis chronica helicis and photodynamic therapy: a new therapeutic option? Dermatol Ther. 2011;24(1):144–7.

    Article  CAS  PubMed  Google Scholar 

  45. Garrido Colmenero C, Martinez Garcia E, Blasco Morente G, Tercedor SJ. Nitroglycerin patch for the treatment of chondrodermatitis nodularis helicis: a new therapeutic option. Dermatol Ther. 2014;27(5):278–80.

    Article  PubMed  Google Scholar 

  46. Flynn V, Chisholm C, Grimwood R. Topical nitroglycerin: a promising treatment option for chondrodermatitis nodularis helicis. J Am Acad Dermatol. 2011;65(3):531–6.

    Article  CAS  PubMed  Google Scholar 

  47. Carey W. Intralesional hyaluronic acid injection for chondrodermatitis nodularis helicis: a novel treatment for rapid relief of pain and healing of ulcerations. Dermatol Surg. 2021;47(3):373–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kechichian E, Jabbour S, Haber R, Abdelmassih Y, Tomb R. Management of chondrodermatitis nodularis helicis: a systematic review and treatment algorithm. Dermatol Surg. 2016;42(10):1125–34.

    Article  CAS  PubMed  Google Scholar 

  49. Mehregan DR, Daoud M, Rogers RS 3rd. Coma blisters in a patient with diabetic ketoacidosis. J Am Acad Dermatol. 1992;27(2 Pt 1):269–70.

    Article  CAS  PubMed  Google Scholar 

  50. Dinis-Oliveira RJ. Drug overdose-induced coma blisters: pathophysiology and clinical and forensic diagnosis. Curr Drug Res Rev. 2019;11(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  51. Chang KS, Su YJ. Coma blister in nontraumatic rhabdomyolysis. Am J Emerg Med. 2016;34(7):1324.e1-2.

    Article  PubMed  Google Scholar 

  52. Chacon AH, Farooq U, Choudhary S, Yin N, Nolan B, Shiman M, et al. Coma blisters in two postoperative patients. Am J Dermatopathol. 2013;35(3):381–4.

    Article  PubMed  Google Scholar 

  53. Waring WS, Sandilands EA. Coma blisters. Clin Toxicol (Phila). 2007;45(7):808–9.

    Article  CAS  PubMed  Google Scholar 

  54. Mervis JS, Phillips TJ. Pressure ulcers: pathophysiology, epidemiology, risk factors, and presentation. J Am Acad Dermatol. 2019;81(4):881–90.

    Article  PubMed  Google Scholar 

  55. Chen G, Wang T, Zhong L, He X, Huang C, Wang Y, et al. Telemedicine for preventing and treating pressure injury after spinal cord injury: systematic review and meta-analysis. J Med Internet Res. 2022;24(9): e37618.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hajhosseini B, Longaker MT, Gurtner GC. Pressure injury. Ann Surg. 2020;271(4):671–9.

    Article  PubMed  Google Scholar 

  57. Bourkas AN, Zaman M, Sibbald RG. COVID-19 and hospital-acquired pressure injuries: a systematic review. Adv Skin Wound Care. 2023. https://doi.org/10.1097/01.ASW.0000919408.20614.61.

    Article  PubMed  Google Scholar 

  58. Kim JY, Lee YJ; Korean Association of Wound Ostomy Continence Nurses. Medical device-related pressure ulcer (MDRPU) in acute care hospitals and its perceived importance and prevention performance by clinical nurses. Int Wound J. 2019;16(Suppl. 1):51–61.

  59. Pittman J, Gillespie C. Medical device-related pressure injuries. Crit Care Nurs Clin North Am. 2020;32(4):533–42.

    Article  PubMed  Google Scholar 

  60. Kottner J, Cuddigan J, Carville K, Balzer K, Berlowitz D, Law S, et al. Pressure ulcer/injury classification today: an international perspective. J Tissue Viability. 2020;29(3):197–203.

    Article  PubMed  Google Scholar 

  61. Kandi LA, Rangel IC, Movtchan NV, Van Spronsen NR, Kruger EA. Comprehensive management of pressure injury: a review. Phys Med Rehabil Clin N Am. 2022;33(4):773–87.

    Article  PubMed  Google Scholar 

  62. Kottner J, Black J, Call E, Gefen A, Santamaria N. Microclimate: a critical review in the context of pressure ulcer prevention. Clin Biomech (Bristol, Avon). 2018;59:62–70.

    Article  PubMed  Google Scholar 

  63. Nancy GA, Kalpana R, Nandhini S. A study on pressure ulcer: influencing factors and diagnostic techniques. Int J Low Extrem Wounds. 2022;21(3):254–63.

    Article  PubMed  Google Scholar 

  64. Xakellis GC Jr, Frantz RA. Pressure ulcer healing: what is it? What influences it? How is it measured? Adv Wound Care. 1997;10(5):20–6.

    PubMed  Google Scholar 

  65. Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: revised pressure injury staging system. J Wound Ostomy Continence Nurs. 2016;43(6):585–97.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mervis JS, Phillips TJ. Pressure ulcers: prevention and management. J Am Acad Dermatol. 2019;81(4):893–902.

    Article  PubMed  Google Scholar 

  67. Bambi AA, Yusuf S, Irwan AM. Reducing the incidence and prevalence of pressure injury in adult ICU patients with support surface use: a systematic review. Adv Skin Wound Care. 2022;35(5):263–70.

    Article  PubMed  Google Scholar 

  68. Song YP, Wang L, Yuan BF, et al. Negative-pressure wound therapy for III/IV pressure injuries: a meta-analysis. Wound Repair Regen. 2021;29(1):20–33.

    Article  PubMed  Google Scholar 

  69. Chang ZY, Ngian J, Chong C, Chong CT, Liew QY. Postoperative permanent pressure alopecia. J Anesth. 2016;30(2):349–51.

    Article  PubMed  Google Scholar 

  70. Davies KE, Yesudian P. Pressure alopecia. Int J Trichol. 2012;4(2):64–8.

    Article  Google Scholar 

  71. Loh SH, Lew BL, Sim WY. Pressure alopecia: clinical findings and prognosis. J Am Acad Dermatol. 2015;72(1):188–9.

    Article  PubMed  Google Scholar 

  72. Perry T 2nd, Rosen H, Pettit C, Trinidad JC. Pressure-induced alopecia due to proning in COVID-19. Dermatol Ther. 2021;34(2): e14764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bagaria M, Luck AM. Postoperative (pressure) alopecia following sacrocolpopexy. J Robot Surg. 2015;9(2):149–51.

    Article  PubMed  Google Scholar 

  74. Ravaioli GM, Starace M, Alessandrini AM, Guicciardi F, Piraccini BM. Pressure alopecia in pediatric and adult patients: clinical and trichoscopic findings in 12 cases. J Am Acad Dermatol. 2019;81(4):1021–3.

    Article  PubMed  Google Scholar 

  75. Liu C, Abbas F, Seehra J. Headgear-induced temporary pressure alopecia. J Orthod. 2019;46(4):335–42.

    Article  PubMed  Google Scholar 

  76. Thiem A, Kutt S, Hamm H. ‘Television alopecia’: a rare cause of pressure alopecia. J Eur Acad Dermatol Venereol. 2016;30(3):504–5.

    Article  CAS  PubMed  Google Scholar 

  77. Xie Y, Chen D, Jiang K, Song L, Qian N, Du Y, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell. 2022;29(1):70-85.e6.

    Article  CAS  PubMed  Google Scholar 

  78. Hinnant T, Lechler T. Hair follicle stem cells feel the pressure. Cell Stem Cell. 2022;29(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  79. Tortelly VD, Melo DF, Ghedin BS, Lima CDS, Garcia TU, Barreto TM. Pressure-induced alopecia: presence of thin hairs as a trichoscopic clue for the diagnosis. Skin Append Disord. 2020;6(1):48–51.

    Article  Google Scholar 

  80. Sano DT, Kakizaki P, Anzai A, Donati A, Valente NYS, Romiti R. Headband pressure alopecia: clinical, dermoscopy, and histopathology findings in four patients. Int J Dermatol. 2018;57(2):237–9.

    Article  PubMed  Google Scholar 

  81. Neema S, Vashisht D, Yadav AK, Sinha A, Radhakrishnan S. Trichoscopy of pressure-induced alopecia and alopecia areata: a comparative study. Int J Trichol. 2022;14(1):17–20.

    Article  Google Scholar 

  82. Goodenough J, Highgate J, Shaaban H. Under pressure? Alopecia related to surgical duration. Br J Anaesth. 2014;113(2):306–7.

    Article  CAS  PubMed  Google Scholar 

  83. Cherng CH, Ku CH. Choosing an optimal headrest for preventing postoperative alopecia—a manikin study. J Tissue Viabil. 2020;29(2):100–3.

    Article  Google Scholar 

  84. Huang W, Zhu Y, Qu H. Use of an alternating inflatable head pad in patients undergoing open heart surgery. Med Sci Monit. 2018;24:970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Epstein E. Granuloma fissuratum of the ears. Arch Dermatol. 1965;91:621–2.

    Article  CAS  PubMed  Google Scholar 

  86. Deshpande NS, Sen A, Vasudevan B, Neema S. Acanthoma fissuratum: lest we forget. Indian Dermatol Online J. 2017;8(2):141–3.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Frey T, Bartak P. Acanthoma supratrochantericum. Cutis. 1992;49(6):412–6.

    CAS  PubMed  Google Scholar 

  88. Lee JI, Lee YB, Cho BK, Park HJ. Acanthoma fissuratum on the penis. Int J Dermatol. 2013;52(3):382–4.

    Article  PubMed  Google Scholar 

  89. Gonzalez SA, Moore AGN. Acanthoma fissuratum of the outer auditory canal from a hearing aid. J Cutan Pathol. 1989;16:304.

    Google Scholar 

  90. Ramroop S. Successful treatment of acanthoma fissuratum with intralesional triamcinolone acetonide. Clin Case Rep. 2020;8(4):702–3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Montgomery EA, Meis JM, Mitchell MS, Enzinger FM. Atypical decubital fibroplasia: a distinctive fibroblastic pseudotumor occurring in debilitated patients. Am J Surg Pathol. 1992;16(7):708–15.

    Article  CAS  PubMed  Google Scholar 

  92. Baldassano MF, Rosenberg AE, Flotte TJ. Atypical decubital fibroplasia: a series of three cases. J Cutan Pathol. 1998;25(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  93. Padmanaban D, Rangasami R, Chandrasekharan A, Swaminathan R. Decubital ischemic fasciitis presenting in an unusual location. Radiol Case Rep. 2015;6(4):590.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kuyumcu G, Zhang Y, Ilaslan H. Case 272: decubital ischemic fasciitis. Radiology. 2019;293(3):721–4.

    Article  PubMed  Google Scholar 

  95. Komatsu M, Kosaka H, Yoshizaki Y, Ueda M. Ischemic fasciitis. J Dermatol. 2010;37(10):934–6.

    Article  PubMed  Google Scholar 

  96. Sayeed SM, Tyrell R, Glickman LT. Management of recurrent ischemic fasciitis, a rare soft tissue pseudosarcoma. Arch Plast Surg. 2014;41(1):89–90.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Shim WH, Jwa SW, Song M, Kim HS, Ko HC, Kim BS, et al. Cutaneous metaplastic synovial cyst of the cheek generated by repetitive minor trauma. Ann Dermatol. 2011;23(Suppl. 2):S235–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kim BC, Choi WJ, Park EJ, Kwon IH, Cho HJ, Kim KH, et al. Cutaneous metaplastic synovial cyst of the first metatarsal head area. Ann Dermatol. 2011;23(Suppl. 2):S165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Choonhakarn C, Tang S. Cutaneous metaplastic synovial cyst. J Dermatol. 2003;30(6):480–4.

    Article  PubMed  Google Scholar 

  100. Lin YC, Tsai TF. Cutaneous metaplastic synovial cyst: unusual presentation with “a bag of worms.” Dermatol Surg. 2003;29(2):198–200.

    PubMed  Google Scholar 

  101. Fernandez-Flores A, Barja-Lopez JM. Cutaneous metaplastic synovial cyst in Ehlers-Danlos syndrome. J Cutan Pathol. 2020;47(8):729–33.

    Article  PubMed  Google Scholar 

  102. Fukuyama M, Sato Y, Hayakawa J, Ohyama M. Cutaneous metaplastic synovial cyst: case report and literature review from the dermatological point of view. Keio J Med. 2017;66(1):9–13.

    Article  PubMed  Google Scholar 

  103. Goiriz R, Ríos-Buceta L, Alonso-Pérez A, Jones-Caballero M, Fraga J, García-Diez A. Cutaneous metaplastic synovial cyst. J Am Acad Dermatol. 2005;53(1):180–1.

    Article  PubMed  Google Scholar 

  104. Darmawan CC, Jo G, Montenegro SE, Kwak Y, Cheol L, Cho KH, et al. Early detection of acral melanoma: a review of clinical, dermoscopic, histopathologic, and molecular characteristics. J Am Acad Dermatol. 2019;81(3):805–12.

    Article  PubMed  Google Scholar 

  105. Seo J, Kim H, Min KI, Kim C, Kwon Y, Zheng Z, et al. Weight-bearing activity impairs nuclear membrane and genome integrity via YAP activation in plantar melanoma [published correction appears in Nat Commun. 2022 May 10;13(1):2696]. Nat Commun. 2022;13(1):2214.

  106. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Costello CM, Pittelkow MR, Mangold AR. Acral melanoma and mechanical stress on the plantar surface of the foot. N Engl J Med. 2017;377(4):395–6.

    Article  PubMed  Google Scholar 

  108. Ghanavatian S, Costello CM, Buras MR, Cumsky HJL, Pittelkow MR, Swanson DL, et al. Density and distribution of acral melanocytic nevi and acral melanomas on the plantar surface of the foot. J Am Acad Dermatol. 2019;80(3):790-2.e2.

    Article  PubMed  Google Scholar 

  109. Jung HJ, Kweon SS, Lee JB, Lee SC, Yun SJ. A clinicopathologic analysis of 177 acral melanomas in Koreans: relevance of spreading pattern and physical stress. JAMA Dermatol. 2013;149(11):1281–8.

    Article  PubMed  Google Scholar 

  110. Lee JH, Choi YD, Hwang JH, Shin MH, Yun SJ. Frequency of trauma, physical stress, and occupation in acral melanoma: analysis of 313 acral melanoma patients in Korea. Ann Dermatol. 2021;33(3):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sheen YS, Liao YH, Lin MH, Chen JS, Liau JY, Tseng YJ, et al. A clinicopathological analysis of 153 acral melanomas and the relevance of mechanical stress. Sci Rep. 2017;7(1):5564.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kim NH, Choi YD, Seon HJ, Lee JB, Yun SJ. Anatomic mapping and clinicopathologic analysis of benign acral melanocytic neoplasms: a comparison between adults and children. J Am Acad Dermatol. 2017;77(4):735–45.

    Article  PubMed  Google Scholar 

  113. Mikoshiba Y, Minagawa A, Koga H, Yokokawa Y, Uhara H, Okuyama R. Clinical and histopathologic characteristics of melanocytic lesions on the volar skin without typical dermoscopic patterns. JAMA Dermatol. 2019;155(5):578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci. 2018;90(3):232–40.

    Article  PubMed  Google Scholar 

  115. Miyazaki A, Saida T, Koga H, Oguchi S, Suzuki T, Tsuchida T. Anatomical and histopathological correlates of the dermoscopic patterns seen in melanocytic nevi on the sole: a retrospective study. J Am Acad Dermatol. 2005;53(2):230–6.

    Article  PubMed  Google Scholar 

  116. Akay BN, Lallas A, Okcu HA. Dermatoscopic features of Spitz naevi on acral volar skin: report of 11 cases. Austral J Dermatol. 2022;63(4):e336–9.

    Article  Google Scholar 

  117. Jung S, Johnson DB. Management of acral and mucosal melanoma: medical oncology perspective. Oncologist. 2022;27(8):703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Seo J, Oh Y, Kim SK, Roh MR, Chung KY. Slow Mohs micrographic surgery for acral melanoma treatment in Korean patients. Dermatol Surg. 2021;47(2):e42–6.

    Article  CAS  PubMed  Google Scholar 

  119. Cho KK, Cust AE, Foo YM, Long GV, Menzies AM, Eslick GD. Metastatic acral melanoma treatment outcomes: a systematic review and meta-analysis. Melanoma Res. 2021;31(5):482–6.

    Article  CAS  PubMed  Google Scholar 

  120. Gallus S, Naldi L, Martin L, Martinelli M, La Vecchia C; Oncology Study Group of the Italian Group for Epidemiologic Research in Dermatology (GISED). Anthropometric measures and risk of cutaneous malignant melanoma: a case-control study from Italy. Melanoma Res. 2006;16(1):83–7.

  121. Taube M, Peltonen M, Sjöholm K, Anveden Å, Andersson-Assarsson JC, Jacobson P, et al. Association of bariatric surgery with skin cancer incidence in adults with obesity: a nonrandomized controlled trial. JAMA Dermatol. 2020;156(1):38–43.

    Article  PubMed  Google Scholar 

  122. Nagore E, Sanchez-Motilla JM, Rodriguez-Serna M, Vilata JJ, Aliaga A. Lipoatrophia semicircularis: a traumatic panniculitis: report of seven cases and review of the literature. J Am Acad Dermatol. 1998;39(5 Pt 2):879–81.

    Article  CAS  PubMed  Google Scholar 

  123. Sigl J, Lázár M, Tittes J, Wendt J, Kancz S, Kiefer FW, et al. Lipoatrophia semicircularis: a distinct entity? Int J Dermatol. 2020;59(11):e385–7.

    Article  PubMed  Google Scholar 

  124. Bru-Gorraiz FJ, Comunión-Artieda A, Bordel-Nieto I, Martin-Gorgojo A. Lipoatrophia semicircularis: clinical study and follow-up of 76 cases in Madrid, Spain. Classification proposal. Actas Dermosifiliogr. 2022;113(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  125. Hermans V, Hautekiet M, Haex B, Spaepen AJ, Van der Perre G. Lipoatrophia semicircularis and the relation with office work. Appl Ergon. 1999;30(4):319–24.

    Article  CAS  PubMed  Google Scholar 

  126. Wortsman X, Ferreira-Wortsman C. Ultrasound in sports and occupational dermatology. J Ultrasound Med. 2021;40(8):1675–92.

    Article  PubMed  Google Scholar 

  127. Verschaeve L, Maes A. Support for the hypothesis that electro-stimulation is responsible for lipoatrophia semicircularis. Med Hypoth. 2009;73(5):802–6.

    Article  Google Scholar 

  128. Herane MI, Urbina F, Sudy E. Lipoatrophia semicircularis: a compressive lipoatrophy consecutive to persistent mechanical pressure. J Dermatol. 2007;34(6):390–3.

    Article  PubMed  Google Scholar 

  129. Bertolani M, Mele S, Manuguerra R, Dominici MM, Lotti T, Feliciani C, et al. Comment on “Lipoatrophia semicircularis—a distinct entity?” Int J Dermatol. 2021;60(10):e421–2.

    Article  PubMed  Google Scholar 

  130. Cheng CE, Kroshinsky D. Iatrogenic skin injury in hospitalized patients. Clin Dermatol. 2011;29(6):622–32.

    Article  PubMed  Google Scholar 

  131. Matić A, Prćić S, Matić M. Iatrogenic anetoderma of prematurity: a series of 5 clinical cases and literature review. Acta Dermatovenerol Croat. 2020;28(2):70–4.

    PubMed  Google Scholar 

  132. Colditz PB, Dunster KR, Joy GJ, Robertson IM. Anetoderma of prematurity in association with electrocardiographic electrodes. J Am Acad Dermatol. 1999;41(3 Pt 1):479–81.

    Article  CAS  PubMed  Google Scholar 

  133. Maffeis L, Pugni L, Pietrasanta C, Ronchi A, Fumagalli M, Gelmetti C, et al. Iatrogenic anetoderma of prematurity: a case report and review of the literature. Case Rep Dermatol Med. 2014;2014: 781493.

    PubMed  PubMed Central  Google Scholar 

  134. Goujon E, Beer F, Gay S, Sandre D, Gouyon JB, Vabres P. Anetoderma of prematurity: an iatrogenic consequence of neonatal intensive care. Arch Dermatol. 2010;146(5):565–7.

    Article  PubMed  Google Scholar 

  135. Abajian M, Młynek A, Maurer M. Physical urticaria. Curr Allergy Asthma Rep. 2012;12(4):281–7.

    Article  PubMed  Google Scholar 

  136. Church MK, Kolkhir P, Metz M, Maurer M. The role and relevance of mast cells in urticaria. Immunol Rev. 2018;282(1):232–47.

    Article  CAS  PubMed  Google Scholar 

  137. Kolkhir P, Giménez-Arnau AM, Kulthanan K, Peter J, Metz M, Maurer M. Urticaria. Nat Rev Dis Primers. 2022;8(1):61.

    Article  PubMed  Google Scholar 

  138. Maurer M, Fluhr JW, Khan DA. How to approach chronic inducible urticaria. J Allergy Clin Immunol Pract. 2018;6(4):1119–30.

    Article  PubMed  Google Scholar 

  139. Kerstan A, Rose C, Simon D, Simon HU, Bröcker EB, Trautmann A, et al. Bullous delayed pressure urticaria: pathogenic role for eosinophilic granulocytes? Br J Dermatol. 2005;153(2):435–9.

    Article  CAS  PubMed  Google Scholar 

  140. Zuberbier T, Aberer W, Asero R, Abdul Latiff AH, Baker D, Ballmer-Weber B, et al. The EAACI/GA2LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393–414.

    Article  CAS  PubMed  Google Scholar 

  141. Barlow RJ, Warburton F, Watson K, Black AK, Greaves MW. Diagnosis and incidence of delayed pressure urticaria in patients with chronic urticaria. J Am Acad Dermatol. 1993;29(6):954–8.

    Article  CAS  PubMed  Google Scholar 

  142. Morioke S, Takahagi S, Iwamoto K, Shindo H, Mihara S, Kameyoshi Y, et al. Pressure challenge test and histopathological inspections for 17 Japanese cases with clinically diagnosed delayed pressure urticaria. Arch Dermatol Res. 2010;302(8):613–7.

    Article  PubMed  Google Scholar 

  143. Kulthanan K, Ungprasert P, Tuchinda P, Chularojanamontri L, Charoenpipatsin N, Maurer M. Delayed pressure urticaria: a systematic review of treatment options. J Allergy Clin Immunol Pract. 2020;8(6):2035-49.e5.

    Article  PubMed  Google Scholar 

  144. Veleiro-Pérez B, Alba-Muñoz J, Pérez-Quintero O, Rodríguez RL, Calvín-Lamas M, Parra-Arrondo A. Delayed pressure urticaria: clinical and diagnostic features and response to omalizumab. Int Arch Allergy Immunol. 2022;183(10):1089–94.

    Article  PubMed  Google Scholar 

  145. Magerl M, Philipp S, Manasterski M, Friedrich M, Maurer M. Successful treatment of delayed pressure urticaria with anti-TNF-alpha. J Allergy Clin Immunol. 2007;119(3):752–4.

    Article  PubMed  Google Scholar 

  146. Taşkapan O, Harmanyeri Y. Evaluation of patients with symptomatic dermographism. J Eur Acad Dermatol Venereol. 2006;20(1):58–62.

    Article  PubMed  Google Scholar 

  147. Radonjic-Hoesli S, Hofmeier KS, Micaletto S, Schmid-Grendelmeier P, Bircher A, Simon D. Urticaria and angioedema: an update on classification and pathogenesis. Clin Rev Allergy Immunol. 2018;54(1):88–101.

    Article  PubMed  Google Scholar 

  148. Sánchez J, Amaya E, Acevedo A, Celis A, Caraballo D, Cardona R. Prevalence of inducible urticaria in patients with chronic spontaneous urticaria: associated risk factors. J Allergy Clin Immunol Pract. 2017;5(2):464–70.

    Article  PubMed  Google Scholar 

  149. Ford LS, Rogers M, Kemp AS, Campbell DE. Persistent linear bands in infancy acquired after local pressure: a consequence of mast cell activation? Pediatr Dermatol. 2007;24(4):391–3.

    Article  PubMed  Google Scholar 

  150. Khunger N, Kandhari R. Ingrown toenails. Indian J Dermatol Venereol Leprol. 2012;78(3):279–89.

    Article  PubMed  Google Scholar 

  151. Córdoba-Fernández A, Montaño-Jiménez P, Coheña-Jiménez M. Relationship between the presence of abnormal hallux interphalangeal angle and risk of ingrown hallux nail: a case control study. BMC Musculoskelet Disord. 2015;16:301.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kose O, Celiktas M, Kisin B, Ozyurek S, Yigit S. Is there a relationship between forefoot alignment and ingrown toenail? A case-control study. Foot Ankle Spec. 2011;4(1):14–7.

    Article  PubMed  Google Scholar 

  153. Mayeaux EJ Jr, Carter C, Murphy TE. Ingrown toenail management. Am Fam Physician. 2019;100(3):158–64.

    PubMed  Google Scholar 

  154. Ahn Y, Lee H, Eo S, Shin H. Toenail paronychium flap: novel surgical approach for ingrowing toenail and review of the literature of conventional surgical methods. Arch Plast Surg. 2023;50(3):274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bodor RM, Breithaupt AD, Buncke GM, Bailey JR, Buncke HJ. Swimmer’s nose deformity. Ann Plast Surg. 2008;60(6):658–60.

    Article  CAS  PubMed  Google Scholar 

  156. Bahrami S, Cusack CA, Dyson SW, Hinshaw MA, Liu V. Asymptomatic nodules on the foot: diagnosis. Arch Dermatol. 2009;145(11):1325–30.

    Article  Google Scholar 

  157. Tlougan BE, Mancini AJ, Mandell JA, Cohen DE, Sanchez MR. Skin conditions in figure skaters, ice-hockey players and speed skaters: part I—mechanical dermatoses. Sports Med. 2011;41(9):709–19.

    Article  PubMed  Google Scholar 

  158. Levitsky MM, Vosseller JT, Popkin CA. Lace bite: a review of tibialis anterior tendinopathy in ice hockey players. Transl Sports Med. 2020;3(4):296–9.

    Article  Google Scholar 

  159. Carr PC, Cropley TG. Sports dermatology: skin disease in athletes. Clin Sports Med. 2019;38(4):597–618.

    Article  PubMed  Google Scholar 

  160. Norman M, Vitale K. “Bumpy” ride for the female cyclist: a rare case of perineal nodular induration, the ischial hygroma. Int J Surg Case Rep. 2020;73:277–80.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Devers KG, Heckman SR, Muller C, Joste NE. Perineal nodular induration: a trauma-induced mass in a female equestrian. Int J Gynecol Pathol. 2010;29(4):398–401.

    Article  PubMed  Google Scholar 

  162. McCluggage WG, Smith JH. Reactive fibroblastic and myofibroblastic proliferation of the vulva (cyclist’s nodule): a hitherto poorly described vulval lesion occurring in cyclists. Am J Surg Pathol. 2011;35(1):110–4.

    Article  PubMed  Google Scholar 

  163. Khedaoui R, Martín-Fragueiro LM, Tardío JC. Perineal nodular induration (“biker’s nodule”): report of two cases with fine-needle aspiration cytology and immunohistochemical study. Int J Surg Pathol. 2014;22(1):71–5.

    Article  PubMed  Google Scholar 

  164. Awad MA, Murphy GP, Gaither TW, Osterberg EC, Sanford TA, Horvai AE, et al. Surgical excision of perineal nodular induration: a cyclist’s third testicle. Can Urol Assoc J. 2017;11(5):E244–7.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Adams BB. Dermatologic disorders of the athlete. Sports Med. 2002;32(5):309–11.

    Article  PubMed  Google Scholar 

  166. Falotico JM, Magro CM, Lipner SR. Bilateral tennis toe. Indian J Dermatol Venereol Leprol. 2023;89(6):903.

    Article  PubMed  Google Scholar 

  167. Mailler-Savage EA, Adams BB. Skin manifestations of running. J Am Acad Dermatol. 2006;55(2):290–301.

    Article  PubMed  Google Scholar 

  168. Urbina F, Leon L, Sudy E. Black heel, talon noir or calcaneal petechiae? Austral J Dermatol. 2008;49(3):148–51.

    Article  Google Scholar 

  169. Tammaro A, Magri F, Moliterni E, Parisella FR, Mondello M, Persechino S. An uncommon localization of black heels in a free climbing instructor. Int Wound J. 2018;15(2):313–5.

    Article  PubMed  Google Scholar 

  170. Martin SB, Lucas JK, Posa M, Howell DM, Kelly MN. Talon noir in a young baseball player: a case report. J Pediatr Health Care. 2021;35(2):235–8.

    Article  PubMed  Google Scholar 

  171. Gambichler T, Uzun A, Boms S, Altmeyer P, Altenmuller E. Skin conditions in instrumental musicians: a self-reported survey. Contact Dermatitis. 2008;58(4):217–22.

    Article  PubMed  Google Scholar 

  172. Patruno C, Napolitano M, La Bella S, Ayala F, Balato N, Cantelli M, et al. Instrument-related skin disorders in musicians. Dermatitis. 2016;27(1):26–9.

    Article  PubMed  Google Scholar 

  173. Myint CW, Rutt AL, Sataloff RT. Fiddler’s neck: a review. Ear Nose Throat J. 2017;96(2):76–9.

    Article  PubMed  Google Scholar 

  174. Piquero-Casals J, Morgado-Carrasco D. Visual dermatology: fiddler’s neck. J Cutan Med Surg. 2020;24(3):310.

    Article  PubMed  Google Scholar 

  175. Carabias E, Dhimes P, de Agustín P, Gutierrez E. Nodular cervical induration in a violinist: report of a case with fine needle aspiration cytologic findings. Acta Cytol. 1996;40(6):1301–3.

    Article  CAS  PubMed  Google Scholar 

  176. Lyon CC, Kulkarni J, Zimerson E, Van Ross E, Beck MH. Skin disorders in amputees. J Am Acad Dermatol. 2000;42(3):501–7.

    Article  CAS  PubMed  Google Scholar 

  177. Wang M, Nong Q, Liu Y, Yu H. Design of lower limb prosthetic sockets: a review. Expert Rev Med Devices. 2022;19(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  178. Meulenbelt HE, Geertzen JH, Dijkstra PU, Jonkman MF. Skin problems in lower limb amputees: an overview by case reports. J Eur Acad Dermatol Venereol. 2007;21(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  179. Boer J, Nazary M, Riis PT. The role of mechanical stress in hidradenitis suppurativa. Dermatol Clin. 2016;34(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  180. Tabosa GVBS, Stelini RF, Souza EM, Velho PENF, Cintra ML, Florence MEB. Immunocompromised cutaneous district, isotopic, and isopathic phenomena: systematic review. J Cosmet Dermatol. 2021;20(2):410–6.

    Article  PubMed  Google Scholar 

  181. Piccolo V, Baroni A, Russo T, Schwartz RA. Ruocco’s immunocompromised cutaneous district. Int J Dermatol. 2016;55(2):135–41.

    Article  PubMed  Google Scholar 

  182. Ruocco V, Ruocco E, Piccolo V, Brunetti G, Guerrera LP, Wolf R. The immunocompromised district in dermatology: a unifying pathogenic view of the regional immune dysregulation. Clin Dermatol. 2014;32(5):569–76.

    Article  PubMed  Google Scholar 

  183. Buikema KE, Meyerle JH. Amputation stump: privileged harbor for infections, tumors, and immune disorders. Clin Dermatol. 2014;32(5):670–7.

    Article  PubMed  Google Scholar 

  184. Olszewska M, Wu JZ, Slowinska M, Rudnicka L. The ‘PDA nail’: traumatic nail dystrophy in habitual users of personal digital assistants. Am J Clin Dermatol. 2009;10(3):193–6.

    Article  PubMed  Google Scholar 

  185. O’Sullivan SL, Mellerio JE, Semkova K. Gamer’s nodules. Pediatr Dermatol. 2022;39(2):307–8.

    Article  PubMed  Google Scholar 

  186. Yu J, Chen JK, Mowad CM, Reeder M, Hylwa S, Chisolm S, et al. Occupational dermatitis to facial personal protective equipment in health care workers: a systematic review. J Am Acad Dermatol. 2021;84(2):486–94.

    Article  CAS  PubMed  Google Scholar 

  187. Biggs LC, Kim CS, Miroshnikova YA, Wickström SA. Mechanical forces in the skin: roles in tissue architecture, stability, and function. J Invest Dermatol. 2020;140(2):284–90.

    Article  CAS  PubMed  Google Scholar 

  188. Sawant M, Hinz B, Schönborn K, Zeinert I, Eckes B, Krieg T, et al. A story of fibers and stress: matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen. 2021;29(4):515–30.

    Article  PubMed  Google Scholar 

  189. Silver FH, Kelkar N, Deshmukh T. Molecular basis for mechanical properties of ECMs: proposed role of fibrillar collagen and proteoglycans in tissue biomechanics. Biomolecules. 2021;11(7):1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vande Berg JS, Rudolph R, Hollan C, Haywood-Reid PL. Fibroblast senescence in pressure ulcers. Wound Repair Regen. 1998;6(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  191. Stanley AC, Fernandez NN, Lounsbury KM, Corrow K, Osler T, Healey C, et al. Pressure-induced cellular senescence: a mechanism linking venous hypertension to venous ulcers. J Surg Res. 2005;124(1):112–7.

    Article  PubMed  Google Scholar 

  192. Chao-Chu J, Murtough S, Zaman N, Pennington DJ, Blaydon DC, Kelsell DP. iRHOM2: a regulator of palmoplantar biology, inflammation, and viral susceptibility. J Invest Dermatol. 2021;141(4):722–6.

    Article  CAS  PubMed  Google Scholar 

  193. Huang X, Liang X, Zhou Y, Li H, Du H, Suo Y, et al. CDH1 is identified as a therapeutic target for skin regeneration after mechanical loading. Int J Biol Sci. 2021;17(1):353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fu DJ, Thomson C, Lunny DP, Dopping-Hepenstal PJ, McGrath JA, Smith FJD, et al. Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol. 2014;134(3):754–63.

    Article  CAS  PubMed  Google Scholar 

  195. Zieman AG, Poll BG, Ma J, Coulombe PA. Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma. Hum Mol Genet. 2019;28(13):2255–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Domingues L, Hurbain I, Gilles-Marsens F, Sirés-Campos J, André N, Dewulf M, et al. Coupling of melanocyte signaling and mechanics by caveolae is required for human skin pigmentation. Nat Commun. 2020;11(1):2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Huang Y, Su J, Liu J, Yi X, Zhou F, Zhang J, et al. YAP activation in promoting negative durotaxis and acral melanoma progression. Cells. 2022;11(22):3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ogawa R, Hsu CK. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J Cell Mol Med. 2013;17(7):817–22.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Löffler H, Dreher F, Maibach HI. Stratum corneum adhesive tape stripping: influence of anatomical site, application pressure, duration and removal. Br J Dermatol. 2004;151(4):746–52.

    Article  PubMed  Google Scholar 

  200. Shibata K, Ogai K, Ogura K, Urai T, Aoki M, Arisandi D, et al. Skin physiology and its microbiome as factors associated with the recurrence of pressure injuries. Biol Res Nurs. 2021;23(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  201. Tsanev R, Yaneva J, Vaptzarova K, Markov D. Effect of mechanical pressure on c-fos and on the mitotic activity of epidermal cells. Acta Biochim Pol. 1996;43(4):593–601.

    Article  CAS  PubMed  Google Scholar 

  202. Bronneberg D, Spiekstra SW, Cornelissen LH, Oomens CW, Gibbs S, Baaijens FP, et al. Cytokine and chemokine release upon prolonged mechanical loading of the epidermis. Exp Dermatol. 2007;16(7):567–73.

    Article  CAS  PubMed  Google Scholar 

  203. Huang D, Liu Y, Huang Y, Xie Y, Shen K, Zhang D, et al. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res. 2014;55(5–6):391–6.

    Article  CAS  PubMed  Google Scholar 

  204. de Bengy AF, Lamartine J, Sigaudo-Roussel D, Fromy B. Newborn and elderly skin: two fragile skins at higher risk of pressure injury. Biol Rev Camb Philos Soc. 2022;97(3):874–95.

    Article  PubMed  Google Scholar 

  205. Shoham N, Gefen A. Deformations, mechanical strains and stresses across the different hierarchical scales in weight-bearing soft tissues. J Tissue Viability. 2012;21(2):39–46.

    Article  PubMed  Google Scholar 

  206. Seddone S, Messere A, Roatta S. Vascular reactivity of cutaneous circulation to brief compressive stimuli, in the human forearm. Eur J Appl Physiol. 2020;120(5):1041–50.

    Article  PubMed  Google Scholar 

  207. Coban YK, Uzel M, Gumus N. Lipoma due to chronic intermittent compression as an occupational disease. Ann Plast Surg. 2006;57(3):275–8.

    Article  CAS  PubMed  Google Scholar 

  208. Joshi TP, Duvic M. Granuloma annulare: an updated review of epidemiology, pathogenesis, and treatment options. Am J Clin Dermatol. 2022;23(1):37–50.

    Article  PubMed  Google Scholar 

  209. Johnston JJ, Spelman L. Pressure-induced localised granuloma annulare following use of an elbow splint. Prosthet Orthot Int. 2017;41(3):311–3.

    Article  PubMed  Google Scholar 

  210. Evans MJ, Blessing K, Gray ES. Pseudorheumatoid nodule (deep granuloma annulare) of childhood: clinicopathologic features of twenty patients. Pediatr Dermatol. 1994;11(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  211. Barzilai A, Huszar M, Shpiro D, Nass D, Trau H. Pseudorheumatoid nodules in adults: a juxta-articular form of nodular granuloma annulare. Am J Dermatopathol. 2005;27(1):1–5.

    Article  PubMed  Google Scholar 

  212. Ţăranu T, Grigorovici M, Constantin M, Toader MP. Subcutaneous granuloma annulare. Acta Dermatovenerol Croat. 2017;25(4):292–4.

    PubMed  Google Scholar 

  213. Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol. 2007;18(7):1159–64.

    Article  CAS  PubMed  Google Scholar 

  214. Miller KK, Gorcey L, McLellan BN. Chemotherapy-induced hand-foot syndrome and nail changes: a review of clinical presentation, etiology, pathogenesis, and management. J Am Acad Dermatol. 2014;71(4):787–94.

    Article  PubMed  Google Scholar 

  215. Law A, Dyson S, Anthony D. An exploratory study to identify risk factors for the development of capecitabine-induced palmar plantar erythrodysesthesia (PPE). J Adv Nurs. 2015;71(8):1825–32.

    Article  PubMed  Google Scholar 

  216. Xu Z, Chen D, Hu Y, Jiang K, Huang H, Du Y, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature. 2022;601(7891):118–24.

    Article  CAS  PubMed  Google Scholar 

  217. Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech. 2020;13(6):dmm044164.

  218. Hausmann C, Zoschke C, Wolff C, Darvin ME, Sochorová M, Kováčik A, et al. Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake. Sci Rep. 2019;9(1):2913.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsen-Fang Tsai.

Ethics declarations

Funding

The authors received no funding for the preparation of this article.

Conflicts of interest/competing interests

Tsen-Fang Tsai has conducted clinical trials or received honoraria for serving as a consultant for AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Eli Lilly, Galderma, Janssen-Cilag, Merck Sharp & Dohme, Novartis International AG, Pfizer, Inc, and UCB Pharma. Wei-Chen Chien has no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable. This study is a narrative review of previously published peer-reviewed literature and does not involve any use of human or animal data. Therefore, ethics approval is not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

Conceptualization: T-FT; methodology: W-CC, T-FT; writing, original draft preparation: W-CC; writing, review and editing: T-Fs; supervision: T-FT. All authors have read and approved the final version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, WC., Tsai, TF. Pressure and Skin: A Review of Disease Entities Driven or Influenced by Mechanical Pressure. Am J Clin Dermatol 25, 261–280 (2024). https://doi.org/10.1007/s40257-023-00833-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-023-00833-0

Navigation