Skip to main content
Log in

Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He L, Nguyen NB, Ardehali R, Zhou B. Heart regeneration by endogenous stem cells and cardiomyocyte proliferation. Circulation. 2020;142(3):275–91. https://doi.org/10.1161/CIRCULATIONAHA.119.045566.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hodel F, Xu ZM, Thorball CW, de La Harpe R, Letang-Mathieu P, Brenner N, et al. Associations of genetic and infectious risk factors with coronary heart disease. Elife. 2023. https://doi.org/10.7554/eLife.79742.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang J, Tian SS, Zhao J, Zhang WD. Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning. Pharmacol Res. 2020;159: 105034. https://doi.org/10.1016/j.phrs.2020.105034.

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Assadsangabi B, Hsiang Y, Takahata K. Enabling angioplasty-ready “smart” stents to detect in-stent restenosis and occlusion. Adv Sci. 2018;5(5):1700560. https://doi.org/10.1002/advs.201700560.

    Article  CAS  Google Scholar 

  5. Hung J, Roos A, Kadesjö E, McAllister DA, Kimenai DM, Shah ASV, et al. Performance of the GRACE 2.0 score in patients with type 1 and type 2 myocardial infarction. Eur Heart J. 2021;42(26):2552–61. https://doi.org/10.1093/eurheartj/ehaa375.

    Article  CAS  PubMed  Google Scholar 

  6. Kaller M, Faber L, Bogunovic N, Horstkotte D, Burchert W, Lindner O. Cardiac shock wave therapy and myocardial perfusion in severe coronary artery disease. Clin Res Cardiol. 2015;104(10):843–9. https://doi.org/10.1007/s00392-015-0853-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chi LQ, Zhang JQ, Kong QY, Xiao W, Liang L, Chen XL. Early results of coronary endarterectomy combined with coronary artery bypass grafting in patients with diffused coronary artery disease. Chin Med J (Engl). 2015;128(11):1460–4. https://doi.org/10.4103/0366-6999.157652.

    Article  PubMed  Google Scholar 

  8. Michael EF. CABG versus PCI for complex coronary disease: time to close the books. J Am Coll Cardiol. 2017. https://doi.org/10.1016/j.jacc.2017.03.010.

    Article  Google Scholar 

  9. Patel KK, Al Badarin F, Chan PS, Spertus JA, Courter S, Kennedy KF, et al. Randomized comparison of clinical effectiveness of pharmacologic SPECT and PET MPI in symptomatic CAD patients. JACC Cardiovasc Imaging. 2019;12(9):1821–31. https://doi.org/10.1016/j.jcmg.2019.04.020.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chonchol M, Benderly M, Goldbourt U. Beta-blockers for coronary heart disease in chronic kidney disease. Nephrol Dial Transpl. 2008;23(7):2274–9. https://doi.org/10.1093/ndt/gfm950.

    Article  CAS  Google Scholar 

  11. Russell C, Sheth S, Jacoby D. A clinical guide to combination lipid-lowering therapy. Curr Atheroscler Rep. 2018. https://doi.org/10.1007/s11883-018-0721-2.

    Article  PubMed  Google Scholar 

  12. Jawitz OK, Gulack BC, Brennan JM, Thibault DP, Wang A, O’Brien SM, et al. Association of postoperative complications and outcomes following coronary artery bypass grafting. Am Heart J. 2020;222:220–8. https://doi.org/10.1016/j.ahj.2020.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi JY, He LP. Long-term use of anti-coronary heart disease medications may impact the serum zinc concentration. Biol Trace Elem Res. 2023;201(1):1. https://doi.org/10.1007/s12011-022-03115-8.

    Article  CAS  PubMed  Google Scholar 

  14. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice gGuidelines. Circulation. 2019. https://doi.org/10.1161/CIR.0000000000000678.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dawuti A, Sun S, Wang R, Gong D, Yuan T, Zhang L, et al. Systems pharmacology-based strategy to investigate pharmacological mechanisms of total flavonoids in Dracocephalum moldavica on chronic heart failure. Int J Mol Sci. 2022;23(15):8409. https://doi.org/10.3390/ijms23158409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Zhang MX, Li Z, Zhou YS, Ao YH, Yang Y, et al. A landscape of metabonomics for intermingled phlegm and blood stasis and its concurrent syndromes in stable angina pectoris of coronary heart disease. Front Cardiovasc Med. 2022. https://doi.org/10.3389/fcvm.2022.871142.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ji WQ, Wu L, Pan GM, Zou X. Effects and safety of non-pharmacological therapies of traditional Chinese medicine for coronary heart disease: an overview of systematic reviews. Evid-Based Compl Alt. 2022. https://doi.org/10.1155/2022/8465269.

    Article  Google Scholar 

  18. Zhang L, Li Y, Ma X, Liu JL, Wang XJ, Zhang LX, et al. Ginsenoside Rg1-notoginsenoside R1-protocatechuic aldehyde reduces atherosclerosis and attenuates low-shear stress-induced vascular endothelial cell dysfunction. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2020.588259.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han JH, Dai M, Zhao Y, Cai EB, Zhang LX, Jia XH, et al. Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis. J Ginseng Res. 2020;44(2):291–9. https://doi.org/10.1016/j.jgr.2019.01.001.

    Article  PubMed  Google Scholar 

  20. Liu SY, Xian Z, Zhao Y, Wang LM, Tian JZ, Pan C, et al. Quantitative determination and toxicity evaluation of aristolochic acid analogues in Asarum heterotropoides F. Schmidt (Xixin) and traditional Chinese patent medicines. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.761593.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu XY, Shao R, Yang XY, Xiao GX, He S, Feng YX, et al. Untargeted safety pharmacology screen of blood-activating and stasis-removing patent Chinese herbal medicines identified nonherbal ingredients as a cause of organ damage in experimental models. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00993.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang ZM. Clinical observation on Xuefu Zhuyu decoction in the treatment of coronary heart disease of ai stagnation and blood stasis type. Guangming J Chin Med. 2021;36(4):571–3. https://doi.org/10.3969/j.issn.1003-8914.2021.04.027.

    Article  Google Scholar 

  23. Wang Z. Clinical evaluation of shenshu guanxin decoction in treating stable angina pectoris of coronary heart disease. J Cardiovasc Surg. 2018;7(3):408–9. https://doi.org/10.3969/j.issn.2095-2260.2018.03.010.

    Article  Google Scholar 

  24. Zhang W. On treatment of 60 CHD patients with stable angina pectoris by yangxin tongmai decoction. Mod Chin Med. 2015;35(5):17–9. https://doi.org/10.13424/j.cnki.mtcm.2015.05.008.

    Article  Google Scholar 

  25. Jia F. A clinical study on treating syndrome of phlegm blocking heart vessel of the stable coronary heart disease with the Zhishi Xiebai Guizhi decoction plus Western medicine. J Chin Clin Med. 2021;13(2):11–5. https://doi.org/10.3969/j.issn.1674-7860.2021.02.003.

    Article  Google Scholar 

  26. Li WH, Li ZX, Li C. Clinical observation of huoxue anxin prescription combined with conventional Western medicine in treating acute myocardial infarction. J N Chin Med. 2016;48(11):7–8. https://doi.org/10.13457/j.cnki.jncm.2016.11.004.

    Article  CAS  Google Scholar 

  27. Zhang GX, Qin XQ. Clinical study on modified wendan decoction combined with routine Western medicine for coronary heart disease of turbid phlegm type. J N Chin Med. 2023;55(2):36–9. https://doi.org/10.13457/j.cnki.jncm.2023.02.009.

    Article  CAS  Google Scholar 

  28. Zhang R, Jia ML, Lou ZC. Clinical effect of Taohong Siwu Tang combined with routine Western Medicine for Coronary Heart Disease Angina Pectoris and Its Effect on Serum Inflammatory Factors. J N Chin Med. 2022;54(10):39–42. https://doi.org/10.13457/j.cnki.jncm.2022.10.008.

    Article  CAS  Google Scholar 

  29. Zhang XR, Sun LM, Shi R, Wang WQ. Effect of Huoxue Huayu decoction in the treatment of acute myocardial infarction after percutaneous coronary intervention. Hebei J Tradit Chin Med. 2022;44(10):1639–42. https://doi.org/10.3969/j.issn.1002-2619.2022.10.012. (1675).

    Article  Google Scholar 

  30. Liu AJ, Chen HJ. Clinical observation on Gualou Xiebai Guizhi decoction in the treatment of stable angina pectoris of coronary heart disease with turbid phlegm obstruction type. J Guangzhou Univ Tradit Chin Med. 2021;38(12):2565–71. https://doi.org/10.13359/j.cnki.gzxbtcm.2021.12.004.

    Article  CAS  Google Scholar 

  31. Zhang ML, Gao JB, Wang X, Xie LL. Clinical effect of Lianxia Ningxin prescription combined with felodipine on angina pectoris with phlegm-heat syndrome of coronary heart disease. World J Integrat Tradit West Med. 2022;17(7):1472–5. https://doi.org/10.13935/j.cnki.sjzx.220742. (1484).

    Article  Google Scholar 

  32. Wang AL. Pharmacological analysis of Shexiang Baoxin pill in the treatment of coronary angina pectoris. Chin J Clin Rational Drug Use. 2023;16(5):1–3. https://doi.org/10.15887/j.cnki.13-1389/r.2023.05.001.

    Article  Google Scholar 

  33. Liu DM, Zhong ZL, Luo GJ, Sha KC. Clinical study of Suxiao Jiuxin pills combined with arotinolol in treatment of angina pectoris. Drugs Clin. 2022;37(12):2781–5. https://doi.org/10.7501/j.issn.1674-5515.2022.12.018.

    Article  Google Scholar 

  34. Yang F, Liu XS, Xia Q, Li DM. Clinical study of tongxinluo capsule combined with bisoprolol in the treatment of angina pectoris of coronary heart disease. China Foreign Med Treat. 2021;40(1):100–2. https://doi.org/10.16662/j.cnki.1674-0742.2021.01.100. (133).

    Article  Google Scholar 

  35. Zhang HJ, Cheng GS. Clinical effect of Yixinshu capsule on patients with angina pectoris of coronary heart disease. Shenzhen J Integrat Tradit Chin West Med. 2023;33(6):30–2. https://doi.org/10.16458/j.cnki.1007-0893.2023.06.010.

    Article  Google Scholar 

  36. Zeng JY, Wang XL, Fan XH, Wei JX. Efficacy of compound Danshen dripping pills combined with atorvastatin in the treatment of coronary heart disease with angina pectoris and its influence on oxidative stress indicators of patients. Shaanxi J Tradit Chin Med. 2023;44(1):55–9. https://doi.org/10.3969/j.issn.1000-7369.2023.01.013.

    Article  Google Scholar 

  37. Zhang GP. Therapeutic effect of Danlou tablets on coronary heart disease angina pectoris of phlegm stasis type. Clin Res Pract. 2018;3(24):94–5. https://doi.org/10.19347/j.cnki.2096-1413.201824044.

    Article  Google Scholar 

  38. Liu FX, Mo JC, Chen ZY, Chen WG. Clinical effect of Danqi tablet combined with metoprolol in the treatment of angina pectoris of coronary heart disease. J Guangdong Med Coll. 2021;39(4):466–8. https://doi.org/10.3969/j.issn.1005-4057.2021.04.025.

    Article  CAS  Google Scholar 

  39. Chai DZ, Lv Y. Effect of rosuvastatin calcium combined with Xueshuanxinmaining tablets on serum inflammatory factors in patients with coronary heart disease. J China Prescr Drug. 2021;19(5):98–9. https://doi.org/10.3969/j.issn.1671-945X.2021.05.048.

    Article  Google Scholar 

  40. Mo JM, Zhang Q, Qi XH. Effect of Shensong Yangxin capsule on angina pectoris of coronary heart disease. Liaoning J Tradit Chin Med. 2022;49(11):115–9. https://doi.org/10.13192/j.issn.1000-1719.2022.11.030.

    Article  CAS  Google Scholar 

  41. Liu TJ, Wang XF, Zhang TT, Zhou J, Zhang X. Effects of Gelan Xinning soft capsule combined with ticagrelor tablets on cardiac function and vascular endothelial function in patients with angina pectoris of coronary heart disease. Prog Mod Biomed. 2022;22(4):651–4. https://doi.org/10.13241/j.cnki.pmb.2022.04.011. (765).

    Article  Google Scholar 

  42. Liu AH, Kuang YH, Huang RP, Ge QY. Application value of information-based health education and continuity of care in patients with peptic ulcer. Front Public Health. 2021. https://doi.org/10.3389/fpubh.2021.694128.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kui FG, Gu WW, Gao F, Niu YJ, Li WW, Zhang YR, et al. Research on effect and mechanism of Xuefu Zhuyu decoction on CHD based on meta-analysis and network pharmacology. Evid-Based Compl Alt. 2021. https://doi.org/10.1155/2021/9473531.

    Article  Google Scholar 

  44. Zhang S, Chen ZL, Tang YP, Duan JL, Yao KW. Efficacy and safety of xue-fu-zhu-yu decoction for patients with coronary heart disease: a systematic review and meta-analysis. Evid-Based Compl Alt. 2021. https://doi.org/10.1155/2021/9931826.

    Article  Google Scholar 

  45. Feng WW, Ao H, Yue SJ, Peng C. Systems pharmacology reveals the unique mechanism features of Shenzhu capsule for treatment of ulcerative colitis in comparison with synthetic drugs. Sci Rep-UK. 2018. https://doi.org/10.1038/s41598-018-34509-1.

    Article  Google Scholar 

  46. Huang MT, Wu HL, Wu JP, Chen QX, Zou DZ, Xu DP. Prevention of platelet aggregation and arterial thrombosis using a modified Shenzhu Guanxin formula. J Int Med Res. 2020;48(10):1410564276. https://doi.org/10.1177/0300060520941326.

    Article  CAS  Google Scholar 

  47. Jin X, Pan BQ, Wu HL, Wu BX, Li YK, Wang X, et al. The efficacy and safety of Shenzhu Guanxin recipe granules for the treatment of patients with coronary artery disease: protocol for a double-blind, randomized controlled trial. Trials. 2019. https://doi.org/10.1186/s13063-019-3629-4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang MX, Liu J, Zhang XZ, Zhang SM, Jiang YJ, Yu ZX, et al. Mechanism of Yangxin Tongmai decoction in the treatment of coronary heart disease with blood stasis syndrome based on network pharmacology and molecular docking. Evid-Based Compl Alt. 2022. https://doi.org/10.1155/2022/4692217.

    Article  Google Scholar 

  49. Gao J, Pan YJ, Zhao YX, Li HY, Mi ZS, Chen H, et al. Network pharmacology study on molecular mechanisms of Zhishi Xiebai Guizhi decoction in the treatment of coronary heart disease. Evid-Based Compl Alt. 2021. https://doi.org/10.1155/2021/3574321.

    Article  Google Scholar 

  50. Liu Y, He X, Di ZB, Du X. Study on the Active constituents and molecular mechanism of Zhishi Xiebai Guizhi decoction in the treatment of CHD based on UPLC-UESI-Q exactive focus, gene expression profiling, network pharmacology, and experimental validation. ACS Omega. 2022;7(5):3925–39. https://doi.org/10.1021/acsomega.1c04491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Zhang Y, Liu YM, Yang XC, Chen YY, Wu GJ, et al. Uncovering the protective mechanism of Huoxue Anxin recipe against coronary heart disease by network analysis and experimental validation. Biomed Pharmacother. 2020;121: 109655. https://doi.org/10.1016/j.biopha.2019.109655.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Q, Chen JY, Zhang YZ, Xu DP, Wu HL, Lin P, et al. Metabolic profile and potential mechanisms of Wendan decoction on coronary heart disease by ultra-high-performance quadrupole time of flight-mass spectrometry combined with network pharmacology analysis. J Sep Sci. 2023;46(1): e2200456. https://doi.org/10.1002/jssc.202200456.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, Zou ZY, Zhang YZ, Lin P, Lan TH, Qin ZF, et al. Characterization of chemical profile and quantification of major representative components of Wendan decoction, a classical traditional Chinese medicine formula. J Sep Sci. 2021. https://doi.org/10.1002/jssc.202000952.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang XY, Wang YW, Liu LF, Jiang H, Wang J, Xiao Y, et al. Efficacy of Wen-Dan decoction in the treatment of patients with coronary heart disease. Medicine. 2022;101(1): e28041. https://doi.org/10.1097/MD.0000000000028041.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang XZ, Wang T, Wang YZ, Li X, Chen Q, Wang Y, et al. Research progress on classical traditional Chinese medicine Taohong Siwu decoction in the treatment of coronary heart disease. Biomed Pharmacother. 2022;152: 113249. https://doi.org/10.1016/j.biopha.2022.113249.

    Article  PubMed  Google Scholar 

  56. Hou Y, Li XH, Wang XX, Dong TT, Yang JG. The effect of Huoxue Huayu decoction on restenosis after percutaneous coronary intervention in patients with coronary heart disease. Medicine. 2022;101(4): e28677. https://doi.org/10.1097/MD.0000000000028677.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li TT, Liu B, Wang HY, Zhang ML, Li DP. Effect of Huoxue Huayu decoction on the expression of inflammatory factors, sICAM-1 and MMP-9 in patients with restenosis after coronary artery stent implantation. Chin J Integrat Med Cardio Cerebrovasc Dis. 2019;17(09):1380–3. https://doi.org/10.12102/j.issn.1672-1349.2019.09.027.

    Article  Google Scholar 

  58. Teng C, Wang Y, Pang SH, Wei XT, Liu XZ. Study on the mechanism of Gualou Xiebai Guizhi decoction (GLXBGZD) in the treatment of coronary heart disease based on network pharmacology. Medicine. 2022;101(29): e29490. https://doi.org/10.1097/MD.0000000000029490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang YY, Zhao ZD, Kong PY, Gao L, Yu YN, Liu J, et al. A comparative pharmacogenomic analysis of three classic TCM prescriptions for coronary heart disease based on molecular network modeling. Acta Pharmacol Sin. 2020;41(6):735–44. https://doi.org/10.1038/s41401-019-0352-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, Yang K, Hao T, Zhu GD, Ling RB, Zhou XZ, et al. Prediction of molecular mechanisms for lianxia ningxin formula: a network pharmacology study. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.00489.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu L, Sun XD, Chen C, Qin YT, Guo XM. Shexiang Baoxin pill, derived from the traditional Chinese medicine, provides protective roles against cardiovascular diseases. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01161.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lv C, Chen LQ, Fu P, Yang N, Liu Q, Xu YW, et al. Simultaneous quantification of 11 active constituents in Shexiang Baoxin pill by ultraperformance convergence chromatography combined with tandem mass spectrometry. J Chromatogr B. 2017;1052:135–41. https://doi.org/10.1016/j.jchromb.2017.03.033.

    Article  CAS  Google Scholar 

  63. Yu YW, Liu S, Zhou YY, Huang KY, Wu BS, Lin ZH, et al. Shexiang Baoxin pill attenuates myocardial ischemia/reperfusion injury by activating autophagy via modulating the ceRNA-Map3k8 pathway. Phytomedicine. 2022;104: 154336. https://doi.org/10.1016/j.phymed.2022.154336.

    Article  CAS  PubMed  Google Scholar 

  64. Lei W, Deng YF, Hu XY, Ni JN, Jiang M, Bai G. Phthalides, senkyunolide A and ligustilide, show immunomodulatory effect in improving atherosclerosis, through inhibiting AP-1 and NF-κB expression. Biomed Pharmacother. 2019;117: 109074. https://doi.org/10.1016/j.biopha.2019.109074.

    Article  CAS  PubMed  Google Scholar 

  65. Li S, Zhan JG, Wang YC, Oduro PK, Owusu FB, Zhang JL, et al. Suxiao Jiuxin pill attenuates acute myocardial ischemia via regulation of coronary artery tone. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1104243.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Song NX, Lu DY, Wu GS, Wang SS, Zeng YY, Zhao J, et al. Serum proteomic analysis reveals the cardioprotective effects of Shexiang Baoxin pill and Suxiao Jiuxin pill in a rat model of acute myocardial infarction. J Ethnopharmacol. 2022;293: 115279. https://doi.org/10.1016/j.jep.2022.115279.

    Article  CAS  PubMed  Google Scholar 

  67. Lv JY, Liu SX, Guo SS, Gao JL, Song QQ, Cui XN. Tongxinluo capsule as supplementation and cardiovascular endpoint events in patients with coronary heart disease: a systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials. J Ethnopharmacol. 2022;289: 115033. https://doi.org/10.1016/j.jep.2022.115033.

    Article  CAS  PubMed  Google Scholar 

  68. Wei WX, Jiang YH. To investigate the clinical efficacy and potential mechanism of tongxinluo capsules in preventing coronary restenosis based on meta-analysis and network pharmacology analysis. Evid-Based Compl Alt. 2023. https://doi.org/10.1155/2023/7985459.

    Article  Google Scholar 

  69. Sun Z, Li ZL, Zuo LH, Wang ZH, Zhou L, Shi YY, et al. Qualitative and quantitative determination of YiXinShu tablet using ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry. J Sep Sci. 2017;40(22):4453–66. https://doi.org/10.1002/jssc.201700619.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang JJ, Guo FF, Wu HW, Wei JY, Xian MH, Fan FF, et al. Yixin-Shu facilitated cardiac-like differentiation of mesenchymal stem cells in vitro. RCS Adv. 2018;8(18):10032–9. https://doi.org/10.1039/C7RA13326J.

    Article  CAS  Google Scholar 

  71. Zhao YC, Xu LW, Qiao ZQ, Gao LC, Ding S, Ying XY, et al. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep-UK. 2016. https://doi.org/10.1038/srep23025.

    Article  Google Scholar 

  72. Hu YX, You HM, Ren CZ, Hu BW, Zhang LJ, Zhang YD, et al. Proangiogenesis effects of compound danshen dripping pills in zebrafish. BMC Complement Med Ther. 2022. https://doi.org/10.1186/s12906-022-03589-y.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Z, Cheng Q, Yu L, He YY, Gao LN, Wang Y, et al. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264.7 macrophages induced by ox-LDL. J Ethnopharmacol. 2022;298:115600. https://doi.org/10.1016/j.jep.2022.115600.

    Article  CAS  PubMed  Google Scholar 

  74. Chang H, Wang QY, Shi TJ, Huo KY, Li C, Zhang Q, et al. Effect of DanQi pill on PPARα, lipid disorders and arachidonic acid pathway in rat model of coronary heart disease. BMC Complem Altern Med. 2016. https://doi.org/10.1186/s12906-016-1083-3.

    Article  Google Scholar 

  75. Ma L, Shao MY, Sun QB, Li C, Wang Y. The mechanism of Danqi tablets in the treatment of coronary heart disease based on network pharmacology. Acta Pharm Sin. 2020;55(12):2942–50. https://doi.org/10.16438/j.0513-4870.2020-0761.

    Article  CAS  Google Scholar 

  76. Mao X, Xu HY, Li S, Su J, Li WJ, Guo QY, et al. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. Phytomedicine. 2019;54:159–68. https://doi.org/10.1016/j.phymed.2018.09.018.

    Article  CAS  PubMed  Google Scholar 

  77. Jiang XG, Jia JM, Li YS. Simultaneous determination of eight bioactive constituents in shensong yangxin capsule by UPLC. Chin Herb Med. 2013;5(3):212–6. https://doi.org/10.3969/j.issn.1674-6348.2013.03.006.

    Article  CAS  Google Scholar 

  78. Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. Phytomedicine. 2022;101: 154086. https://doi.org/10.1016/j.phymed.2022.154086.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao YX, Gao F, Zhang Y, Wang HT, Zhu JX, Chang LP, et al. Shensong Yangxin capsules prevent ischemic arrhythmias by prolonging action potentials and alleviating Ca2+ overload. Mol Med Rep. 2016;13(6):5185–92. https://doi.org/10.3892/mmr.2016.5203.

    Article  CAS  PubMed  Google Scholar 

  80. Gao X, Hu XH, Zhang Q, Wang XJ, Wen XH, Wang Y, et al. Characterization of chemical constituents and absorbed components, screening the active components of gelanxinning capsule and an evaluation of therapeutic effects by ultra-high performance liquid chromatography with quadrupole time of flight mass spectrometry. J Sep Sci. 2019;42(22):3439–50. https://doi.org/10.1002/jssc.201900942.

    Article  CAS  PubMed  Google Scholar 

  81. Gao X, Hu XH, Zhang Q, Wang XJ, Wen XH, Wang Y, et al. Exploring lipid biomarkers of coronary heart disease for elucidating the biological effects of gelanxinning capsule by lipidomics method based on LC–MS. Biomed Chromatogr. 2021. https://doi.org/10.1002/bmc.5091.

    Article  PubMed  Google Scholar 

  82. Leung SWS, Zhu D, Man RYK. Effects of the aqueous extract of Salvia miltiorrhiza (danshen) and its magnesium tanshinoate B-enriched form on blood pressure. Phytother Res. 2010;24(5):769–74. https://doi.org/10.1002/ptr.3047.

    Article  CAS  PubMed  Google Scholar 

  83. Wang XY, Yang Y, Liu X, Gao XM. Chapter two—pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. In: Du G, editor. Advances in pharmacology. Academic Press; 2020. p. 43–70.

    Google Scholar 

  84. Chen XP, Yu J, Zhong BL, Lu JH, Lu JJ, Li SJ, et al. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol Res. 2019;145: 104254. https://doi.org/10.1016/j.phrs.2019.104254.

    Article  CAS  PubMed  Google Scholar 

  85. Hao XL, Pu ZQ, Cao G, You DW, Zhou Y, Deng CP, et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J Adv Res. 2020;23:1–12. https://doi.org/10.1016/j.jare.2020.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Q, Shen L, Wang Z, Jiang HP, Liu LX. Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother. 2016;84:106–14. https://doi.org/10.1016/j.biopha.2016.09.014.

    Article  CAS  PubMed  Google Scholar 

  87. Li S, Yang K, Cao WL, Guo R, Liu ZH, Zhang J, et al. Tanshinone IIA enhances the therapeutic efficacy of mesenchymal stem cells derived exosomes in myocardial ischemia/reperfusion injury via up-regulating miR-223-5p. J Control Release. 2023. https://doi.org/10.21203/rs.3.rs-1062444/v1.

    Article  PubMed  Google Scholar 

  88. Pan X, Wan RT, Wang YM, Liu SL, He Y, Deng B, et al. Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B. Brit J Pharmacol. 2022;179(14):3778–814. https://doi.org/10.1111/bph.15826.

    Article  CAS  Google Scholar 

  89. Yi T, Fang JY, Zhu L, Tang YN, Ji H, Zhang YZ, et al. The variation in the major constituents of the dried rhizome of Ligusticum chuanxiong (Chuanxiong) after herbal processing. Chin Med-UK. 2016. https://doi.org/10.1186/s13020-016-0098-5.

    Article  Google Scholar 

  90. Chen ZJ, Zhang C, Gao F, Fu Q, Fu CM, He Y, et al. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol. 2018;119:309–25. https://doi.org/10.1016/j.fct.2018.02.050.

    Article  CAS  PubMed  Google Scholar 

  91. Fang ZC, Luo ZH, Ji YY, Yang RH, Gao JT, Zhang NN. A network pharmacology technique used to investigate the potential mechanism of ligustilide’s effect on atherosclerosis. J Food Biochem. 2022. https://doi.org/10.1111/jfbc.14146.

    Article  PubMed  Google Scholar 

  92. Choi ES, Yoon JJ, Han BH, Jeong DH, Lee YJ, Kang DG, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and NO synthesis in HUVECs. Phytomedicine. 2018;38:12–23. https://doi.org/10.1016/j.phymed.2017.09.022.

    Article  CAS  PubMed  Google Scholar 

  93. Zhu Y, Zhang YJ, Huang X, Xie Y, Qu Y, Long HY, et al. Z-ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110–20. https://doi.org/10.1016/j.atherosclerosis.2019.02.010.

    Article  CAS  PubMed  Google Scholar 

  94. Lei J, Xiang P, Zeng SM, Chen L, Zhang L, Yuan ZY, et al. Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-κB/HPSE1 signaling pathway during inflammation. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2021.791841.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jiang FR, Qian JC, Chen SY, Zhang WB, Liu C. Ligustrazine improves atherosclerosis in rat via attenuation of oxidative stress. Pharm Biol. 2011;49(8):856–63. https://doi.org/10.3109/13880209.2010.551776.

    Article  CAS  PubMed  Google Scholar 

  96. Im D. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules. 2020;10(3):444. https://doi.org/10.3390/biom10030444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karmazyn M, Moey M, Gan XT. Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs. 2011;71(15):1989–2008. https://doi.org/10.2165/11594300-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  98. Gurung B, Bhardwaj PK, Rai AK, Sahoo D. Major ginsenoside contents in rhizomes of Panax sokpayensis and Panax bipinnatifidus. Nat Prod Res. 2018;32(2):234–8. https://doi.org/10.1080/14786419.2017.1343322.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang XM, Kong C, Wang XX, Hou HR, Yu HX, Wang LZ, et al. LC-MS Analysis of ginsenosides in different parts of panax quinquefolius and their potential for coronary disease improvement. Planta Med. 2023;89(7):764–72. https://doi.org/10.1055/a-2058-1199.

    Article  CAS  PubMed  Google Scholar 

  100. Lyu TJ, Zhang ZX, Chen J, Liu ZJ. Ginsenoside Rg1 ameliorates apoptosis, senescence and oxidative stress in ox-LDL-induced vascular endothelial cells via the AMPK/SIRT3/p53 signaling pathway. Exp Ther Med. 2022;24(3):545. https://doi.org/10.3892/etm.2022.11482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xue QQ, Yu T, Wang ZB, Fu XX, Li XX, Zou L, et al. Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis. J Ginseng Res. 2023;47(2):237–45. https://doi.org/10.1016/j.jgr.2022.08.001.

    Article  PubMed  Google Scholar 

  102. Geng JN, Fu WW, Yu XF, Lu ZY, Liu YZ, Sun MY, et al. Ginsenoside Rg3 Alleviates ox-LDL induced endothelial dysfunction and prevents atherosclerosis in ApoE−/− mice by regulating PPARγ/FAK signaling pathway. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00500.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li YN, Zhang WH. Effect of Ginsenoside Rb2 on a myocardial cell model of coronary heart disease through Nrf2/HO-1 signaling pathway. Biol Pharm Bull. 2022;45(1):71–6. https://doi.org/10.1248/bpb.b21-00525.

    Article  PubMed  Google Scholar 

  104. Qin M, Luo Y, Lu S, Sun J, Yang K, Sun GB, et al. Ginsenoside F1 ameliorates endothelial cell inflammatory injury and prevents atherosclerosis in mice through A20-mediated suppression of NF-kB signaling. Front Pharmacol. 2017. https://doi.org/10.3389/fphar.2017.00953.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ke ZC, Wang G, Yang L, Qiu HH, Wu H, Du M, et al. Crude terpene glycoside component from Radix Paeoniae Rubra protects against isoproterenol-induced myocardial ischemic injury via activation of the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol. 2017;206:160–9. https://doi.org/10.1016/j.jep.2017.05.028.

    Article  CAS  PubMed  Google Scholar 

  106. Yan BJ, Shen ML, Fang JY, Wei DN, Qin LP. Advancement in the chemical analysis of Paeoniae radix (Shaoyao). J Pharmaceut Biomed. 2018;160:276–88. https://doi.org/10.1016/j.jpba.2018.08.009.

    Article  CAS  Google Scholar 

  107. Li H, Jiao YB, Xie MJ. Paeoniflorin ameliorates atherosclerosis by suppressing TLR4-mediated NF-κB activation. Inflammation. 2017;40(6):2042–51. https://doi.org/10.1007/s10753-017-0644-z.

    Article  CAS  PubMed  Google Scholar 

  108. Li WF, Zhi WB, Liu F, Zhao JM, Yao Q, Niu XF. Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int Immunopharmacol. 2018;54:103–11. https://doi.org/10.1016/j.intimp.2017.10.017.

    Article  CAS  PubMed  Google Scholar 

  109. Liu M, Feng J, Du Q, Ai J, Lv Z. Paeoniflorin attenuates myocardial fibrosis in isoprenaline-induced chronic heart failure rats via inhibiting P38 MAPK pathway. Curr Med Sci. 2020;40(2):307–12. https://doi.org/10.1007/s11596-020-2178-0.

    Article  CAS  PubMed  Google Scholar 

  110. Liu M, Ai J, Feng J, Zheng JK, Tang K, Shuai Z, et al. Effect of paeoniflorin on cardiac remodeling in chronic heart failure rats through the transforming growth factor β1/Smad signaling pathway. Cardiovasc Diagn Ther. 2019;9(3):272–80. https://doi.org/10.21037/cdt.2019.06.01.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu SY, Long Y, Yu S, Zhang DK, Yang QY, Ci ZM, et al. Borneol in cardio-cerebrovascular diseases: pharmacological actions, mechanisms, and therapeutics. Pharmacol Res. 2021;169: 105627. https://doi.org/10.1016/j.phrs.2021.105627.

    Article  CAS  PubMed  Google Scholar 

  112. Mei YQ, Li LN, Fan LH, Fan WX, Liu LC, Zhang FL, et al. The history, stereochemistry, ethnopharmacology and quality assessment of borneol. J Ethnopharmacol. 2023;300: 115697. https://doi.org/10.1016/j.jep.2022.115697.

    Article  CAS  PubMed  Google Scholar 

  113. Tao WY, Xu X, Wang X, Li BH, Wang YH, Li Y, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145(1):1–10. https://doi.org/10.1016/j.jep.2012.09.051.

    Article  CAS  PubMed  Google Scholar 

  114. Wang YF, Li ZR, Liu B, Wu RM, Gong HF, Su ZH, et al. Isoborneol attenuates low-density lipoprotein accumulation and foam cell formation in macrophages. Drug Des Dev Ther. 2020;14:167–73. https://doi.org/10.2147/DDDT.S233013.

    Article  CAS  Google Scholar 

  115. Li Q, Yuan MR, Li XH, Li JR, Xu M, Wei D, et al. New dammarane-type triterpenoid saponins from Panax notoginseng saponins. J Ginseng Res. 2020;44(5):673–9. https://doi.org/10.1016/j.jgr.2018.12.001.

    Article  PubMed  Google Scholar 

  116. Jiang D, Rong QX, Chen YJ, Yuan QJ, Shen Y, Guo J, et al. Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng. Int J Biol Macromol. 2017;95:658–66. https://doi.org/10.1016/j.ijbiomac.2016.11.070.

    Article  CAS  PubMed  Google Scholar 

  117. Wang T, Guo RX, Zhou GH, Zhou X, Kou ZZ, Sui F, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol. 2016;188:234–58. https://doi.org/10.1016/j.jep.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  118. Yu G, Wang J. Exploring mechanisms of Panax notoginseng saponins in treating coronary heart disease by integrating gene interaction network and functional enrichment analysis. Chin J Integr Med. 2016;22(8):589–96. https://doi.org/10.1007/s11655-016-2472-7.

    Article  CAS  PubMed  Google Scholar 

  119. Dong Y, Duan L, Chen HW, Liu YM, Zhang Y, Wang J. Network pharmacology-based prediction and verification of the targets and mechanism for Panax notoginseng saponins against coronary heart disease. Evid-Based Compl Alt. 2019. https://doi.org/10.1155/2019/6503752.

    Article  Google Scholar 

  120. Lei W, Yan YQ, Ma YL, Jiang M, Zhang BL, Zhang H, et al. Notoginsenoside R1 regulates ischemic myocardial lipid metabolism by activating the AKT/mTOR signaling pathway. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.905092.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yu YL, Sun GB, Luo Y, Wang M, Chen RC, Zhang JY, et al. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways. Sci Rep-UK. 2016. https://doi.org/10.1038/srep21730.

    Article  Google Scholar 

  122. Zeng JJ, Shi HQ, Ren FF, Zhao XS, Chen QY, Wang DJ, et al. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin. 2023. https://doi.org/10.1038/s41401-023-01057-y.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wu JF, Wang LL, Cui Y, Liu F, Zhang J. Allii Macrostemonis Bulbus: a comprehensive review of ethnopharmacology, phytochemistry and pharmacology. Molecules. 2023;28(6):2485. https://doi.org/10.3390/molecules28062485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yao ZH, Qin ZF, Dai Y, Yao XS. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin J Nat Med. 2016;14(7):481–98. https://doi.org/10.1016/S1875-5364(16)30058-9.

    Article  CAS  PubMed  Google Scholar 

  125. Zhao Y, Zheng JH, Xu WH, Zhao XW. Research on mechanism of Xiebai (Allium Macrostemon Bge) treating coronary heart disease based on network pharmacology and molecular docking. Chin Arch Tradit Chin Med. 2020;38(01):105–9. https://doi.org/10.13193/j.issn.1673-7717.2020.01.025.

    Article  CAS  Google Scholar 

  126. Wen L, Han XP, Xie Y, Cao J. Effect of Allium Macrostemon saponins on myocardial apoptosis, expression of inflammatory factor and NF-κB in rats with coronary heart disease. Chin J Integr Med Cardio-erebrovasc Dis. 2022;20(13):2359–64. https://doi.org/10.12102/j.issn.1672-1349.2022.13.009.

    Article  Google Scholar 

  127. Chen ZJ, Liu LJ, Gao CF, Chen WJ, Vong CT, Yao PF, et al. Astragali Radix (Huangqi): a promising edible immunomodulatory herbal medicine. J Ethnopharmacol. 2020;258: 112895. https://doi.org/10.1016/j.jep.2020.112895.

    Article  CAS  PubMed  Google Scholar 

  128. Dong N, Li XR, Xue CY, Zhang L, Wang CS, Xu XY, et al. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J Cell Physiol. 2020;235(7–8):5525–40. https://doi.org/10.1002/jcp.29452.

    Article  CAS  PubMed  Google Scholar 

  129. Lin XP, Cui HJ, Yang AL, Luo JK, Tang T. Astragaloside IV improves vasodilatation function by regulating the PI3K/AKT/eNOS signaling pathway in rat aorta endothelial cells. J Vasc Res. 2018;55(3):169–76. https://doi.org/10.1159/000489958.

    Article  CAS  PubMed  Google Scholar 

  130. Dong ZW, Zhao P, Xu M, Zhang C, Guo W, Chen HH, et al. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation. Sci Rep-UK. 2017. https://doi.org/10.1038/s41598-017-02360-5.

    Article  Google Scholar 

  131. Feng WX, Yang J, Li Y, Sun HY, Zhang J, Xue YT. Astragaloside IV alleviates heart failure by modulating Nrf-2. Chi Med J-Peking. 2022;135(9):1099–101. https://doi.org/10.1097/CM9.0000000000001828.

    Article  CAS  Google Scholar 

  132. Sui YB, Wang Y, Liu L, Liu F, Zhang YQ. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm Biol. 2019;57(1):48–54. https://doi.org/10.1080/13880209.2019.1569697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ma CR, Xia RL, Yang S, Liu LP, Zhang J, Feng K, et al. Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE-/- mice. Theranostics. 2020;10(3):1090–106. https://doi.org/10.7150/thno.38115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang BH, Hao ZW, Zhou WL, Zhang S, Sun MY, Li HL, et al. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-gamma signaling based on network pharmacology and experimental validation. Bioengineered. 2021;12(1):4887–98. https://doi.org/10.1080/21655979.2021.1959493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Qiao S, Jin ED, Guo SJ, Gao W. Effect of astragalus polysaccharides on electrocardiogram and levels of serum related factors in patients with coronary heart disease. Med Innov China. 2018;15(2):65–9. https://doi.org/10.3969/j.issn.1674-4985.2018.02.016.

    Article  Google Scholar 

  136. Limage R, Tako E, Kolba N, Guo Z, García Rodríguez A, Marques CNH, et al. TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model. Small. 2020;16(21):2000601. https://doi.org/10.1002/smll.202000601.

    Article  CAS  Google Scholar 

  137. Cui L, Zhao TT, Hu HB, Zhang W, Hua XG. Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed Res Int. 2017;2017:1–10. https://doi.org/10.1155/2017/3796359.

    Article  Google Scholar 

  138. Dai YX, Sun ZH, Zheng Y, Ge JB. Recent advances in the gut microbiome and microbial metabolites alterations of coronary artery disease. Sci Bull. 2023;68(6):549–52. https://doi.org/10.1016/j.scib.2023.03.009.

    Article  Google Scholar 

  139. Jia QJ, Wang LR, Zhang XN, Ding YJ, Li H, Yang YX, et al. Prevention and treatment of chronic heart failure through traditional Chinese medicine: role of the gut microbiota. Pharmacol Res. 2020;151: 104552. https://doi.org/10.1016/j.phrs.2019.104552.

    Article  CAS  PubMed  Google Scholar 

  140. Li XL, Cui JJ, Zheng WS, Zhang JL, Li R, Ma XL, et al. Bicyclol alleviates atherosclerosis by manipulating gut microbiota. Small. 2022;18(9):2105021. https://doi.org/10.1002/smll.202105021.

    Article  CAS  Google Scholar 

  141. Shi YF, Hu JX, Geng J, Hu TT, Wang BJ, Yan WT, et al. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed Pharmacother. 2018;107:1556–63. https://doi.org/10.1016/j.biopha.2018.08.148.

    Article  CAS  PubMed  Google Scholar 

  142. Xie ZL, Liu XX, Huang XT, Liu Q, Yang MY, Huang D, et al. Remodelling of gut microbiota by berberine attenuates trimethylamine N-oxide-induced platelet hyperreaction and thrombus formation. Eur J Pharmacol. 2021;911: 174526. https://doi.org/10.1016/j.ejphar.2021.174526.

    Article  CAS  PubMed  Google Scholar 

  143. Zhu L, Zhang D, Zhu H, Zhu JM, Weng SQ, Dong L, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in ApoE−/− mice. Atherosclerosis. 2018;268:117–26. https://doi.org/10.1016/j.atherosclerosis.2017.11.023.

    Article  CAS  PubMed  Google Scholar 

  144. Nie J, Zhang L, Zhao G, Du X. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites. J Appl Microbiol. 2019;127(6):1824–34. https://doi.org/10.1111/jam.14441.

    Article  CAS  PubMed  Google Scholar 

  145. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013. https://doi.org/10.1056/NEJMoa1109400.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105(8):1049–56. https://doi.org/10.1172/JCI9259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-n-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7(2):e2210–5. https://doi.org/10.1128/mBio.02210-15.

    Article  Google Scholar 

  148. Shi HL, Ge X, Ma X, Zheng MX, Cui XY, Pan W, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome. 2021. https://doi.org/10.1186/s40168-021-01172-0.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Aguilar EC, Santos LCD, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem. 2016;34:99–105. https://doi.org/10.1016/j.jnutbio.2016.05.002.

    Article  CAS  PubMed  Google Scholar 

  150. Haghikia A, Zimmermann F, Schumann P, Jasina A, Roessler J, Schmidt D, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J. 2022;43(6):518–33. https://doi.org/10.1093/eurheartj/ehab644.

    Article  CAS  PubMed  Google Scholar 

  151. Liu H, Tian R, Wang H, Feng S, Li H, Xiao Y, et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med. 2020. https://doi.org/10.1186/s12967-020-02539-x.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Li XX, Su CY, Jiang ZB, Yang YX, Zhang Y, Yang MX, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. NPJ Biofilms Microbi. 2021;7(1):36. https://doi.org/10.1038/s41522-021-00205-8.

    Article  CAS  Google Scholar 

  153. Lin KY, Wang XD, Li J, Zhao P, Xi XW, Feng Y, et al. Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway in mice. Phytomedicine. 2022;101: 154104. https://doi.org/10.1016/j.phymed.2022.154104.

    Article  CAS  PubMed  Google Scholar 

  154. Cheng TY, Li JX, Chen JY, Chen PY, Ma LR, Zhang GL, et al. Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chin Med-UK. 2021. https://doi.org/10.1186/s13020-021-00516-0.

    Article  Google Scholar 

  155. Fu Y, Feng H, Ding X, Meng QH, Zhang SR, Li J, et al. Alisol B 23-acetate adjusts bile acid metabolisim via hepatic FXR-BSEP signaling activation to alleviate atherosclerosis. Phytomedicine. 2022;101: 154120. https://doi.org/10.1016/j.phymed.2022.154120.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang YL, Wang YL, Yan K, Deng QQ, Li FZ, Liang XJ, et al. Nanostructures in Chinese herbal medicines (CHMs) for potential therapy. Nanoscale Horiz. 2023. https://doi.org/10.1039/d3nh00120b.

    Article  PubMed  Google Scholar 

  157. Silva P, Bonifácio B, Ramos M, Negri K, Maria Bauab T, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed. 2014. https://doi.org/10.2147/IJN.S52634.

    Article  Google Scholar 

  158. Han K, Zhang L, Wang M, Zhang R, Wang CY, Zhang CZ. Prediction methods of herbal compounds in Chinese medicinal herbs. Molecules. 2018;23(9):2303. https://doi.org/10.3390/molecules23092303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chang.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Linhai Cao, Hongxia Ni, Xiaoxiao Gong, Ziyan Zang, and Hui Chang declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Authors' Contributions

Conceptualization and project administration: HC and LC. Investigation: All authors. Data curation: LC. Supervision: HC. Validation: All authors. Visualization: LC. Writing—original draft: LC. Writing—review and editing: LC and HN.

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Ni, H., Gong, X. et al. Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota. Drugs 84, 179–202 (2024). https://doi.org/10.1007/s40265-024-01994-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-024-01994-w

Navigation