Skip to main content
Log in

Isolation and Chemical Structural Elucidation of Antibacterial Bioactive Compounds from Endophytic Fungal Strain Phoma sp. D1

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

The present investigation has been performed for the isolation, optimization, and chemical characterization of antibacterial compounds from endophytic fungi that survive inside the internal tissues of plants without causing any symptoms. Endophytic fungi were isolated from four medicinal plants and screened for their antibacterial activity. The fungal strain Phoma sp. D1 showed maximum antibacterial activity at 18.25 ± 0.58, 22.75 ± 0.85, 19.30 ± 0.76, and 16.30 ± 0.65 against Klebsiella pneumoniae, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, respectively. For maximum production of antibacterial compounds, Phoma sp. D1 was further optimized on different sources such as culture media, pH, temperature, carbon and nitrogen sources, and incubation period. The optimum culture media, pH, temperature, carbon and nitrogen, and incubation period for bioactive metabolite production of the strain were recorded in SDB, dextrose, yeast extract, 25 ± 0.1, and pH 8.0. The purification and chemical characterization of the antibacterial compounds were done by using solvent–solvent extraction, thin-layer chromatography, and gas chromatography and mass spectroscopy. The chemical characterization of the extract from Phoma sp. D1 showed the presence of five compounds, 2-(-cyclohexenyl) ethylamine, 2-chloro-6 fluorophenol, butyl ether2-hydroxyskatole4-glycerol, p-coumarate, and bicyclo [4,2,1] nona-2,4-dien-9-one could be responsible for antibacterial activity. The computation observation of biomolecules through DFT, QSAR, EHOMO, and ELUMO was also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yassin A, AlOmari M, Al-Azzam S, Karasneh R, Abu-Ismail L, Soudah O. Impact of social media on public fear, adoption of precautionary behaviors, and compliance with health regulations during COVID-19 pandemic. Int J Environ Health Res. 2022;32(9):2027–39.

    Article  CAS  PubMed  Google Scholar 

  2. Aware CB, Patil DN, Suryawanshi SS, Mali PR, Rane MR, Gurav RG, Jadhav JP. Natural bioactive products as promising therapeutics: a review of natural product-based drug development. S Afr J Bot. 2022;19.

  3. Visalakchi S, Muthumary J. Taxol (Anticancer drug) producing endophytic fungi: an overview. IJPBS. 2010;1:BS31.

    Google Scholar 

  4. Cragg GM, Newman DJ. Natural products a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-Gen Sub. 2013;1830:3670–95.

    Article  CAS  Google Scholar 

  5. Kumar S, Aharwal RP, Shukla H, Rajak RC, Sandhu SS. Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharma Pharm Sci. 2014;3:1179–97.

    Google Scholar 

  6. Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J Appl Pharma Sci. 2016;6:242–54. https://doi.org/10.7324/JAPS.2016.601034.

    Article  CAS  Google Scholar 

  7. Kumar S, Aharwal RP, Jain R, Sandhu SS. Bioactive molecules of endophytic fungi and their potential in anticancer drug development. Curr Pharmacol Rep. 2021;7:27–41. https://doi.org/10.1007/s40495-021-00251-y.

    Article  Google Scholar 

  8. Rai N, Gupta P, Keshri PK, Verma A, Mishra P, Kumar D, Kumar A, Singh SK, Gautam V. Fungal endophytes: an accessible source of bioactive compounds with potential anticancer activity. Appl Biochem Biotechnol. 2022;194(7):3296–319.

    Article  CAS  PubMed  Google Scholar 

  9. Mamangkey J, Mendes LW, Harahap A, Briggs D, Kayacilar C. Endophytic bacteria and fungi from Indonesian medicinal plants with antibacterial, pathogenic antifungal and extracellular enzymes activities: a review. Int J Sci Technol Manag. 2022;3:245–55. https://doi.org/10.46729/ijstm.v3i1.428.

    Article  Google Scholar 

  10. Singh R, Dubey AK. Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci. 2015;5:106–16. https://doi.org/10.35652/IGJPS.2015.11.

    Article  CAS  Google Scholar 

  11. Joseph B, Priya RM. Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol. 2011;1:291–309. https://doi.org/10.3923/ajbmb.2011.291.309.

    Article  Google Scholar 

  12. Bogas AC, CruzFPN Lacava PT, Sousa CP. Endophytic fungi: an overview on biotechnological and agronomic potential. Braz J Biol. 2022;84:e258557. https://doi.org/10.1590/1519-6984.258557.

    Article  CAS  PubMed  Google Scholar 

  13. Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora: antibacterial secondary metabolites and their therapeutic potential. Curr Pharmacol Rep. 2021;7:150–70. https://doi.org/10.1007/s40495-021-00261-w.

    Article  Google Scholar 

  14. Santra HK, Maity S, Banerjee D. Production of bioactive compounds with broad spectrum bactericidal action, bio-film inhibition and antilarval potential by the secondary metabolites of the endophytic fungus Cochliobolus sp. APS1 isolated from the Indian medicinal herb Andrographispaniculata. Molecules. 2022;27:1459. https://doi.org/10.3390/molecules27051459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sahu R, Kumar S, Aharwal RP, Sandhu SS. Antibacterial activity of isolated endophytic fungi from Rauvolfia serpentina (L.) Benth ex Kurz. Int J Pharm Pharma Sci. 2016;8:38–42. https://doi.org/10.22159/ijpps.2016v8i11.9733.

    Article  CAS  Google Scholar 

  16. Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv. 2020;39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462.

    Article  CAS  PubMed  Google Scholar 

  17. Ganie SA, Rather LJ, Li Q. Review on anti-cancer and anti-microbial applications of curdlan biomaterials. J Polym Environ. 2022;1:1–6.

    Google Scholar 

  18. Philip S, Jayasree EG, Mohanan K. Antidiabetic, antioxidant, DFT and molecular docking studies of a triazene derivative and its transition metal complexes. Res ChemIntermed. 2020;46:75–99. https://doi.org/10.1007/s11164-019-03936-8.

    Article  CAS  Google Scholar 

  19. Bagur H, Medidi RS, Somu P, Choudhury PJ, Karua CS, Guttula PK, Melappa G, Poojari CC. Endophyte fungal isolate mediated biogenic synthesis and evaluation of biomedical applications of silver nanoparticles. Mat Tech. 2022;37:167–78. https://doi.org/10.1080/10667857.2020.1819089.

    Article  CAS  Google Scholar 

  20. Saithong P, Panthavee W, Stonsaovapak S, Li C. Isolation and primary identification of endophytic fungi from Cephalotaxusmannii trees. Maejo Int J Sci Technol. 2010;4:446–53.

    Google Scholar 

  21. Liang H, Xing Y, Chen J, Zhang D, Guo S, Wang C. Antimicrobial activities of endophytic fungi isolated from Ophiopogonjaponicus (Liliaceae). BMC Complement Altern Med. 2012;12:1–6. https://doi.org/10.1186/1472-6882-12-238.

    Article  Google Scholar 

  22. Marsola SJ, Jorge LF, Meniqueti AB, Bertéli MBD, de Lima TEF, Bezerra JL, Lopes AD, Gazim ZC, do Valle JS, Colauto NB, Linde GA. Endophytic fungi of Brunfelsia uniflora: isolation, cryopreservation, and determination of enzymatic and antioxidant activity. World J Microbiol Biotechnol. 2022;38:1-15. https://doi.org/10.1007/s11274-022-03278-5

  23. Sandhu SS, Aharwal RP, Kumar S. Isolation and antibacterial property of endophytic fungi isolated from Indian medicinal plant Calotropisprocera Linn. World JPharm Pharm Sci. 2014;3:678–91.

    Google Scholar 

  24. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. Volume 1.Academic Press (London) Ltd.1980

  25. Maadon SN, Wakid SA, Zainudin II, Rusli LS, Mohdzan MS, Hasan N, Shah NAA, Rohani ER. Isolation and identification of endophytic fungi from UiTM Reserve Forest, Negeri Sembilan. Sains Malaysiana. 2018;47:3025–30. https://doi.org/10.17576/jsm-2018-4712-12.

    Article  CAS  Google Scholar 

  26. Rodrigo AR, Atilon VDA, Renildo MDC, Clarice MC. Antibacterial activity of endophytic fungi from the medicinal plant Uncaria tomentosa (Willd.) DC. J Med Plants Res. 2018;2:179–85. https://doi.org/10.5897/JMPR2018.6558.

    Article  Google Scholar 

  27. Palanichamy P, Krishnamoorthy G, Kannan S, Marudhamuthu M. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt J Basic Appl Sci. 2018;5:303–12. https://doi.org/10.1016/j.ejbas.2018.07.002.

    Article  Google Scholar 

  28. Mao Z, Zhang W, Wu C, Feng H, Peng Y, Shahid H, Cui Z, DingP Shan T. Diversity and antibacterial activity of fungal endophytes from Eucalyptus exserta. BMC Microbiol. 2021;21:1–12. https://doi.org/10.1186/s12866-021-02229-8.

    Article  CAS  Google Scholar 

  29. Mathan S, Subramanian V, Nagamony S. Optimization and antimicrobial metabolite production from endophytic fungi Aspergillus terreus KC582297. European J Exp Biol. 2013;3:138–44.

    Google Scholar 

  30. Sandey K, Aharwal RP, Kumar S, Sandhu SS. Production and optimization of antibacterial metabolites from endophytic fungi Nigrospora sp. ML# 3. J Appl Pharm Sci. 2015;5:031–7. https://doi.org/10.7324/JAPS.2015.501105.

    Article  CAS  Google Scholar 

  31. Verma SK, Lal MOTI, Das MD. Optimization of process parameters for production of antimicrobial metabolites by an endophytic fungus Aspergillus sp Cpr5 isolated from Calotropis procera root. Optimization. 2017;10:225–30. https://doi.org/10.22159/ajpcr.2017.v10i4.16631.

    Article  Google Scholar 

  32. Jain P, Gupta S. Effect of carbon and nitrogen sources on antimicrobial metabolite production by endophytic fungus Penicillum sp against human pathogens. J Pharma Res. 2012;5:4325–8.

    CAS  Google Scholar 

  33. Gogoi DK, Deka Boruah HP, Saikia R, Bora TC. Optimization of process parameters for improved production of bioactive metabolite by a novel endophytic fungus Fusarium sp DF2 isolated from Taxus wallichiana of North East India. World J MicrobiolBiotechnol. 2008;24:79–87. https://doi.org/10.1007/s11274-007-9442-3.

    Article  CAS  Google Scholar 

  34. Clarance P, Khusro A, Lalitha J, Sales J, Paul A. Optimization of camptothecin production and biomass yield from endophytic fungus Fusarium solanistrain ATLOY-8. J Appl Pharm Sci. 2019;9:35–46. https://doi.org/10.7324/JAPS.2019.91005.

    Article  CAS  Google Scholar 

  35. Kaur N, Arora DS. Prospecting the antimicrobial and antibiofilm potential of Chaetomiumglobosum an endophytic fungus from Moringaoleifera. AMB Express. 2020;10:206. https://doi.org/10.1186/s13568-020-01143-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Fox DJ. Gaussian 09, version D. 01; Gaussian. Inc., Wallingford, CT.2009.

  37. GaussView 6.0, (Gaussian Inc., Wallingford, CT, USA) 2019.

  38. Sarangi AK, Mahapatra BB, Sethy SK. Synthesis and characterization of tetranuclear metal complexes with an octadentate azodye ligand. Chem Afr. 2018;1:17–28. https://doi.org/10.1007/s42250-018-0002-z.

    Article  CAS  Google Scholar 

  39. Sarangi AK, Mahapatra BB, Mohapatra RK, Sethy SK, Das D, Pintilie L, Kudrat-E-Zahan M, Azam M, Meher H. Synthesis and characterization of some binuclear metal complexes with a pentadentate azodye ligand: an experimental and theoretical study. Appl Organomet Chem. 2020;34(8):e5693. https://doi.org/10.1002/aoc.5693.

    Article  CAS  Google Scholar 

  40. Mohapatra RK, Dhama K, El-Arabey AA, Sarangi AK, Tiwari R, Emran TB, Azam M, Al-Resayes SI, Raval MK, Seidel V, Abdalla M. Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2:DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. J King Saud Uni Sci. 2021;33:101637. https://doi.org/10.1016/j.jksus.2021.101637.

    Article  Google Scholar 

  41. Rajput K, Chanyal S, Agrawal PK. Optimization of protease production byendophytic fungus, Alternariaalternata isolated from gymnosperm tree-CupressustorulosaD Don. World J Pharm Pharm Sci. 2016;5:1034–54.

    CAS  Google Scholar 

  42. Manganyi MC, Regnier T, Tchatchouang CDK, Bezuidenhout CC, Ateba CN. Antibacterial activity of endophytic fungi isolated from Sceletiumtortuosum L. (Kougoed). Ann Microbiol. 2019;69:659–63. https://doi.org/10.1007/s13213019-1444-5.

    Article  CAS  Google Scholar 

  43. Atri N, Rai N, Singh AK, Verma M, Barik S, Gautam V, Singh SK. Screening for endophytic fungi with antibacterial efficiency from Moringaoleifera and Withaniasomnifera. J Sci Res. 2020;64:127–33.

    Google Scholar 

  44. Dwibedi V, Rath SK, Prakash R, Saxena S. Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity. Biotechnol Lett. 2021;43:627–44.

    Article  CAS  PubMed  Google Scholar 

  45. Santra HK, Maity S, Banerjee D. Production of bioactive compounds with broad spectrum bactericidal action, bio-film inhibition and antilarval potential by the secondary metabolites of the endophytic fungus Cochliobolus sp. APS1 isolated from the Indian medicinal herb Andrographispaniculata. Molecules. 2022;27(5):1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deka D, Jha DK. Optimization of culture parameters for improved production of bioactive metabolite by endophytic Geosmithia pallida (KU693285) isolated from Brucea mollis Wall ex Kurz, an endangered medicinal plant. J Pure Appl Microbiol. 2018;12:1205–13.

    Article  CAS  Google Scholar 

  47. Chowdappa S, Jagannath S, Konappa N, Udayashankar AC, Jogaiah S. Detection and characterization of antibacterial siderophores secreted by endophytic fungifrom Cymbidium aloifolium. Biomol. 2020;10:1412. https://doi.org/10.3390/biom10101412.

    Article  CAS  Google Scholar 

  48. Bhagat J, Kaur A, Kaur R, Yadav AK, Sharma V, Chadha BS. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternariaalternata: optimization, purification and characterization. J Appl Microbiol. 2016;121:1015–25. https://doi.org/10.1111/jam.13192.

    Article  CAS  PubMed  Google Scholar 

  49. Astuti P, Aryantini D, Eden WT, Wahyono W. Pharmaceutical microbiology and biotechnology cultural conditions affect the growth of endophytic fungi Aspergillus fumigatus and improve its total and bioactive metabolite production. Res J Pharm BiolChem Sci. 2017;8:1770–8.

    CAS  Google Scholar 

  50. Merlin JN, Christhudas IVSN, Kumar PP, Agastian P. Optimization of growth and bioactive metabolite production: Fusarium solani. Asian J Pharm Clin Res. 2013;6:98–103.

    Google Scholar 

  51. Yuniati L, Monica E, Rollando R. Effect of variation conditions fermentation to production biomass of endophytic fungi Atheliarolfsii Strain orchid. J Pharm Sci Res. 2018;10:2862–5.

    CAS  Google Scholar 

  52. Mane RS, Vedamurthy AB. Structure elucidation and therapeutic applications of endophytic fungi derived bioactive compounds obtained from Ximeniaamericana Western Ghats of Karnataka India. Int JPharma Sci Res. 2020;11:212–25.

    CAS  Google Scholar 

  53. Raunsai M, Wulansari D, Fathoni A, Agusta A. Antibacterial and antioxidant activities of endophytic fungi extracts of medicinal plants from Central Sulawesi. J Appl PharmaSci. 2018;8:069–74.

    Google Scholar 

  54. Jiang CX, Li J, Zhang JM, Jin XJ, Yu B, Fang JG, Wu QX. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J Agri Food Chem. 2019;67:1839–46. https://doi.org/10.1021/acs.jafc.8b05576.

    Article  CAS  Google Scholar 

  55. Pansanit A, Pripdeevech P. Antibacterial secondary metabolites from an endophytic fungus, Arthriniumsp MFLUCC16–1053 isolated from Zingiber cassumunar. Mycol. 2018;9:264–72. https://doi.org/10.1080/21501203.2018.1481154.

    Article  CAS  Google Scholar 

  56. Senthilkumar N, Murugesan S, Babu DS, Rajeshkannan C. GC-MS analysis of the extract of endophytic fungus, Phomopsis sp isolated from tropical tree species of India. Tectona grandis L IJIRSET. 2014;3:10176–9.

    Google Scholar 

  57. Abdalla M, Mohapatra RK, Sarangi AK, Mohapatra PK, Eltayb WA, Alam M, Dhama K. In silico studies on phytochemicals to combat the emerging COVID-19 infection. J Saudi Che Soc. 2021;25:101367. https://doi.org/10.1016/j.jscs.2021.101367.

    Article  CAS  Google Scholar 

Download references

Funding

The lab facilities and funding was provided by Bio Design Innovation Centre, Rani Durgavati University, Jabalpur (M.P.), India.

Author information

Authors and Affiliations

Authors

Contributions

We declare that this work was done by the authors named in this article and the authors will bear all liabilities about claims relating to the content of this article.

Corresponding author

Correspondence to Sardul Singh Sandhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

No conflict of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Aharwal, R.P., Singh, D. et al. Isolation and Chemical Structural Elucidation of Antibacterial Bioactive Compounds from Endophytic Fungal Strain Phoma sp. D1. Curr Pharmacol Rep 9, 128–143 (2023). https://doi.org/10.1007/s40495-023-00317-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00317-z

Keywords

Navigation