Skip to main content

Advertisement

Log in

An assessment and analysis of diseases of economically important plant members of family Iridaceae

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Many plant species of family Iridaceae like Crocus, Gladiolus, Iris and Freesia are grown worldwide for their commercially valued flowers and flowering product. All these plants along with other cultivated members are known to get diseases from multiple pathogens. This leads to greater damage in yield causing huge economic losses to farmers and growers. To understand the disease cycle, their cause and prophylactic measures on broader scale, fungal and bacterial pathogens causing corm rot diseases, blight diseases, leaf spot, wilt diseases and viral diseases are discussed. The survey of the reported literature and their analysis revealed that corm and rhizome rot is most devastating disease in all commercially valued species from this family, worldwide. Fungal pathogen Fusarium oxysporum found to be pathogen of major concern. Viral and bacterial disease is equally recurring problem. Yet, suitable and recommended agronomic practices along with use of fungicides and bactericides have potential in preventing spread of pathogens and diseases to nearby fields. The endeavour of the article is to provide summarised information with potential to be utilised by stakeholders for better disease management and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeer SU (2013) Iris species: review and study of phytochemical and genetic diversity of Iris species. Edition: 2013 Publisher: Lap Lambert Academic Publishing

  • Ahmad I, Khattak AM, Ara N, Amin NU (2011) Effect of planting dates on the growth of gladiolus corms in Peshawar. Sarhad J Agric 27:195–199

    Google Scholar 

  • Ahmad M, Sagar V, Shah MU, Padder BA, Ahanger FA, Sofi TA, Mir AA, Nabi A, Khan MA (2018) Management of corm rot of saffron (Crocus sativus L.) in Kashmir. India Acta Horti 1200:111–114

    Google Scholar 

  • Ahrazem O, Rubio-Moraga A, Castillo-López R, Trapero-Mozos A, Gómez-Gómez L (2010) Crocus sativus pathogens and defence responses. Funct Plant Sci Biotechnol. Glob Sci Book Isleworth, UK. 81–90

  • Alfieri SA (1966) Stromatinia Disease of Gladiolus. Florida Department of Agriculture.

  • Aly R, Stein A, Levy S, Raccah B, Loebenstein G (1986) Spread and control of cucumber mosaic virus in Gladiolus. Phytoparasitica 14:205–217

    Google Scholar 

  • Araki M (1992) Description of Meloidogyne ichinohei n. sp. (Nematoda: Meloidogynidae) from Iris laevigata in Japan. Jpn J Nematol 22:11–20

    Google Scholar 

  • Arnold ML, Ballerini ES, Brothers AN (2012) Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity 108:159–166

    CAS  PubMed  Google Scholar 

  • Barnett OW (1986) Iris fulva mosaic virus. AAB Descriptions of Plant Viruses. 310

  • Bashir S, Mughal MN, Nehvi FA, Dar SA, Un-nissa S, Dar ZA, Hakeem SA, Wani RA, Baba JA, Habib M (2017) Identification of sources of resistance in Saffron (Crocus sativus L.) to Fusarium oxysporum causing corm rot disease. Int J Curr Microbiol App Sci 6(11):3660–3665

    Google Scholar 

  • Bellardi MG, Bertaccini A (1989) Virus diseases of Freesia in Italy. Adv Hortic Sci 1989:29–32

    Google Scholar 

  • Bellardi MG, Canova A, Gelli C (1986) Comparative studies on Gladiolus isolates of Arabis mosaic virus (ArMV). Phytopathol Mediterr 26:73–80

    Google Scholar 

  • Bellardi MG, Pisi A, Masenga V (1987) Bean yellow mosaic virus infecting Ixia bulbs imported from Holland. Phytopathol Mediterr 1987:165–169

    Google Scholar 

  • Bellardi MG, Masenga V, Pisi A (1990) Bena yellow mosaic virus (BYMV) in Sparaxis sp. Adv Hortic Sci 1990:155–158

    Google Scholar 

  • Benjlil H, Elkassemi K, Hamza MA, Mateille T, Furze JN, Cherifi K, Ferji Z (2020) Plant-parasitic nematodes parasitizing saffron in Morocco: structuring drivers and biological risk identification. Appl Soil Ecol 147:103362

    Google Scholar 

  • Berkeley GH (1951) Gladiolus viruses. Phytopathol 41:3–4

    Google Scholar 

  • Bhagat SS, Gupta ST (2018) Study on isolation, purification and identification of Gladiolus disease. Int J Chem Stud 6:1554–1558

    CAS  Google Scholar 

  • Bhagat N, Magotra S, Gupta R, Sharma S, Verma S, Verma PK, Ali T, Shree A, Vakhlu J (2022) Invasion and colonization of pathogenic Fusarium oxysporum R1 in Crocus sativus l. during corm rot disease progression. J Fungi 8(12):1246

    CAS  Google Scholar 

  • Bobev SG, Taphradjiiski OI, Hammond J, Vaira AM (2013) First report of freesia sneak virus associated with foliar necrosis of Freesia refracta in Bulgaria. Plant Dis 97:1514

    CAS  PubMed  Google Scholar 

  • Boerema GH, van Kesteren HA (1965) The underground attacks on Crocus and Colchicum by the rusts Uromyces croci and Uromyces colchici respectively. Eur J Plant Pathol 71:136–144

    Google Scholar 

  • Bouwen I (1992) Freesia leaf necrosis: Some of its mysteries revealed. In: VIII International Symposium on Virus Diseases of Ornamental Plants 1992: 311–315

  • Brayford D (1996) Fusarium oxysporum f. sp. Gladioli. descriptions of fungi and bacteria. IMI Descr Fungi Bact 127:1266

    Google Scholar 

  • Brierley P, Smith FF (1948) Two additional mosaic diseases of Iris. Phytopathol 38:574–575

    Google Scholar 

  • Brierley P, Smith FF (1962) Three Cowpea mosaic viruses from Gladiolus. Plant Dis Rep 46:335–337

    Google Scholar 

  • Brierley P, McWhorter FP (1936) A mosaic disease of Iris. J Agric Res 53:621–635

    Google Scholar 

  • Brunt AA (1986) Iris mild mosaic virus. AAB Descr Plant Viruses 1986:324

    Google Scholar 

  • Buxton EW (1955) Fusarium diseases of Gladiolus. Trans Br Mycol 38:193–201

    Google Scholar 

  • Cantor M, Tolety J (2011) Gladiolus. Wild crop relatives: genomic and breeding resources: plantation and ornamental crops. 133–59

  • Cerda JD, Miles TD (2016) First report of leaf rust caused by Uromyces probus on Sisyrinchium bellum in California. Plant Dis 100:523

    Google Scholar 

  • Chastagner GA (2000) Potential alternatives to PCNB to control the development of crown rot and gray bulb rot on Bulbous Iris. In: VIII international symposium on flower bulbs 301–06

  • Chastagner GA, Kaufmann P (2004) Efficacy of fungicides in controlling leaf spot on bulbous Iris. In: IX international symposium on flower bulbs, Apr 19, 673: 509–512

  • Chaudhary P, Chaudhari AK, Cheeran AN, Godara S (2012) Color transform based approach for disease spot detection on plant leaf. Int J Comput Sci Telecommun 3(6):65–70

    Google Scholar 

  • Chen YK (2003) Occurence of cucumber mosaic virus in ornamental plants and perspectives of transgenic control. Wageningen University and Research

  • Chen X, Li C, Wang H, Guo Z (2019) WRKY transcription factors: evolution, binding, and action. Phytopathol Res 1:1–5

    CAS  Google Scholar 

  • Chung BN, Choi YJ, Choi KH, Do YS, Lee SY (2012) First report of stolbur phytoplasma infection in commercial Freesia hybrida cultivars. Plant Dis 12:1820

    Google Scholar 

  • Courtney WD (1949) Iris nematodes and their control. In: Proceeding of bulb growers short course, Puyallup, Washington. 25–31

  • Creager DB (1933) Fusarium basal rot of bulbous Iris. Phytopathology 23:7

    Google Scholar 

  • Darras AI, Terry LA, Joyce DC (2005) Methyl jasmonate vapour treatment suppresses specking caused by Botrytis cinerea on cut Freesia hybrida L. Flowers Postharvest Biol Technol 38:175–182

    CAS  Google Scholar 

  • Darras AI, Joyce DC, Terry LA, Vloutoglou I (2006) Postharvest infection of Freesia hybrida flowers by Botrytis cinerea. Australas Plant Pathol 35:55–63

    Google Scholar 

  • Darras AI, Joyce DC, Terry LA (2010) Post-harvest UV-C irradiation on cut Freesia hybrida L. inflorescences suppresses petal specking caused by Botrytis cinerea. Postharvest Biol Technol 55:186–188

    CAS  Google Scholar 

  • DeLong JA, Stewart JE, Valencia-Botín A, Pedley KF, Buck JW, Brewer MT (2019) Invasions of Gladiolus rust in North America are caused by a widely-distributed clone of Uromyces transversalis. PeerJ 7:7986

    Google Scholar 

  • Denkova S, Bakardjieva N, Ivanova V (1994) Virus Diseases of Freesia in Bulgaria. Biotechnol Equip 8:57–61

    Google Scholar 

  • Derks AFLM, Vink-van den Abeele J L, Muller PJ (1980) Bean yellow mosaic virus in some iridaceous plants. In: V international symposium on virus diseases of ornamental plants, vol 110, pp 31–38

  • Dhar AK (1992) Bio-ecology and control of corm rot of saffron (Crocus sativus L.) (Doctoral dissertation, MSc thesis, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India)

  • Dhawan AK, Peshin R (2009) Integrated pest management: concept, opportunities and challenges. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8992-3_2

    Chapter  Google Scholar 

  • Di Primo P, Cappelli C (2000) Preliminary characterization of Fusarium oxysporum f. sp. gladioli causing Fusarium corm rot of saffron in Italy. Plant Dis 84:806

    PubMed  Google Scholar 

  • Doss RP, Cascante XM, Chastagner GA (1989) The influence of infection with Penicillium corymbiferum on the forcing performance of wounded or unwounded bulbs of Iris cultivars ‘Ideal’and ‘Blue Star’treated with ethylene or ethephon. Sci Hortic 39:161–166

    CAS  Google Scholar 

  • Dreistadt SH (2001) Integrated pest management for floriculture and nurseries. University of California Agriculture and Natural Resources 3402

  • Dubey VK, Singh VP (2010) Molecular characterization of Cucumber mosaic virus infecting Gladiolus, revealing its phylogeny distinct from the Indian isolate and alike the Fny strain of CMV. Virus Genes 41:126–134

    CAS  PubMed  Google Scholar 

  • Duraisamy GS, Pokorny R (2009) Survey of viral pathogens in Gladiolus, Iris, and Tulip in the Czech Republic. Acta Univ Agric Et Silvic Mendel Brun 57:79–86

    Google Scholar 

  • Ehrich L (2013) Flowering in South African Iridaceae. In: Ramawat KG, Merillon JM (eds) Bulbous plants: biotechnology. CRC Press, Boca Raton, pp 248–269

    Google Scholar 

  • Ellis MB, Waller JM (1974) Drechslera Iridis. Descriptions of Fungi and Bacteria 44:434

  • Elmer WH, Kamo KK (2016) Diseases of Gladiolus. In: McGovern R, Elmer W (eds) Handbook of florists’ crops diseases. Handbook of plant disease management. Springer, Cham

    Google Scholar 

  • Emek YE, Erdag BE (2007) In vitro propagation of Gladiolus anatolicus (Boiss.) Stapf. Pak J Bot 39:23

    Google Scholar 

  • Ferreira BW, de Paula MG, Rodríguez MD, Barreto RW (2019) Taxonomic clarification of two Cercospora spp. causing leaf spots on Neomarica spp. in Brazil. Eur J Plant Pathol 155:697–770

    CAS  Google Scholar 

  • Fiori M, Ligios V, Schiaffino A (2011) Identification and characterization of Burkholderia isolates obtained from bacterial rot of saffron (Crocus sativus L.) grown in Italy. Phytopathol Mediterr 50:450–461

    CAS  Google Scholar 

  • Forsberg JL (1965) The relationship of Pseudomonas marginata, Stromatinia gladioli, bulb mites, and chemical soil treatments to the occurrence and control of scab and Stromatinia rot of Gladiolus. Phytopathol 55:1058

    Google Scholar 

  • Foxe MJ, Wilson UE (1984) Investigation of virus infection of Freesia. In: VI international symposium on virus diseases of ornamental plants, vol 164, pp 291–296

  • Fukumoto F, Ito Y, Tochihara H (1982) Viruses isolated from Gladiolus in Japan. Ann Phytopathol Soc Jpn 48:68–71

    Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms: monocotyledons. Springer, Berlin

    Google Scholar 

  • Goldblatt P (1991) An overview of the systematics, phylogeny and biology of the African Iridaceae. Contrib Bolus Herb 13:1–74

    Google Scholar 

  • Goldblatt P, Manning JC (2008) The Iris family: natural history and classification. Timber Press 2008:290

    Google Scholar 

  • Goldblatt P, Manning JC, Rudall P (1998) Iridaceae. Flowering plants Monocotyledons: Lilianae (except Orchidaceae) 295–333

  • Goto M (1977) Occurrence of bacterial blight of Iris caused by Xanthomonas tardicrescens in Japan. J Phytopathol 88:97–105

    Google Scholar 

  • Gould CJ (1958) The dry rot disease of Gladiolus. Plant Dis Rep 42:1011–1024

    CAS  Google Scholar 

  • Gould CJ, Byther RS (1950) Diseases of bulbous Iris.1950

  • Gould CJ, Miller VL (1970) Control of Fusarium and Penicillium rots of Iris, Tulip and Narcissus with thiabendazole and benomyl. In: International Symposium on Flower bulbs, 78–86

  • Grunwald D, Stroschein SM, Grinstead S, Mollov D, Rioux RA, Rakotondrafara AM (2023) Targeting the highly conserved 3’ untranslated region of Iris severe mosaic virus for sensitive monitoring of the disease prevalence in iris production. Plant Dis PDIS-04

  • Gupta R, Vakhlu J (2015) Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus. Eur J Plant Pathol 143:123–131

    Google Scholar 

  • Gupta V, Kumar K, Fatima K, Razdan VK, Sharma BC, Mahajan V, Rai PK, Sharma A, Gupta V, Hassan MG, Hussain R (2020) Role of biocontrol agents in management of corm rot of saffron caused by Fusarium oxysporum. Agronomy 10(9):1398. https://doi.org/10.3390/agronomy10091398

    Article  CAS  Google Scholar 

  • Gupta V, Sharma A, Rai PK, Gupta SK, Singh B, Sharma SK, Singh SK, Hussain R, Razdan VK, Kumar D, Paswal S, Pandit V, Sharma R (2021) Corm rot of saffron: Epidemiology and management. Agronomy 11(2):339

    CAS  Google Scholar 

  • Gupta V, Razdan VK (2018) Evaluation of integrated disease management technologies for corm rot of saffron in Kishtwar district of J&K. Acta Hortic 115–20.

  • Hanada K, Tanaka Y, Iwanami T, Fukumoto F, Kusunoki M, Kameya-Iwaki M (2006) Cycas necrotic stunt virus isolated from Gladiolus plants in Japan. J Gen Plant Pathol 72:383–386

    CAS  Google Scholar 

  • Harada K, Mihara S (1984) The volatile constituents of freesia flower (Freesia hybrida Hort.). Agricul Biologic Chem 48:2843–2845

    CAS  Google Scholar 

  • Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18(3):31033

    Google Scholar 

  • Hashmi IH, Aslam A, Farooq TH, Zaynab M, Munir N, Tayyab M, Abbasi KY (2018) Antifungal activity of biocontrol agents against corm rot of Gladiolus grandiflorus L. caused by Fusarium oxysporum. Int J Mol Microbiol 1:29–37

    Google Scholar 

  • Horst RK (2013) Host plants and their diseases. Westcott’s plant disease handbook 531–08. https://doi.org/10.1007/978-94-007-2141-8

  • Inacio AC, Rezende AL, Kowata-Dresch LS, Pimentel JP (2017) Techniques for inoculation of Sclerotium rolfsii on Neomarica longifolia and Evolvulus pusillus in Brazil. EC Microbiol 9:104–110

    Google Scholar 

  • Jeong MI, Choi YJ, Joa JH, Choi KS, Chung BN (2014) First report of Freesia sneak virus in commercial Freesia hybrida cultivars in Korea. Plant Dis 98:162

    CAS  PubMed  Google Scholar 

  • Jeves TM, Coley-Smith JR (1976) Persistence and spread of Stromatinia gladioli, the cause of dry-rot disease of Gladiolus. Trans Br Mycol Soc 67:419–425

    Google Scholar 

  • Jeves TM, Coley-Smith JR (1980) Germination of sclerotia of Stromatinia gladioli. Trans Br Mycol Soc 74(1):13–18

    Google Scholar 

  • Kakade DS, Jadhav SB, Katwate SM (2016) Management of Fusarium wilt in Gladiolus. Int J Pure Appl Biosci 4(5):127–132. https://doi.org/10.18782/2320-7051.2369

    Article  Google Scholar 

  • Kalha CS, Gupta V, Gupta D, Priya S (2007) First report of sclerotial rot of saffron caused by Sclerotium rolfsii in India. Plant Dis 91:1203

    CAS  PubMed  Google Scholar 

  • Kamo K, Jordan R, Guaragna MA, Hsu H, Ueng P (2010) Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep 29:695–704. https://doi.org/10.1007/s00299-010-0855-3

    Article  CAS  PubMed  Google Scholar 

  • Kamo K, Lakshman D, Bauchan G, Rajasekaran K, Cary J, Jaynes J (2015) Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli. Plant Cell Tissue Organ Cult 121:459–467. https://doi.org/10.1007/s11240-015-0716-4

    Article  CAS  Google Scholar 

  • Kamo K, Lakshman D, Pandey R, Guaragna MA, Okubara P, Rajasekaran K, Cary J, Jordan R (2016) Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. PCTOC 124:541–553

    CAS  Google Scholar 

  • Kasprzewska AN (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8(3):809–824

    CAS  PubMed  Google Scholar 

  • Kassak P (2012) Secondary metabolites of the choosen genus Iris species. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 60:269–280

    Google Scholar 

  • Katoch M, Abdin MZ, Ram R, Zaidi AA (2003) An overview of diagnostics for viruses infecting Gladiolus. Crop Prot 22(1):153–156. https://doi.org/10.1016/s0261-2194(02)00139-4

    Article  Google Scholar 

  • Kaur G, Chandel S (2016) First report of Botrytis cinerea causing grey mould of Gladiolus in India. J Plant Pathol 98:171–185

    Google Scholar 

  • Kaur C, Raj SK, Snehi SK, Goel AK, Roy RK (2011) Natural occurrence of Ornithogalum mosaic virus newly reported on Gladiolus in India. N Dis Rep 24:2044–2088

    Google Scholar 

  • Kaur C, Kumar S, Raj SK, Chauhan PS, Sharma N (2015) Characterization of a new isolate of Bean yellow mosaic virus Group-IV associated with mosaic disease of Gladiolus in India. J Plant Pathol Microbiol 6:309

    Google Scholar 

  • Khan MR, Mustafa U (2005) Corm rot and yellows of Gladiolus and its biomanagement. Phytopathol Mediterr 44:208–215

    Google Scholar 

  • Khan MR, Shahid S, Mohidin FA, Mustafa U (2017) Interaction of Fusarium oxysporum f. sp. gladioli and Meloidogyne incognita on Gladiolus cultivars and its management through corm treatment with biopesticides and pesticides. Biologic Cont 115:95–104

    Google Scholar 

  • Koike ST, Wilen CA, Raabe RD, McCain AH, Grebus ME (2007) IPM pest management guidelines: floriculture and ornamental nurseries. US ANR Publ 2007:3392

    Google Scholar 

  • Kumar PN, Raju DV (2007) Dormancy in Gladiolus: the cause and remedy–a review. Agric Rev 28:309–312

    Google Scholar 

  • Kumar R, Singh V, Devi K, Sharma M, Singh MK, Ahuja PS (2008) State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev Int 25:44–85

    Google Scholar 

  • Kumar Y, Hallan V, Zaidi AA (2009) First finding of Freesia mosaic virus infecting freesia in India. Plant Pathol 2009:58

    Google Scholar 

  • Lihua Y, Yanwen Y, Xiwang K, Yazhong J, Yuhu Z (2023) First report of anthracnose caused by Colletotrichum spaethianum on Iris lactea in Daqing, China. Plant Dis 107(11):3634

    Google Scholar 

  • Macedo DM, Barreto RW (2008) Cercospora neomaricae sp. nov. causing leaf spots on Neomarica caerulea. Australas Plant Pathol 37:581–583

    Google Scholar 

  • Magotra S, Bhagat N, Ambardar S, Ali T, Hurek BR, Hurek T, Verma PK, Vakhlu J (2021) Field evaluation of PGP Bacillus sp. strain D5 native to Crocus sativus, in traditional and non-traditional areas, and mining of PGP genes from its genome. Sci Rep 11:5454

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Magotra S, Trakroo D, Ganjoo S, Vakhlu J (2016) Bacillus-mediated-induced systemic resistance (ISR) against Fusarium corm rot. Microb-Mediat Induc Syst Resist Plants 15–22

  • Mahmooli IA, Balushi FA, Doyle O, Sadi AA, Deadman ML (2013) First report of Gladiolus corm rot caused by Fusarium proliferatum in Oman. Plant Dis 97:284

    PubMed  Google Scholar 

  • Manning JC, Goldblatt P, Duncan GD, Forest F, Kaiser R, Tatarenko I (2010) Botany and horticulture of the genus Freesia (Iridaceae). South African National Biodiversity Institute

  • Manzoor S, Singh RP (2023) Detection of diseases found in saffron plant and its classification using ML: a review. Int J Res Applied Sci Eng Tech 11(8):1404–1416. https://doi.org/10.22214/ijraset.2023.55376

    Article  Google Scholar 

  • Martínez-de la Parte E, Pérez-Vicente L, Cantillo-Pérez T, Guerrero-Barriel D, Ramos A (2011) First report of Gladiolus rust caused by Uromyces transversalis in Cuba. New Dis Rep 23:2044–2088

    Google Scholar 

  • Mc Whorter FP (1937) Didymellina poecilospora, n. sp., a semiparasitic Heterosporium on Bulbous Iris. Phytopathol 27:135–136

    Google Scholar 

  • McCulloch LA (1923) Bacterial blight of Gladioli. J Agric Res XXVII No. 4 Washington DC

  • McCulloch L (1944) A vascular disease of gladiolus caused by Fusarium. Phytopathol 34:263–287

    Google Scholar 

  • McGovern RJ, Elmer WH (2018) Diseases of Tulip. In: McGovern R, Elmer W (eds) Handbook of florists’ crops diseases. Handbook of plant disease management. Springer, Berlin

    Google Scholar 

  • McRitchie JJ and Leahy RM (1988) Stromatinia dry rot of Gladiolus. Florida Department of Agriculture and Consumer Service

  • Menia M, Iqbal S, Zahida R, Tahir S, Kanth RH, Saad AA, Hussian A (2018) Production technology of saffron for enhancing productivity. J Pharmacogn Phytochem 7(1):1033–1039

    Google Scholar 

  • Miglino R, Jodlowska A, Van Schadewijk AR (2005) First report of Narcissus mosaic virus infecting Crocus spp. cultivars in the Netherlands. Plant Dis 89:342

    CAS  PubMed  Google Scholar 

  • Mirghasempour SA, Studholme DJ, Chen W, Cui D, Mao B (2022) Identification and characterization of Fusarium nirenbergiae associated with saffron corm rot disease. Plant Dis 106(2):486–495

    CAS  PubMed  Google Scholar 

  • Mishra PK, Mukhopadhyay AN, Fox RT (2000) Integrated and biological control of Gladiolus corm rot and wilt caused by Fusarium oxysporum f. sp. gladioli. Ann Appl Biol 137:361–364

    Google Scholar 

  • Mondelli D, Rana GL (1985) Il virus del mosaico del cetriolo su fresia in Puglia. Informatore fitopatologico 35(1):41–42

    Google Scholar 

  • Munoz RM, Lerma ML, Castillo P, Armengol J, Somoza E, Woodhall JW (2020) First report of Stromatinia gladioli causing neck and corm rot of Crocus sativus in Spain. Plant Dis 104(1):282

    Google Scholar 

  • Nateqi M, Habibi MK, Dizadji A, Parizad S (2015) Detection and molecular characterization of the Iris severe mosaic virus-Ir isolate from Iran. J Plant Prot Res 55:235–240

    CAS  Google Scholar 

  • Palmero D, Rubio-Moraga A, Galvez-Patón L, Nogueras J, Abato C, Gómez-Gómez L, Ahrazem O (2014) Pathogenicity and genetic diversity of Fusarium oxysporum isolates from corms of Crocus sativus. Ind Crops Prod 61:186–192

    CAS  Google Scholar 

  • Park I, Kim K, Kyun H, Chang M (1998) The viruses in Gladiolus hybridus cultivated in Korea. Broad bean wilt virus, cucumber mosaic virus and tobacco rattle virus. Korean J Plant Path 14:83–91

    Google Scholar 

  • Park IS, Choi JD, Goo DH, Kim KW (2002) Elimination of viruses from virus-infected Gladiolus plants through cormel tip and callus culture. J Korean Soc Hort Sci 43:531–535

    Google Scholar 

  • Partridge JE (2003) Fusarium rot and yellows of Gladiolus. Department of Plant Pathology, University of Nebraska, Lincoln, 2003:47

  • Pathania NS, Misra RL (2002) In vitro mutagenesis studies in Gladiolus for induction of resistance to Fusarium oxysporum f. sp. gladioli. In: XXVI International Horticultural Congress: Elegant Science in Floriculture 624:487–494

  • Paula MG, Barreto RW, Ferreira BW (2018) First report of Botrytis cinerea causing gray mould on Neomarica longifolia. Australas Plant Dis 13:1–2

    Google Scholar 

  • Plessner O, Negbi M, Ziv M, Basker D (1989) Effects of temperature on the flowering of the saffron crocus (Crocus sativus L.): induction of hysteranthy. Isr J Plant Sci 38:1–7

    Google Scholar 

  • Rafiq M, Hussain A, Shah KH, Saeed Q, Sial MU, Ali Z, Buck F, Goodman RE, Khaliq B, Ishaq U, Baig MA (2018) Computational modeling and functional characterization of a GgChi: a class III chitinase from corms of Gladiolus grandiflorus. Kaohsiung J Med Sci 34(12):673–683

    PubMed  Google Scholar 

  • Raj SK, Snehi SK, Kumar S, Banerji BK, Dwivedi AK, Roy RK, Goel AK (2009) First report of ‘Candidatus Phytoplasma asteris’ (16SrI group) associated with colour-breaking and malformation of floral spikes of Gladiolus in India. Plant Pathol 58:1170

    Google Scholar 

  • Ram R, Manuja S, Dhyani D, Mukherjee D (2004) Evaluations of fortified fungicide solutions in managing corm rot disease of Gladiolus caused by Fusarium oxysporum. Crop Prot 23:783–788

    CAS  Google Scholar 

  • Randles JW, Francki RI (1965) Some properties of a tobacco ringspot virus isolate from South Australia. Aust J Biol 18:979–986

    CAS  Google Scholar 

  • Rattink H (1985) Some aspects of the epidemiology of Fusarium oxysporum f. sp. gladioli on Freesia. In: IV international symposium on flower bulbs 85–91

  • Razdan VK, Dar MT, Vishal G, Singh SK (2014) Distribution and etiology of corm rot of Gladiolus in Jammu Province of Jammu and Kashmir. Indian Phytopathol 67:82–85

    Google Scholar 

  • Ren T, Dai D, Yu M, Li T, Zhang C (2023) Identification and characterization of pathogens causing saffron corm rot in China. Front Microbiol 14:1188376. https://doi.org/10.3389/fmicb.2023.1188376

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudall P (1994) Anatomy and systematics of Iridaceae. Bot J Linn Soc 114:1–21

    MathSciNet  Google Scholar 

  • Safrankova I (2009) Incidence and distribution of Botrytis convoluta in a collection of Iris× barbata irises and options of control. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 57:115–120

    Google Scholar 

  • Salma Z, Sindhu SS, Ahlawat VP (2014) Suppression of Fusarium wilt disease in Gladiolus by using rhizobacterial strains. J Crop and Weed 10:466–471

    Google Scholar 

  • Sameer SS, Bashir S, Nehvi FA, Iqbal AM, Naseer S, Nagoo SA, Dar NA (2018) Effect of biofertilizers biological control agents and soil amendments on the control of saffron corm rot (Crocus sativus L.). Acta Hortic 1200:121–124

    Google Scholar 

  • Satyagopal K, Sushil SN, Jeyakumar P, Shankar G, Sharma OP, Sain SK, Boina DR, Lavanya N, Rao NS, Sunanda BS, Asre R, Murali R, Arya S, Kumar S, Gupta V, Kumar D, Razdan VK, Mahendiran G, Patnik HP, Sahu KC, Mohapatra SN, Patel BR, Khalko S, Nripendra, Roy A, Hath TK, Yadava HS (2014) AESA based IPM package for Saffron. pp 31

  • Sehajpal PK, Singh PJ (2014) Effect of temperature, leaf wetness period, light and darkness on development of Botrytis blight (Botrytis gladiolorum Timm.) of gladiolus (Gladiolus grandiflorus L.). Int J Res Appl Natl Soc Sci 2:211–218

    Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Shah AC, Srivastava KK (1984) Control of corm rot of saffron. Progress Hortic 16(1/2):141–143

    Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of Gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30(7):807–813

    Google Scholar 

  • Sharma N, Tripathi A (2008) Integrated management of postharvest Fusarium rot of Gladiolus corms using hot water, UV-C and Hyptis suaveolens (L.) Poit essential oil. Postharvest Biol Technol 47(2):246–254

    CAS  Google Scholar 

  • Sharma SN, Chandel S, Tomar M (2005) Integrated management of Fusarium yellows of Gladiolus caused by Fusarium oxysporum f. sp. gladioli Snyder and Hans. under polyhouse conditions. Integrated plant disease management. Scientific Publisher, Jodhpur, pp 221–229

  • Singab AN, Ayoub IM, El-Shazly M, Korinek M, Wu TY, Cheng YB, Chang FR, Wu YC (2016) Shedding the light on Iridaceae: ethnobotany, phytochemistry and biological activity. Ind Crops Prod 92:308–335

    CAS  Google Scholar 

  • Singh VK, Singh Y, Kumar P (2012) Diseases of ornamental plants and their management. Eco-friendly Innov Approaches Plant Dis Manag 543–72

  • Souza-Chies TT, Santos EK, Eggers L, Flores AM, Alves EM, Fachinetto J, Lustosa J, Corrêa LB, Tacuatiá LO, Piccoli P, Miz RB (2012) Studies on diversity and evolution of Iridaceae species in southern Brazil. Genet Mol Biol 35:1027–1035

    PubMed  PubMed Central  Google Scholar 

  • Sovinska RS, Dunich AA, Mishchenko LT (2022) Co-infection of bean yellow mosaic virus and cucumber mosaic virus in Gladiolus sp. plants: phylogenetic analysis of Ukrainian isolates. Arch Phytopathol Plant Prot 55(3):303–330

    CAS  Google Scholar 

  • Staats M (2007) Botrytis species on flower bulb crops: phylogeny, genetic variation and host specificity. Wageningen University and Research, Wageningen

    Google Scholar 

  • Stein A (1995) Gladiolus. In: Loebenstein G, Lawson RH, Brunt AA (eds) Virus and virus-like diseases of bulb and flower crops. John Wiley, Chichester, pp 281–292

    Google Scholar 

  • Sud AK, Paul YS, Thakur BR (1999) Corm rot of saffron and its management. J Mycol Plant Pathol 29:380–382

    Google Scholar 

  • Sultana N, Yeasmin FH, Islam MR, Wick RL, Hossain DM (2017) Botrytis blight of Gladiolus in Mymensingh and its management. Bangladesh J Plant Pathol 33:65–70

    Google Scholar 

  • Taubenhaus JJ, Ezekiel WN (1933) Fusarium wilt and corm rot of freesias. Bot Gaz 95:128–142

    Google Scholar 

  • Tavoosi M, Moradi Z, Mehrvar M (2022) First report of Turnip mosaic virus infecting saffron in Iran. Virus Dis 33:489–491. https://doi.org/10.1007/s13337-022-00798-4

    Article  CAS  Google Scholar 

  • Tehrania MM, Esfahanib MN, Mousavic A, Mortezaiinezhadd F, Azimi MH (2020) Regulation of related genes promoting resistant in Iris against root rot disease, Fusarium Oxysporum f. Sp Gladioli. Genomics 112:3013–3020

    Google Scholar 

  • Terentev A, Dolzhenko V, Fedotov A, Eremenko D (2022) Current state of hyperspectral remote sensing for early plant disease detection: a review. Sensors 22(3):757

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Toniutti L, Breitler JC, Etienne H, Campa C, Doulbeau S, Urban L, Lambot C, Pinilla JC, Bertrand B (2017) Influence of environmental conditions and genetic background of arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Front Plant Sci 8:2025

    PubMed  PubMed Central  Google Scholar 

  • Torres DP, Silva MA, Furtado GQ (2013a) Infection of Curvularia gladioli on different Gladiolus genotypes. Trop Plant Pathol 38:543–546

    Google Scholar 

  • Torres DP, Silva MA, Pinho DB, Pereira OL, Furtado GQ (2013b) First report of Curvularia gladioli causing a leaf spot on Gladiolus grandiflorus in Brazil. Plant Dis 97:847

    CAS  PubMed  Google Scholar 

  • Tripathi A, Sharma N, Sharma V, Alam A (2013) Integrated eco-friendly management of Fusarium corm rot and yellows by sowing hot water, UV-C and/or essential oil treated Gladiolus corms in soil solarized and/or essential oil fumigated experimental fields. Int J Hort Crop Sci Res 3(1):51–63

    Google Scholar 

  • Van Leeuwen PJ, Trompert J (2008) Controlling Aphelenchoides subtenuis nematodes with a hot water treatment in Crocus and Allium. In: X international symposium on flower bulbs and herbaceous perennials 886:273–276

  • Vaira AM, Hansen MA, Murphy C, Reinsel MD, Hammond J (2009) First report of Freesia sneak virus in Freesia sp. in Virginia. Plant Dis 93:965

    CAS  PubMed  Google Scholar 

  • Valencia-Botín AJ, Jeffers SN, Palmer CL, Buck JW (2013) Fungicides used alone, in combinations, and in rotations for managing Gladiolus rust in Mexico. Plant Dis 97:1491–1496

    PubMed  Google Scholar 

  • Wang Y, Cordewener JH, America AH, Shan W, Bouwmeester K, Govers F (2015) Arabidopsis lectin receptor kinases LecRK-IX. 1 and LecRK-IX. 2 are functional analogs in regulating Phytophthora resistance and plant cell death. Mol Plant Microbe Interact 28:1032–1048

    CAS  PubMed  Google Scholar 

  • Wani ZA, Ahmad T, Nalli Y, Ali A, Singh AP, Vishwakarma RA, Ashraf N, Riyaz-Ul-Hassan S (2018) Porostereum sp., associated with saffron (Crocus sativus L.), is a latent pathogen capable of producing phytotoxic chlorinated aromatic compounds. Curr Microbiol 75:880–887

    CAS  PubMed  Google Scholar 

  • Whetzel HH, Drayton F (1932) A new species of Botrytis on rhizomatous Iris. Mycologia 24:469–476

    Google Scholar 

  • Wongchaochant S, Inamoto K, Doi M (2004) Analysis of flower scent of Freesia species and cultivars. In: IX International symposium on flower bulbs 673:595–01

  • Zaheer MH, Mehdi SA, Keen HE, Berns K (2021) Detection of fungus in Gladiolus fields using a quadcopter. In: Zeghloul S, Laribi MA, Sandoval J (eds) Advances in service and industrial robotics. RAAD 2021. Mechanisms and machine science, vol 102. Springer, Cham

    Google Scholar 

  • Zhang T, Huang C, Deng C, Zhang Y, Feng Y, Hu J, Wang R, Zhao L, Wang Y, Kai G (2020) First report of corm rot on saffron caused by Penicillium solitum in China. Plant Dis 104:579

    Google Scholar 

  • Zhang JX, Shen HF, Pu XM, Yang QY, Sun DY, Lin BR, Zhang YQ, Wang FZ (2021) First report of Curvularia gladioli causing leaf spots on Gladiolus gandavensis in China. Plant Dis 105(11):3753

    Google Scholar 

  • Zheng HY, Wu XY, Han KL, Chen ZQ, Song XJ, Peng JJ, Lu YW, Lin L, Chen JP, Yan F, Wu XY (2018) First Report of Beet western yellows virus Infecting Crocus sativus in China. Plant Dis 102:1471

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Director, CSIR-IHBT, Palampur, India, for providing the laboratory infrastructure. PY and KY are thankful to University Grant Commission, India, for fellowship. CSIR-IHBT Number for this manuscript is 8978.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KS and PY conceptualised and wrote the manuscript. KY and AM participated in writing and editing of manuscript.

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Yadav, K., Mishra, A. et al. An assessment and analysis of diseases of economically important plant members of family Iridaceae. J Plant Dis Prot 131, 329–346 (2024). https://doi.org/10.1007/s41348-023-00836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00836-3

Keywords

Navigation