Skip to main content
Log in

Present status on variability and management of Ascochyta rabiei infecting chickpea

  • REVIEW ARTICLE
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Ascochyta Blight (AB) of chickpea caused by the fungus Ascochyta rabiei, is a major disease in regions of cool, cloudy and humid weather conditions prevailing during the crop season. It causes huge economic losses especially during flowering and podding stage. The pathogen survives through seed infection and crop debris from season to season. Even though lot of work has been done on pathological and molecular studies but physiological specialization with respect to racial types, pathotypes (I, II, III, IV) and mating types (MAT1-1 and MAT1-2), climatic factors in disease development, genetic and physiological resistance mechanism, host plant resistance and components used in the integrated disease management has not been clearly established. Seed treatment with fungicides and bio agents is not sufficient to manage the disease but further intensive studies are needed on variability, factors supporting for infection and host mechanism to suppress the infection process and also utilization of molecular markers in breeding for disease resistance. In this review, we have tried to cover the loss and distribution of disease, existence of fungal diversity, epidemiology, host plant resistance and molecular breeding approaches for disease resistance for future research on AB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad F, Slinkard AE (2004) The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genet Resour Crop Evol 51:765–772

    Article  Google Scholar 

  • Ahmad S, Khan MA, Sahi ST, Ahmad R (2013) Evaluation of chickpea germplasm against Ascochyta rabiei (pass) lab. J Animal Plant Sci 23:440–443

    Google Scholar 

  • Akem C (1999) Ascochyta blight of chickpea: present status and future priorities. Int J Pest Manage 45:131–137

    Article  Google Scholar 

  • Alam SS, Alam JN, Bilton AMZ, Slawin DJ, Williams RN, Sheppard RN, Strange RN (1989) Chickpea blight: production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemistry 28:2627–2630

    Article  CAS  Google Scholar 

  • Ali M, Kumar S, Singh NB (2003) Chickpea research in India (Edited). IIPR, Kanpur, p 344

    Google Scholar 

  • Ali H, Alam SS, Attanayake RN, Rahman M, Chen W (2012) Population structure and mating type distribution of the chickpea blight pathogen Ascochyta Rabiei from Pakistan and the United States. J Plant Pathol 94:99–108

    Google Scholar 

  • Allen DJ (1983) The pathology of tropical food legumes. Wiley, New York

    Google Scholar 

  • Angelini R, Bragaloni M, Federico R, Infantino A, Porta-Puglia A (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J Plant Physiol 142:704–709

    Article  CAS  Google Scholar 

  • Armstrong-Cho C, Gossen BD (2005) Impact of glandular hair exudates on infection of chickpea by Ascochyta rabiei. Can J Bot 83:22–27

    Article  Google Scholar 

  • Armstrong-Cho C, Gossen BD, Chongo G (2004) Impact of continuous or interrupted leaf wetness on infection of chickpea by Ascochyta rabiei. Can J Plant Pathol 26:134–141

    Article  Google Scholar 

  • Atik O, Ahmed S, Abang MM, Imtiaz M, Hamwieh A, Baum M, El-Ahmed A, Murad S, Yabrak MM (2013) Pathogenic and genetic diversity of Didymella rabiei affecting chickpea in Syria. Crop Prot 46:70–79

    Article  Google Scholar 

  • Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legumes-associated Ascochyta spp. Fungal Genet Biol 39:151–167

    Article  CAS  PubMed  Google Scholar 

  • Barve MP, Santra DK, Ranjekar PK, Gupta VS (2004) Genetic diversity analysis of a world-wide collection of Ascochyta rabiei isolates using sequence tagged microsatellite markers. World J Microbiol Biotechnol 20:735–741

    Article  CAS  Google Scholar 

  • Benzohra IE, Bendahmane BS, Labdi M, Benkada MY (2012) Determination of pathotypes and physiological races in Ascochyta rabiei, the agent of Ascochyta blight in chickpea (Cicer arietinum L.) in Algeria. Afr J Agric Res 7:1214–1219

    Google Scholar 

  • Benzohra IE, Bendahmane BS, Labdi M, Benkada MY (2013) Sources of resistance in chickpea germplasm to three pathotypes of Ascochyta rabiei (Pass.) Labr. in Algeria. World Appl Sci J 21:873–878

    Google Scholar 

  • Benzohra IE, Bendahmane BS, Benkada MY, Labdi M (2015) Screening of 15 chickpea germplasm accessions for resistance to Ascochyta rabiei in North West of Algeria. Am Eur J Agric Environ Sci 15:109–114

    Google Scholar 

  • Boorsma PA (1980) Variability in chickpea for blight resistance. FAO Plant Prot Bull 28:110–113

    Google Scholar 

  • Bretag TW, Keane PJ, Price TV (2006) The epidemiology and control of Ascochyta blight in field peas: a review. Aust J Agr Res 57:883–902

    Article  Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Butler EJ (1918) Fungi and diseases in plants. Thacker, Sprink and Co, Calcutta, p 547

    Google Scholar 

  • Cagirgan MJ, Toker C, Karhan M, Aksu M, Ulger S, Canci H (2011) Assessment of endogenous organic acid levels in Ascochyta Blight [Ascochyta rabiei (Pass.) Labr.] susceptible and resistant chickpeas (Cicer arietinum L.). Turk J Field Crops 16:121–130

    Google Scholar 

  • Chandirasekaran R, Warkentin TD, Gan Y, Shirtliffe S, Gossen BD, Taran B, Banniza S (2009) Improved sources of resistance to Ascochyta blight in chickpea. Can J Plant Sci 89:107–118

    Article  Google Scholar 

  • Chen YM, Strange RN (1994) Production of a proteinaceous phytotoxin by Ascochyta rabiei grown in expressed chickpea sap. Plant Pathol 43:321–327

    Article  CAS  Google Scholar 

  • Chen W, Coyne TCJ, Peever TL, Muehlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of Ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769

    Article  Google Scholar 

  • Cherif M, Chilvers MI, Akamatsu H, Peever TL, Kaiser WJ (2006) Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Curr Genet 50:203–215

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor Appl Genet 109:733–739

    Article  PubMed  Google Scholar 

  • Chongo G, Gossen BD (2001) Effect of plant age on resistance to Ascochyta rabiei in chickpea. Can J Plant Pathol 23:358–363

    Article  Google Scholar 

  • Chongo G, Buchwaldt L, Anderson K, Gossen BD (2000) Saskatchewan chickpea disease survey, 1999. Can Plant Dis Surv 80:86–87

    Google Scholar 

  • Chongo G, Buchwaldt L, Gossen BD, Lafond GP, May WE, Johnson EN, Hogg T (2003) Foliar fungicide to manage Ascochyta blight (Ascochyta rabiei) of chickpea in Canada. Can J Plant Pathol 25:135–142

    Article  CAS  Google Scholar 

  • Chongo G, Gossen BD, Buchwaldt L, Adhikari T, Rimmer SR (2004) Genetic diversity of Ascochyta rabiei in Canada. Plant Dis 88:4–10

    Article  Google Scholar 

  • Collard B, Ades P, Pang E, Brouwer J, Taylor P (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas Plant Pathol 30:271–276

    Article  Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigations of QTL associated with seedlings resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chick pea. Theor Appl Genet 107:719–729

    Article  CAS  PubMed  Google Scholar 

  • Diekmann M (1992) Use of climatic parameters to predict the global distribution of Ascochyta blight on chickpea. Plant Dis 76:409–412

    Article  Google Scholar 

  • Dixit GP (2015) Project coordinator’s report. All India Coordinated Research Project on Chickpea. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Dixit GP (2016) Project coordinator’s report. All India Coordinated Research Project on Chickpea. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Dolar FS, Gurcan A (1992) Evaluation of world collection of chickpea germplasm accessions for resistance to Ascochyta blight. Plant Dis 68:900–901

    Google Scholar 

  • Dubey SC, Singh B (2003) Evaluation of chickpea genotypes against Ascochyta blight. Indian Phytopath 56:505

    Google Scholar 

  • Duzdemir O, Selvi B, Yanar Y, Yildirimi A (2014) Sources of resistance in chickpea (Cicer arietinum L.) land races against Ascochyta rabiei causal agent of Ascochyta blight disease. Pak J Bot 46:1479–1483

    Google Scholar 

  • Eser D (1976) Heritability of some important plant characteristics, their relationship with plant yield and inheritance of ascochyta blight resistance in chickpea (Cicer arietinum L.). Ankara Universitesi, Ziraat Fakultesi Yayinlari, Ankara

    Google Scholar 

  • Fischer C, Porta-Puglia A, Barz W (1995) RAPD analysis of pathogenic variability in Ascochyta rabiei. J Phytopathol 143:601–607

    Article  CAS  Google Scholar 

  • Gan YT, Siddique KHM, Mac Leod WJ, Jayakumar P (2006) Management options for minimizing the damage by Ascochyta blight (Ascochyta rabiei) in chickpea (Cicer arietinum L.). Field Crops Res 97:121–134

    Article  Google Scholar 

  • Hafiz A (1952) Basis of resistance in gram to Mycospherella blight. Phytopathology 42:422–424

    Google Scholar 

  • Hamwieh A, Imtiaz M, Hobson K, Kemal SA (2013) Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm. Phytopathol Mediterr 52:191–199

    Google Scholar 

  • Haware MP, Van Rheenen HA, Prasad NSS (1995) Screening for Ascochyta blight resistance in chickpea under controlled environment and field conditions. Plant Dis 79:132–135

    Article  Google Scholar 

  • Hohl B, Pfautsch M, Barz W (1990) Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129:31–45

    Article  Google Scholar 

  • Hohl B, Weidemann C, Hohl U, Barz W (1991) Isolation of solanapyrones A, B and C from culture filtrates and spore germination fluids of Ascochyta rabiei and aspects of phytotoxin production. J Phytopathol 132:93–206

    Article  Google Scholar 

  • Holliday P (1998) A Dictionary of Plant Pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Houari SO, Bouteflika DA, Lamamra AA (2015) An assessment of wild Cicer species accessions for resistance to three pathotypes of Ascochyta rabiei (Pass.) Labr. in Algeria. Afr J Agron 3:228–234

    Google Scholar 

  • Ilarslan H, Dolar FS (2002) Histological and ultrastructural changes in leaves and stems of resistant and susceptible chickpea cultivars to Ascochyta rabiei. J Phytopathol 150:340–348

    Article  Google Scholar 

  • Ilyas MB, Chaudhry MA, Javed N, Ghazanfar MU, Khan MA (2007) Sources of resistance in chickpea germplasm against ascochyta blight. Pak J Bot 39:1843–1847

    Google Scholar 

  • Imtiaz M, Abang MM, Malhotra RS, Ahmed S, Bayaa B, Udupa SM, Baum M (2011) Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis 95:1192

    Article  Google Scholar 

  • Iqbal SM, Hussain S, Bakhsh A, Bashir M (2002) Sources of resistance in chickpea against ascochyta blight disease. Int J Agri Biol 4:488–490

    Google Scholar 

  • Iqbal SM, Ali S, Ghafoor A (2010) Development of resistance in chickpea to Ascochyta blight. Mycopath 8:61–64

    Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Millan T, Gil J (2007) Validation of a QTL for resistance to Ascochyta blight linked to resistance to Fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37

    Article  Google Scholar 

  • Jamil FF, Sarwar M, Sarwar N, Khan JA, Zahid MH, Yousaf S, Arshad HMI, Haq I (2010) Genotyping with RAPD markers resolves pathotype diversity in the Ascochyta blight and Fusarium wilt pathogens of chickpea in Pakistan. Pak J Bot 42:1369–1378

    CAS  Google Scholar 

  • Jan H, Wiese MV (1991) Virulence forms of Ascochyta rabiei affecting chickpea in the Palouse. Plant Dis 75:904–906

    Article  Google Scholar 

  • Jhorar OP, Mathauda SS, Singh G, Butler DR, Mavi HS (1997) Relationships between climatic variables and ascochyta blight of chickpea in Punjab. Indian Agric Forest Meteol 87:171–177

    Article  Google Scholar 

  • Jhorar OP, Butlerb DR, Mathauda SS (1998) Effects of leaf wetness duration, relative humidity, light and dark on infection and sporulation by Didymella rabiei on chickpea. Plant Pathol 47:586–594

    Article  Google Scholar 

  • Kaiser WJ (1990) Host range of the Ascochyta blight pathogen of chickpea. Phytopathology 80:889–890

    Google Scholar 

  • Kaiser WJ (1992) Fungi associated with the seeds of commercial lentils from the U.S Pacific Northwest. Pl Dis 76:605–610

    Article  Google Scholar 

  • Kaiser WJ, Kusmenoglu I (1997) Distribution of mating types and the teleomorph of Ascochyta rabiei on chickpea in Turkey. Plant Dis 81:1284–1287

    Article  Google Scholar 

  • Kaiser WJ, Wang BC, Rogers JD (1997) Ascochyta fabae and A. lentis: host specificity, teleomorphs (Didymella), hybrid analysis, and taxonomic status. Plant Dis 81:809–816

    Article  Google Scholar 

  • Kaiser WJ, Hannan RM, Muehlbauer FJ (1998) First report of Ascochyta blight of Cicer arietinum, a wild perennial chickpea in Bulgaria. Plant Dis 82:830

    Google Scholar 

  • Kaur S (1995) Phytoxicity of solanapyrones produced by the fungus Ascochyta rabiei and their possible role in blight of chickpea (Cicer arietinum L.). Plant Sci 109:23–29

    Article  CAS  Google Scholar 

  • Kaur L, Sandhu JS, Malhotra RS, Imtiaz M, Sirari A (2012) Sources of stable resistance to Ascochyta blight in exotic kabuli chickpea. J Food Legumes 25:79–80

    Google Scholar 

  • Khan MSA, Ramsey MD, Corbiere R, Infantino A, Porta-Puglia A, Bouznad Z, Scott ES (1999) Ascochyta blight of chickpea in Australia: identification, pathogenicity and mating type. Plant Pathol 48:230–234

    Article  Google Scholar 

  • Kimurto PK, Towett BK, Mulwa RS, Njogu N, Jeptanui LJ, Rao GNVPR, Silim S, Kaloki P, Korir P, Macharia JK (2013) Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol Mediterr 52:212–221

    Google Scholar 

  • Kohler G, Linkert C, Barz W (1995) Infection studies of Cicer arietinum (L.) with gus (E. coli beta-glucuronidase) transformed Ascochyta rabiei strains. J Phytopathol 143:589–595

    Article  Google Scholar 

  • Koster J, Strack D, Barz W (1983) High performance liquid chromatographic separation of isoflavones and structural elucidation of isoflavone-7-O-glucoside-6′- malonates from Cicer arietinum. Planta Med 48:131–135

    Article  CAS  PubMed  Google Scholar 

  • Kovachevski IC (1936) Parasitic fungi new for Bulgaria. Fourth contribution. Travaux de la Societe Bulgare des Sci Naturelle 27:13–24

    Google Scholar 

  • Kucuk C, Merih Kivan C, Kinaci E, Kinaci G (2007) Efficacy of Trichoderma harzianum (Rifaii) on inhibition of Ascochyta blight disease of chickpea. Ann Microbiol 57:665–668

    Article  CAS  Google Scholar 

  • Labdi M, Malhotra RS, Benzohra IE, Imtiaz M (2013) Inheritance of resistance to Ascochyta rabiei in 15 chickpea germplasm accessions. Plant Breed 132:197–199

    Article  CAS  Google Scholar 

  • Labrousse F (1930) Anthracnose of the chickpea (Cicer arietinum). Revue de Patholgie Patholgie Vegetale ed d’Entomologie Agricole de France 27:174–177

    Google Scholar 

  • Labrousse F (1931) Anthracnose of chickpea. Revue de Pathologie Vegetale et d’Enotmologie Agricole de France 28:226–231

    Google Scholar 

  • Latif Z, Strange RN, Bilton J, Riazuddin S (1993) Production of the phytotoxins, solanapyrones A and C and cytochalasin D among the nine isolates of Ascochyta rabiei. Plant Pathol 42:172–180

    Article  CAS  Google Scholar 

  • Luthra JC, Sattar A, Bedi KS (1941) Determination of resistance to blight disease in gram types. Indian J Agric Sci 11:249–264

    Google Scholar 

  • Madrid E, Chen W, Rajesh PN, Castro P, Millan T, Gil J (2013) Allele-specific amplification for the detection of Ascochyta blight resistance in chickpea. Euphytica 189:183–190

    Article  CAS  Google Scholar 

  • Mahmodi F, Banihashemi Z, Kadir J (2014) Mating type distribution using a multiplex PCR mating assay and fertility status in Didymella rabiei in chickpea-growing areas in Iran. Arch Phytopathol Plant Protect 47:1–12

    Article  CAS  Google Scholar 

  • Malik SR, Iqbal SM, Iqbal U, Ahmad I, Haqqani AM (2005) Response of chickpea lines to Ascochyta rabiei at two growing stages. Caspian J Env Sci 3:173–177

    Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • McDonald BA, McDermott JM, Goodwin SB, Allard RW (1989) The population biology of host-pathogen interactions. Annu Rev Phytopathol 27:77–94

    Article  Google Scholar 

  • Mundt CC, Ahmed HU, Finckh MR, Lorna PV, Alfonso RF (1999) Primary disease gradients of bacterial blight of rice. Phytopathology 89:64–67

    Article  CAS  PubMed  Google Scholar 

  • Navas-Cortes JA, Trapero-Casas A, Jimenez-Diaz RM (1995) Survival of Didymella rabiei in chickpea straw debris in Spain. Plant Pathol 44:332–339

    Article  Google Scholar 

  • Navas-Cortes JA, Trapero-Casas A, Jimenez-Diaz RM (1998) Influence of relative humidity and temperature on development of Didymella rabiei in chickpea debris. Plant Pathol 47:57–66

    Article  Google Scholar 

  • Nene YL (1980) A world list of pigeonpea (Cajanus cajan (L.) Millsp.) and chickpea (Cicer arietinum L.) pathogens. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India

  • Nene YL (1982) A review of Ascochyta blight of chickpea. Trop Pest Manage 28:61–70

    Article  Google Scholar 

  • Nene YL (1984) A review of Ascochyta blight of chickpea (Cicer arietinum L.). In: Saxena MC, Saxena KB (eds) Ascochyta blight and winter sowing of chickpeas. The Hague, Martinus Nijhoff/Dr. W. Junk Publishers, The Netherlands, pp 17–34

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The Chickpea. C.A.B, Wallingford, pp 233–270

    Google Scholar 

  • Pal M, Rajkumar SP, Kumar J, Singh B (1999) Genetics of resistance to Ascochyta blight in chickpea. Indian Phytopath 52:403–407

    Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity and disease management. Aust J Agric Res 56:317–332

    Article  Google Scholar 

  • Pande S, Sharma M, Gaur PM, Tripathi S, Kaur L, Basandrai A, Khan T, Gowda CLL, Siddique KHM (2011) Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Australas Plant Pathol 40:149–156

    Article  Google Scholar 

  • Pande S, Sharma M, Avuthu N, Telangre R (2012) High throughput phenotyping of chickpea diseases: stepwise identification of host plant resistance. Information Bulletin No. 92. Technical Report. International Crops Research Institute for Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Pande S, Sharma M, Gaur PM, Basandrai AK, Kaur L, Hooda KS, Basandrai D, Kiran Babu T, Jain SK, Rathore A (2013) Biplot analysis of genotype environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australas Plant Pathol 42:561–571

    Article  CAS  Google Scholar 

  • Pandey BK, Singh US, Chaube HS (1987) Mode of infection of ascochyta blight as caused by Ascochyta rabiei. J Phytopathol (Berlin) 119:88–93

    Article  Google Scholar 

  • Peever TL, Salimath S, Su G, Kaiser WJ, Muehlbauer FJ (2004) Historical and contemporary multilocus population structure of Ascochyta blight (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Mol Ecol 13:291–309

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar E, Aggarwal R, Singh B (2005) Fungal antagonists for the biological control of ascochyta blight of chickpea. Acta Phytopathologica et Entomologica Hungarica 40:1–2. https://doi.org/10.1556/APhyt.40.2005.1-2.11

    Article  Google Scholar 

  • Reddy MV, Kabbabeh S (1985) Pathogenic variability in Ascochyta rabiei (Pass.) Lab. in Syria and Lebanon. Phytopathol Mediterr 24:265–266

    Google Scholar 

  • Reddy MV, Singh KB (1984) Evaluation of a world collection of chickpea germplasm accessions for resistance to ascochyta blight. Plant Dis 65:586–587

    Google Scholar 

  • Reddy MV, Singh KB (1990) Management of ascochyta blight of chickpea through integration of host plant tolerance and foliar spraying of chlorothalanil. Ind J Plant Pathol 18:65–69

    CAS  Google Scholar 

  • Reddy MV, Singh KB (1992) Registration of five chickpea germplasm lines resistant to Ascochyta blight. Crop Sci 32:1079–1080

    Article  Google Scholar 

  • Rembold H, Weigner C (1990) Chemical composition of chickpea, Cicer arietinum, exudate. Z. Naturforsch. Teil C Biochem Biophys Biol Virol 45:922–923

    CAS  Google Scholar 

  • Rhaiem A, Cherif M, Dyer PS, Peever TL (2007) Distribution of mating types and genetic diversity of Ascochyta rabiei populations in Tunisia revealed by mating-type-specific PCR and random amplified polymorphic DNA markers. J Phytopathol 155:596–605

    Article  CAS  Google Scholar 

  • Rhaiem A, Chérif M, Peever TL, Dyer PS (2008) Population structure and mating system of Ascochyta rabiei in Tunisia: evidence for the recent introduction of mating type 2. Plant Pathol 57:540–555

    Article  CAS  Google Scholar 

  • Rubio J, Moreno MT, Moral A, Rubiales D, Gil J (2006) Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci 46:2331–2332

    Article  Google Scholar 

  • Sarwar N, Ashfaq S, Akhtar KP, Jamil FF (2013) Biological pathotyping and RAPD analysis of Ascochyta rabiei from various chickpea growing areas of Pakistan. J Anim Plant Sci 23:882–887

    CAS  Google Scholar 

  • Sattar A (1933) On the occurrence, perpetuation and control of gram (Cicer arietinum L.) blight caused by Ascochyta rabiei (Pass.) Labrousse, with special reference to Indian conditions. Ann Appl Biol 20:612–632

    Article  Google Scholar 

  • Shahid AA, Husnain T, Riazuddin S (2008) Ascochyta blight of chickpea: production of phytoalexins and disease management. Biotechnol Adv 26:511–515

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Ghosh R (2016) An update on genetic resistance of chickpea to Ascochyta blight. Agronomy 6:18

    Article  CAS  Google Scholar 

  • Shokouhifar F, Bagheri AAR, Rastgar FM (2006) Identification of resistant chickpea lines against pathotypes causing Ascochyta blight disease in Iran. Iranian J Biol 19:29–42

    Google Scholar 

  • Shtienberg D, Vintal H, Brener S, Retig B (2000) Rational management of Didymella rabiei in chickpea by integration of genotype resistance and post infection application of fungicides. Phytopathology 90:834–842

    Article  CAS  PubMed  Google Scholar 

  • Singh KB (1990) Status of chickpea in the world. International Chickpea Newsletter 22:10–16

    Google Scholar 

  • Singh KB, Ocampo B (1993) Interspesific hybridization in annual Cicer species. J Genet Breed 47:199–204

    Google Scholar 

  • Singh KB, Reddy MV (1993) Susceptibility of the chickpea plant to Ascochyta blight at different stages of crop growth. Phytopathol Mediterr 32:153–155

    Google Scholar 

  • Singh G, Sharma YR (1998) Ascochyta blight of chickpea. In: Upadhay PK, Mukherji KG, Rajak RL (eds) IPM system in agriculture. Aditya Books Pvt Ltd, New Delhi, pp 163–195

    Google Scholar 

  • Singh KB, Hawtin GL, Nene YL, Reddy MV (1981) Resistance in chickpea Ascochyta blight. Plant Dis 65:586–587

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Halila MH, Knights EJ, Verma MM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73:137–149

    Article  Google Scholar 

  • Singh PJ, Pal M, Prakash N (1997) Ultrastructural studies of conidiogenesis of Ascochyta rabiei, the causal organism of chickpea blight. Phytoparasitica 25:291–304

    Article  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defences against pathogens with different lifestyles. PNAS USA 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA (1982) Phytotoxins. Annu Rev Biochem 51:309–333

    Article  CAS  PubMed  Google Scholar 

  • Taleei A, Kanouni H, Baum M (2010) Genetical studies of Ascochyta blight resistance in chickpea. Int J BioSci BioTechnol 2:19–28

    Google Scholar 

  • Taran B, Warkentin TD, Vandenberg A (2013) Fast track genetic improvement of Ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Taylor PWJ, Ford R (2007) Diagnostics, genetic diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. Eur J Plant Pathol 119(1):127–133. https://doi.org/10.1007/s10658-007-9177-x

  • Toker C, Canci H (2003) Selection of Chickpea (Cicer arietinum L.) genotypes for resistance to Ascochyta blight [Ascochyta rabiei (Pass.) Labr.] and yield criteria. Turk J Agric For 27:277–283

    Google Scholar 

  • Trapero-Casas A, Jimenez-Diaz RM (1986) Poster abstracts, Int. Food Legume Conf. on Pea, Lentil, Faba bean and Chickpea. In: LE O’Keeffe, Meuhlbauer FJ (eds) Influence of sowing date on Fusarium wilt and Ascochyta blight of chickpea in southern Spain. College of Agriculture, University of Idaho, Moscow, p 11

    Google Scholar 

  • Trapero-Casas A, Kaiser WJ (1992) Influence of temperature, wetness period, plant age, and inoculum concentration on infection and development of Ascochyta blight of chickpea. Phytopathology 82:589–596

    Article  Google Scholar 

  • Trapero-Casas A, Navas-Cortes JA, Jimeanez-Diaaz RM (1996) Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. Eur J Plant Pathol 102:237–245

    Article  Google Scholar 

  • Turkkan M, Dolar FS (2009) Determination of pathogenic variability of Didymella rabiei, the agent of ascochyta blight of chickpea in Turkey. Turk J Agric For 33:585–591

    Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype specific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Udupa SM, Weigand F (1997). Pathotyping of Ascochyta rabiei isolates of Syria. DNA markers and breeding for resistance to Ascochyta blight in chickpea. Proceedings of The Symposium on “application of DNA fingerprinting for crop improvement: marker assisted selection of chickpea for sustainable agriculture in the dry areas, ICARDA. 11–12 April 1997, Syria

  • Udupa SM, Weigand F, Saxena MC, Kahl G (1998) Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the Ascochyta blight pathogen of chickpea. Theor Appl Genet 97:299–307

    Article  CAS  Google Scholar 

  • Vafaeia SH, Rezaeea S, Moghadamb AA, Zamanizadeha HR (2016) Virulence diversity of Ascochyta rabiei the causal agent of Ascochyta blight of chickpea in the western provinces of Iran. Arch Phytopathol Plant Protec 48:921–930

    Article  Google Scholar 

  • Vail S, Banniza S (2009) Molecular variability and mating-type frequency of Ascochyta rabiei of chickpea from Saskatchewan. Can Australas Plant Pathol 38:392–398

    Article  CAS  Google Scholar 

  • Van der Maesen LJG (1972) Cicer L., A monograph of the genus with special reference to chickpea (Cicer arietinum L.), its ecology and cultivation. H Veenman and Zonen N.V. Communications Agricultural University, Wageningen

  • Van Rheenan HA, Haware MP (1994) Mode of inheritance of resistance to AB in chickpea (CA L) and its consequences for resistance breeding. Int J Pest Manage 40:166–169

    Article  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 3:1120–1134

    Article  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L (2014) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7:1–11

    Article  CAS  Google Scholar 

  • Venora G, Porta-Puglia A (1993) Observation on outer cell layers of stem in chickpea cultivars susceptible and resistant to Ascochyta blight. Petria 3:177–182

    Google Scholar 

  • Vir S, Grewal JS (1974) Physiologic specialization in Ascochyta rabiei, the causal organism of gram blight. Indian Phytopath 27:355–360

    Google Scholar 

  • Vir S, Grewal JS, Gupta VP (1975) Inheritance of A. rabiei in chickpea. Euphytica 24:209–211

    Article  Google Scholar 

  • Wang H, Hwang SF, Chang KF, Turnbull GD, Howard RJ (2003) Suppression of important pea diseases by bacterial antagonists. BioControl Dordrecht 4:447–460

    Article  Google Scholar 

  • Wilson AD, Kaiser WJ (1995) Cytology and sexual compatibility in Didymella rabiei. Mycologia 87:795–804

    Article  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum-C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Yoder OC (1980) Toxins in pathogenesis. Annu Rev Phytopathol 18:103–129

    Article  CAS  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Zhan J, Mundt CC, Hoffer ME, McDonald BA (2002) Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol 15:634–647

    Article  Google Scholar 

  • Zhang R, Hwang SF, Chang KF, Gossen BD, Strelkov SE, Turnbull GD, Blade SF (2006) Genetic resistance to Ascochyta pinodes in 558 field pea accessions. Crop Sci 46:2409–2414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, L., Saabale, P.R., Srivastava, A.K. et al. Present status on variability and management of Ascochyta rabiei infecting chickpea. Indian Phytopathology 71, 9–24 (2018). https://doi.org/10.1007/s42360-018-0002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-018-0002-6

Keywords

Navigation