Skip to main content
Log in

Toxic Effect of Lawsonia inermis Leaf Litter on Growth and Reproduction of Earthworm Eudrilus eugeniae

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The present study is to investigate the chemical composition of different crude extracts of medicinal plant Lawsonia inermis and its effects on the growth and reproduction of Eudrilus eugeniae through vermicomposting. The objective was to examine the growth and reproduction of E. eugeniae in different concentrations of L. inermis leaf litter viz. 100% (H1); 75% (H2); 50% (H3); and 25% (H4) along with the Bos taurus breed cow dung and the 100% cow dung (C1) were treated as control. Totally ten clitellated earthworms were introduced in all the treatments; the biomass and population analysis of earthworms were monitored periodically till 45th day of vermicomposting. Also identify the chemical compounds which cause retardation in growth and reproduction of earthworm; the crude extracts of L. inermis in ethanol and petroleum ether solvent were subjected to GC–MS analysis. The results revealed that, when increased in concentration of L. inermis, the reproductive potential and biomass of E. eugeniae get decreased. Reproductive potential in the experiment C1 (160 ± 0.66); H4 (35 ± 0.57); H3 (23 ± 00); and H1 and H2 motility were observed. The compounds viz. Dodecane, Tetradecane, Hexadecane, 1,2 Benzene di-carboxylicacid, Diethyl ester, Octadecane, Phytol, Pentacosane, Undecane, Pentadecane, and Eicosane were reported for their toxic effects. Hence, the bulking materials play an important role in vermicomposting, and from the study, it could be concluded that L. inermis leaf litters are not a preferred medium for vermicomposting. Overall, this study helps to avoid the dumping of a huge quantity of these leaf litters into the soil that may affect not only earthworms but also other soil organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afzal M, Al-Oriquat G, Al-Hassan JM, Muhammad N (1980) Flavone glycosides from lawsonia innermis. Heterocycles 14(12):1973

  • Ahmad R, Ansari K (2020) Chemically treated Lawsonia inermis seeds powder (CTLISP): an eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundw Sustain Dev 11:100417. https://doi.org/10.1016/j.gsd.2020.100417

    Article  Google Scholar 

  • Ali KS, Al-hood FA, Obad K, Alshakka M (2016) Phytochemical screening and antibacterial activity of Yemeni henna phytochemical screening and antibacterial activity of Yemeni henna (Lawsonia Inermis) against some bacterial pathogens. IOSR J Pharm Biol Sci 11:24–27. https://doi.org/10.9790/3008-1102032427

    Article  Google Scholar 

  • Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the order Hymenoptera. Ann Rev Entomol 46(1):31–78

  • Allen DG, Riviere JE, Monteiro-Riviere NA (2001) Analysis of interleukin-8 release from normal human epidermal keratinocytes exposed to aliphatic hydrocarbons: delivery of hydrocarbons to cell cultures via complexation with α-cyclodextrin. Toxicol Vitr 15:663–669. https://doi.org/10.1016/S0887-2333(01)00075-3

    Article  CAS  Google Scholar 

  • Al-Snafi AE (2019) A review on Lawsonia inermis: a potential medicinal plant. Int J Curr Pharm Res 11:1–13

    Google Scholar 

  • Anand KK, Singh B, Chand D, Chandan BK (1992) An evaluation of Lawsonia alba extract as hepatoprotective agent. Planta Med 58:22–25

    Article  CAS  PubMed  Google Scholar 

  • Autian J (1973) Toxicity and health threats of phthalate esters: review of the literature. Environ Health Perspect 4:3–26. https://doi.org/10.1289/ehp.73043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banu RJ, Yeom IT, Esakkiraj KN, Lee YW, Vallinayagam S (2008) Biomanagement of sago-sludge using an earthworm, Lampito mauritii. J Environ Biol 29:753–757

    CAS  PubMed  Google Scholar 

  • Bingham, E., Cohrssen, B., & Powell, C. H. (2001). Patty's toxicology. Volume 1: toxicology issues, inorganic particulates, dusts, products of biological origin and pathogens (No. Ed. 5). John Wiley and Sons.

  • Calafat AM, McKee RH (2006) Integrating biomonitoring exposure data into the risk assessment process: phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case stdy. Environ Health Perspect 114:1783–1789. https://doi.org/10.1289/ehp.9059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Tian Y, Wu Q, Li J, Zhu H (2021) Vermicomposting of livestock manure as affected by carbon-rich additives (straw, biochar and nanocarbon): a comprehensive evaluation of earthworm performance, microbial activities, metabolic functions and vermicompost quality. Bioresource Technol 320:124404. https://doi.org/10.1016/j.biortech.2020.124404

    Article  CAS  Google Scholar 

  • Choubey A et al (2010) Hypoglycemic and antihyperglycemic effect of ethanolic extract of whole. Int J Pharm Sci Res 1:74–77

    Google Scholar 

  • Curry JP (1976) Some effects of animal manures on earthworms in grassland. Pedobiologia 16:425–438

    Article  Google Scholar 

  • Darvin SS, Esakkimuthu S, Toppo E, Balakrishna K, Paulraj MG, Pandikumar P, Al-Dhabi NA (2018) Hepatoprotective effect of lawsone on rifampicin-isoniazis induced hepatotoxicity in invitro and in vivo models. Environ Toxicol Pharmacol 61:87–94. https://doi.org/10.1016/j.etap.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  • Das D, Ganguli S, Roy D (2022) Pharmacotherapeutic potential of Lawsonia inermis L.: implications and future prospective. Curr Aspects Pharm Res Dev 8:154–165

    Article  Google Scholar 

  • Deepthi MP, Kathireswari P, Rini J, Saminathan K, Karmegam N (2021) Vermitransformation of monogastric Elephas maximus and ruminant Bos taurus excrements into vermicompost using Eudrilus eugeniae. Bioresource Technol 320:124302. https://doi.org/10.1016/j.biortech.2020.124302

    Article  CAS  Google Scholar 

  • Dominguez J, Edwards CA, Ashby J (2001) The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 353:341–353

    Article  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247. https://doi.org/10.1016/0167-8809(88)90069-2

    Article  Google Scholar 

  • Esteki R, Miraj S (2016) The abortificient effects of hydroalcoholic extract of lawsonia inermis on BALB/c mice. Electron Physician 8:2568

    Article  PubMed  PubMed Central  Google Scholar 

  • Fa-Rong Y, Xu-Zhen L, Hong-Yun G, McGuire PM, Ren-De L, Rui W, Fa-Hong Y (2005) Isolation and characterization methyl esters and derivatives from Euphorbia kansui and their inhibitory effects on the human SGC-7901 cells. J Pharmaceutical Sci 8(3):528–535

  • Frazão J, de Goede RG, Capowiez Y, Pulleman MM (2019) Soil structure formation and organic matter distribution as affected by earthworm species interactions and crop residue placement. Geoderma 338:453–463

    Article  Google Scholar 

  • Frederickson J, Howell G, Hobson AM (2007) Effect of pre-composting and vermicomposting on compost characteristics. Eur J Soil Biol 43:320–326. https://doi.org/10.1016/j.ejsobi.2007.08.032

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2004) Neem leaves as a source of fertilizer-cum-pesticide vermicompost. Bioresour Technol 92:291–296. https://doi.org/10.1016/j.biortech.2003.09.012

    Article  CAS  PubMed  Google Scholar 

  • Gajalakshmi S, Ramasamy EV, Abbasi SA (2005) Composting-vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresour Technol 96:1057–1061. https://doi.org/10.1016/j.biortech.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Kaushik P, Dilbaghi N (2006) Vermiconversion of wastewater sludge from textile mill mixed with anaerobically digested biogas plant slurry employing Eisenia foetida. Ecotoxicol Environ Saf 65:412–419. https://doi.org/10.1016/j.ecoenv.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  • Girija S, Duraipandiyan V, Kuppusamy PS, Gajendran H, Rajagopal R (2014) Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int Sch Res Not 1–7. https://doi.org/10.1155/2014/820745

  • Goswami M, Kulshreshtha M, Rao CV, Yadav S, Yadav S (2011) Anti-ulcer potential of Lawsonia inermis L. leaves against gastric ulcers in rats. Journal of Applied Pharmaceutical Science 01:02 69–72

  • Gunadi B, Blount C, Edwards CA (2002) The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia 46:15–23. https://doi.org/10.1078/0031-4056-00109

    Article  Google Scholar 

  • Hassan M, Fadayomi VK, Innocent IG, Suleiman M (2022) Antifungal effect of henna (Lawsonia inermis) extract on pathogenic fungi. Microbiol Res J Int 32:15–26

    Article  Google Scholar 

  • Islam R, Rahman MS, Rahman SM (2015) GC-MS analysis and antibacterial activity of Cuscuta reflexa against bacterial pathogens. Asian Pacific J Trop Dis 5:399–403. https://doi.org/10.1016/S2222-1808(14)60804-5

    Article  CAS  Google Scholar 

  • Jain VC, Shah DP, Sonani NG, Dhakara S, Patel NM (2010) Pharmacognostical and preliminary phytochemical investigation of Lawsonia inermis L. leaf. Romanian J Biol-Plant Biol 55:127–133

    Google Scholar 

  • Dominguez, J., & Edwards, C. A. (2004). Vermicomposting organic wastes: A review. Soil zoology for sustainable development in the 21st century, Cairo, 369–395.

  • Joseph R, Kathireswari P (2020) Efficacy leaf litters as substrate on reproductive potential of epigeic earthworm Eudrilus eugeniae. Indian J Ecol 47:186–189

    Google Scholar 

  • Kamal M, Shakya A, Jawaid T (2011) Benzofurans: a new profile of biological activities. Int J Med Pharm Sci 1:1–15

    Google Scholar 

  • Karuppasamy P, Sivasubramani V, Pandian MS, Ramasamy, P (2016) Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3, 5-dinitrobenzoate (KDNB) single crystals. RSC Adv 6(110):109105–109123

  • Kirkland D, Marzin D (2003) An assessment of the genotoxicity of 2-hydroxy-1,4-naphthoquinone, the natural dye ingredient of Henna. Mutat Res - Genet Toxicol Environ Mutagen 537:183–199. https://doi.org/10.1016/S1383-5718(03)00077-9

    Article  CAS  Google Scholar 

  • Knecht W, Henseling J, Löffler M (2000) Kinetics of inhibition of human and rat dihydroorotate dehydrogenase by atovaquone, lawsone derivatives, brequinar sodium and polyporic acid. Chem Biol Interact 124:61–76. https://doi.org/10.1016/S0009-2797(99)00144-1

    Article  CAS  PubMed  Google Scholar 

  • Maret W, Krężel A (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13(7):371–375

  • Mehnaz S (2011) Plant growth-promoting bacteria associated with sugarcane. In Bacteria in agrobiology: crop ecosystems. Berlin, Heidelberg: Springer Berlin Heidelberg pp. 165–187

  • Nagalakshmi D, Sridhar K, Satyanarayana M, Ramulu SP, Narwade VS, Vikram L (2018) Effect of replacing inorganic zinc with a lower level of organic zinc (zinc propionate) on performance, biochemical constituents, antioxidant, immune and mineral status in buffalo calves. Indian J Anim Res 52(9):1292–1297

  • Nandhini U, Kumari L, Sangareshwari S (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine streptomyces. Asian J Pharm Clin Res 8:244–246

    CAS  Google Scholar 

  • Ndatsu Y, Abubakar H, Usman HB, Aliyu AO, Yisa SP (2022) Hepatoprotective potentials of active fractions of Lawsonia inermis (Lythraceae) against acetaminophen- induces liver damage in rats. Bima J Sci Technol 6:108–124

    Google Scholar 

  • Niratker C, Singh M (2015) Effect of different type of media on in vitro regeneration of mulberry (Morus indica): an economically important tree. Sch Res Libr Ann Biol Res 6:22–26

    CAS  Google Scholar 

  • Pérez-Godínez EA, Lagunes-Zarate J, Corona-Hernández J, Barajas-Aceves M (2017) Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. Waste Manag 64:67–78. https://doi.org/10.1016/j.wasman.2017.03.036

    Article  CAS  PubMed  Google Scholar 

  • Ponugoti M (2018) A pharmacological and toxicological review of Lawsonia Inermis. Int J Pharm Sci Res 9:902–915. https://doi.org/10.13040/IJPSR.0975-8232.9(3).902-15

    Article  CAS  Google Scholar 

  • Preethee S, Saminathan K, Chandran M, Kathireswari P (2022) Valorization of phyto-biomass with tertiary combination of animal dung for enriched vermicompost production. Environ Res 215:114365. https://doi.org/10.1016/j.envres.2022.114365

    Article  CAS  PubMed  Google Scholar 

  • Rao NB, SitaKumari O, Rajesh Goud G (2016) Phytochemical analysis and antimicrobial activity of Lawsonia inermis ( Henna ). J Plant Sci Res 3:6–9

    Google Scholar 

  • Reinecke AJ, Viljoen SA, Saayman RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biol Biochem 24:1295–1307. https://doi.org/10.1016/0038-0717(92)90109-B

    Article  Google Scholar 

  • Saravanan P, Palanisamy K, Kulandaivelu S (2023) Spectroscopic assessment of sugarcane bagasse mediated vermicompost for qualitative enrichment of animal wastes Elephus maximus and Bos taurus. Waste Biomass Valorization 14:2133–2149. https://doi.org/10.1007/s12649-022-02011-5

    Article  CAS  Google Scholar 

  • Sharma KK, Saikia R, Kotoky J, Kalita JC, Devi R (2011) Antifungal activity of solanum melongena L, lawsonia inermis L. and justicia gendarussa B. against dermatophytes. Int J PharmTech Res 3:1635–1640

    Google Scholar 

  • Shastry CS, Kiran UP, Aswathanarayana BJ (2012) Effect of acute and chronic administration of the aqueous extract of Lawsonia inermis leaves on haloperidol induced catalepsy in albino mice. Res J Pharm Biol Chem Sci 3:1107–1116

    Google Scholar 

  • Singh A, Singh DK (2001) Molluscicidal activity of Lawsonia inermis and its binary and tertiary combination with other plant derived molluscicides. Indian J Exp Biol 39:263–268

    CAS  PubMed  Google Scholar 

  • Shettima AY, Karumi Y, Sodipo OA, Usman H, Tijjani MA (2013) Gas Chromatography-Mass Spectrometry (GC-MS) analysis of bioactive components of ethyl acetate root extract of Guiera senegalensis JF Gmel. J Appl Pharm Sci 3(3):146–150

  • Stürzenbaum SR, Andre J, Kille P, Morgan AJ (2012) Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc R Soc B Biol Sci 276:789–797. https://doi.org/10.1098/rspb.2008.1510

    Article  CAS  Google Scholar 

  • Suthar S (2007) Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour Technol 98:1608–1614. https://doi.org/10.1016/j.biortech.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  • Suthar S (2008) Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol Eng 32:206–214. https://doi.org/10.1016/j.ecoleng.2007.11.002

    Article  Google Scholar 

  • Suthar S (2009) Vermicomposting of vegetable-market solid waste using Eisenia fetida: impact of bulking material on earthworm growth and decomposition rate. Ecol Eng 35:914–920. https://doi.org/10.1016/j.ecoleng.2008.12.019

    Article  Google Scholar 

  • Suthar S, Ram S (2008) Does substrate quality affect earthworm growth and reproduction patterns in vermicomposting systems? A study using three popular composting earthworms. Int J Environ Waste Manag 2:584–600. https://doi.org/10.1504/IJEWM.2008.021862

    Article  CAS  Google Scholar 

  • Syers JK, Springett JA (1983) Earthworm ecology in grassland soils. Earthworm Ecol 67–83. https://doi.org/10.1007/978-94-009-5965-1_7

  • Tiwari RK, Singh S, Pandey RS (2019) Assessment of acute toxicity and biochemical responses to chlorpyrifos, cypermethrin and their combination exposed earthworm, Eudrilus eugeniae. Toxicol Reports 6:288–297. https://doi.org/10.1016/j.toxrep.2019.03.007

    Article  CAS  Google Scholar 

  • Usha T, Middha SK, M Bhattacharya, P Lokesh Goyal AK (2014) Rosmarinic acid, a new polyphenol from Baccaurea ramiflora Lour. leaf: a probable compound for its anti-inflammatory activity. Antioxidants 3(4):830–842

  • Yogeswari S, Ramalakshmi S, Neelavathy R, Muthumary J (2012) Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol 6:65–71

    Google Scholar 

  • Yu FR, Lian XZ, Guo HY, McGuire PM, De LR, Wang R, Yu FH (2005) Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharm Sci 8:528–535

    CAS  PubMed  Google Scholar 

  • Zohourian TH, Quitain AT, Sasaki M, Goto M (2012) Extraction of bioactive compounds from leaves of Lawsonia inermis by green pressurized fluids. Sep Sci Technol 47:1006–1013. https://doi.org/10.1080/01496395.2011.641056

    Article  CAS  Google Scholar 

  • Zumrutdal E, Ozaslan M (2012) A miracle plant for the herbal pharmacy; henna (Lawsonia inermis). Int J Pharmacol 8:483–489

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the management of Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, and DST-NM for the valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Kathireswari.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Data Availability

The data used to support the findings of this study are included in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathireswari, P., Haritha, M., Joseph, R. et al. Toxic Effect of Lawsonia inermis Leaf Litter on Growth and Reproduction of Earthworm Eudrilus eugeniae. J Soil Sci Plant Nutr 23, 4532–4542 (2023). https://doi.org/10.1007/s42729-023-01369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01369-2

Keywords

Navigation