Skip to main content

Advertisement

Log in

Harnessing Phyllosphere Microbiome for Improving Soil Fertility, Crop Production, and Environmental Sustainability

  • Review
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Various microorganisms colonize plant tissues either through epiphytic (surface), endophytic (inside), or rhizospheric association. The diverse phyllosphere microbiomes interact with plant host either through mutualism, commensalism, and/or pathogenesis, and affect the functioning of various biological processes in plants. Among these microbes, beneficial phyllospheric microorganisms have been demonstrated to positively affect plant growth through multiple mechanisms including enhanced availability of nutrients through nitrogen fixation; solubilization of phosphorous, potassium, and zinc; and production of siderophores and growth-promoting hormones. The indirect mode of plant growth stimulation includes inhibition of pathogens by antagonistic phyllospheric microbes, production of ACC deaminase enzyme, exopolysaccharide secretion, and mitigation of abiotic stresses. Application of beneficial phyllospheric microorganisms as biofertilizers and biocontrol agents has been found to suppress plant diseases and resulted in promotion of plant biomass and development, and increases in crop yield in majority of field trials. In addition, these microbes have been demonstrated to preserve soil fertility and microbial biodiversity along with reduced use of chemical fertilizers and pesticides. However, knowledge on the molecular responses modulated in host plants due to application of phyllospheric microbes is still incomplete. This article provides an up-to-date overview on the prevalence and diversity of the phyllospheric microbes, their growth-promoting traits, and different mechanisms of action employed to increase plant health and crop yield after foliar spray or soil inoculation. Furthermore, bioengineering of phyllospheric microbes is discussed to enhance their biological functioning with a better ability to benefit crop plants, and resulting in improved food production to feed the world’s ever-increasing population through an eco-friendly and sustainable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All datasets generated or analyzed during this study are included in this article. Data citations in the manuscript have been included in the reference list and follow journal style. In addition, related datasets necessary to interpret and replicate and generated and/or analyzed during the current study are available from the corresponding author.

References

  • Abadi VAJM, Sepehri M, Rahmani HA, Zarei M, Ronaghi A, Taghavi SM, Shamshiripour M (2020) Role of dominant phyllosphere bacteria with plant growth–promoting characteristics on growth and nutrition of maize (Zea mays L). J Soil Sci Plant Nutr 20:2348–2363. https://doi.org/10.1007/s42729-020-00302-1

    Article  CAS  Google Scholar 

  • Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B (2021) Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl Microbiol 131:898–912. https://doi.org/10.1111/jam.14975

    Article  CAS  PubMed  Google Scholar 

  • Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption and localization of the methanol emission site. J Exp Bot 57:4025–4032

    CAS  PubMed  Google Scholar 

  • Abbasi PA, Weselowski B (2014) Influence of foliar sprays of Bacillus subtilis QST 713 on development of early blight disease and yield of field tomatoes in Ontario. Can J Plant Pathol 36:170–178. https://doi.org/10.1080/070606612014924027

    Article  Google Scholar 

  • Abbasi PA, Weselowski B (2015) Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot 74:70–76. https://doi.org/10.1016/jcropro201504009

    Article  CAS  Google Scholar 

  • Abdul Malik NA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Intern J Mol Sci 21:963

    CAS  Google Scholar 

  • Abo-Elyousr KA, Marei AN (2022) Application of Trichoderma harzianumstrain KABOFT4 for management of tomato bacterial wilt under greenhouse conditions. Gesunde Pflanzen 74:413–421

    CAS  Google Scholar 

  • Abril AB, Torres PA, Baucher EH (2005) The importance of phyllosphere microbial populations in nitrogen cycling in the chaco semi-arid woodland. J Trop Ecol 21:103–107

    Google Scholar 

  • Accinelli C, Abbas HK, Vicari A, Shier WT (2015) Evaluation of recycled bioplastic pellets and a sprayable formulation for application of an Aspergillus flavus biocontrol strain. Crop Prot 72:9–15

    CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbiol Ecol 58:921–929

    CAS  Google Scholar 

  • Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HY, Lu GD (2019) Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 129:7–18

    CAS  PubMed  Google Scholar 

  • Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira MRA, Alkhalifah DHM, Selim S, Santoyo G (2022) New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front Plant Sci 13:899464

    PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Google Scholar 

  • Ahmadi-Rad S, Gholamhoseini M, Ghalavand A, Asgharzadeh A, Dolatabadian A (2016) Foliar application of nitrogen fixing bacteria increases growth and yield of canola grown under different nitrogen regimes. Rhizosphere 2:34–37. https://doi.org/10.1016/jrhisph201608006

    Article  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin-auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80(2):407–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allonsius CN, Vandenheuvel D, Oerlemans EF, Petrova MI, Donders GG, Cos P, Delputte P, Lebeer S (2019) Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci Rep 9:2900. https://doi.org/10.1038/s41598-019-39625-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amenaghawon AN, Anyalewechi CL, Kusuma HS (2021) Fabrication approaches for biofertilizers. Study and Impact, Biofertilizers, pp 491–515. https://doi.org/10.1002/9781119724995

    Google Scholar 

  • Amy C, Avice JC, Laval K, Bressan M (2022) Are native phosphate solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part I when rhizobacteria meet plant P requirements. Rhizosphere 21:100476. https://doi.org/10.1016/jrhisph2022100476

    Article  Google Scholar 

  • Anand A, Chinchilla D, Tan C, Mène-Saffrané L, L’Haridon F, Weisskopf L (2020) Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms 8:1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JA, Buchanan DW, Stall RE, Hall CB (1982) Frost injury of tender plants increased by Pseudomonas syringae van Hall1. Am Soc Hortic Sci 107:123–125

    CAS  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    PubMed  Google Scholar 

  • Andrews JH, SpearRN NEV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48(6):500–513

    CAS  PubMed  Google Scholar 

  • Anonymous (2013) Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. Off J Eur Union L 93:1–84

    Google Scholar 

  • Anuradha GRK, Sindhu SS (2020) Responses of strawberry (Fragaria x Ananassa Duch) to PGPR inoculation. Bangladesh J Bot 49(4):1071–1076

    Google Scholar 

  • Araya MA, Valenzuela T, Inostroza NG, Maruyama F, Jorquera MA, Acuña JJ (2020) Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants. Microorganisms 8:1788. https://doi.org/10.3390/microorganisms8111788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental. PCR Mycologia 99:185–206

    CAS  PubMed  Google Scholar 

  • Arun KD, Sabarinathan KG, Gomathy M, Kannan R, Balachandar D (2020) Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. J Basic Microbiol 60(9):768–786

    Google Scholar 

  • Attard E, Yang H, Delort AM, Amato P, Poschl U, Glaux C, Koop T, Morris CE (2012) Effects of atmospheric conditions on ice nucleation activity of Pseudomonas. Atmos Chem Phys 12(22):10667–10677

    CAS  Google Scholar 

  • Aviles-Garcia ME, Flores-Cortez I, Hernandez-Soberano C, Santoyo G, Valencia-Cantero E (2016) La rizobacteria promotora del crecimiento vegeta: Arthrobacter agilis UMCV2 coloniza endofiti camente a Medicago truncatula. Rev Argent Microbiol 48:342–346

    PubMed  Google Scholar 

  • Avis TJ, Bélanger RR (2002) Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Res 2:5–8

    CAS  PubMed  Google Scholar 

  • Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch PC, Spaepen S, Remus-Emsermann M, Huttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    CAS  PubMed  Google Scholar 

  • Bailey MJ (2006) Microbial ecology of aerial plant surfaces CABI. Wallingword

    Google Scholar 

  • Bainbridge A, Dickinson CH (1972) Effect of fungicides on the microflora of potato leaves. Trans Br Mycol Soc 59:31–41

    CAS  Google Scholar 

  • Bakker PA, Raaijmakers JM, Schippers B (1993) Role of iron in the suppression of bacterial plant pathogens by fluorescent pseudomonads. In: Barton LL, Hemming BC (eds) Iron Chelation in Plants and Soil Microorganisms. Academic Press, San Diego, pp 269–278

  • Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54:918–931

    CAS  PubMed  Google Scholar 

  • Balint M, Tiffin P, Olson MS (2013) Host genotype shapes the foliar fungal microbiome of Balsam Poplar (Populus balsamifera). Plos One 8:e53987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti P, Simmons SJ, Blum JE, Ballaré CL, Stapleton AE (2010) Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol Plant Microbe Interact 23:473–484

    CAS  PubMed  Google Scholar 

  • Bamagoos AA, Alharby HF, Belal EE, Khalaf AEA, Abdelfattah MA, Rady MM, Ali EF, Mersal GAM (2021) Phosphate-solubilizing bacteria as a panacea to alleviate stress effects of high soil CaCO3 content in Phaseolus vulgaris with special reference to P-releasing enzymes. Sustainability 13:7063. https://doi.org/10.3390/su13137063

    Article  CAS  Google Scholar 

  • Bao L, Cai W, Zhang X, Liu J, Chen H, Wei Y, Jia X, Bai Z (2019) Distinct microbial community of phyllosphere associated with five tropical plants on Yongxing Island. South China Sea Microorganisms 7(11):525

    CAS  PubMed  Google Scholar 

  • Baquero F, Coque T, Galán JC, Martinez JL (2021) The origin of niches and species in the bacterial world. Front Microbiol 12:657986

    PubMed  PubMed Central  Google Scholar 

  • Barash I, Manulis-Sasson S (2009) Recent evolution of bacterial pathogens: the gall forming Pantoea agglomerans case. Annu Rev Phytopathol 47:133–152

    CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    CAS  Google Scholar 

  • Basha SA, Sarma BK, Singh DP, Annapurna K, Singh UP (2006) Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpea. Folia Microbiol 51:463–468

    CAS  Google Scholar 

  • Bashir O, Claverie JP, Lemoyne P, Vincent C (2016) Controlled-release of Bacillus thurigiensis formulations encapsulated in light resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops. Peer J 4:e2524. https://doi.org/10.7717/peerj2524

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir S, Basit A, Abbas RN, Naeem S, Bashir S, Ahmed N, Ahmed MS, Ilyas MZ, Aslam Z, Alotaibi SS, El-Shehawi AM, Li Y (2021) Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L). Plos One 16:e0254647. https://doi.org/10.1371/journalpone0254647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS (2022) Phyllosphere microbiome: diversity and functions. Microbiol Res 254:126888

    CAS  PubMed  Google Scholar 

  • Bateman RP, Alves RT (2000) Delivery systems for mycoinsecticides using oil-based formulations. Asp Appl Biol 57:163–170

    Google Scholar 

  • Bateman R (1999) Delivery systems and protocols for biopesticides. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. methods in biotechnology, vol 5. Humana Press, pp 509–528

    Google Scholar 

  • Batool F, Rehman Y, Hasnain S (2016) Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Front Life Sci 9:313–322

    CAS  Google Scholar 

  • Batool S, Asghar HN, Shehzad MA, Yasin S, Sohaib M, Nawaz F, Akhtar G, Mubeen K, Zahir ZA, Uzair M (2021) Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L). J Soil Sci Plant Nutr 21:2456–2471. https://doi.org/10.1007/s42729-021-00537-6

    Article  CAS  Google Scholar 

  • Baylis A (2016) Biopesticides 2016: biofungicides; bioinsecticides; bionematicides and bioherbicides Market Study. Informa UK Ltd

    Google Scholar 

  • Bean KM, Kisiala AB, Morrison EN, Emery RJN (2022) Trichoderma synthesizes cytokinins and alters cytokinin dynamics of inoculated Arabidopsis seedlings. J Plant Growth Regul 41:2678–2694. https://doi.org/10.1007/s00344-021-10466-4

    Article  CAS  Google Scholar 

  • Behle RW, Compton DL, Kenar JA, Shapiro-Ilan DI (2011) Improving formulations for biopesticides: enhanced UV protection for beneficial microbes. J ASTM Int 8:1–15

    CAS  Google Scholar 

  • Bejarano A, Sauer U, Preininger C (2017) Design and development of a workflow for microbial spray formulations including decision criteria. Appl Microbiol Biotechnol 101:7335–7346

    CAS  PubMed  Google Scholar 

  • Bentley BL (1987) Nitrogen fixation by epiphylls in a tropical rainforest. Ann Mol Bot Gard 74:234–241

    Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja20051

    Article  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  • Berger B, Patz S, Ruppel S, Dietel K, Faetke S, Junge H, Becker M (2018) Successful formulation and application of plant-growth promoting Kosakonia radicincitans in maize cultivation. Biomed Res Int 2018:e6439481

  • Berninger T, Mitter B, Preininger C (2017) Zeolite-based, dry formulations for conservation and practical application of Paraburkholderia phytofirmans PsJN. J Appl Microbiol 122:974–986

    CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Google Scholar 

  • Bhattacharya P, Jain RK (2000) Phosphorus solubilizing biofertilizers in the whirl pool of rock phosphate-challenges and opportunities. Fertil News 45:45–52

    Google Scholar 

  • Biradar BP, Santhosh GP (2018) Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. Intern J Pure Appl Biosci 6:116–122

    Google Scholar 

  • Bittencourt PP, Alves AF, Ferreira MB, da Silva Irineu LES, Pinto VB, Olivares FL (2023) Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms 11:502. https://doi.org/10.3390/microorganisms11020502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN (2002) Identification of Pseudomonas syringaepv tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol 44(1):73–88

    CAS  PubMed  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. Plos One 8:e56329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genetypes affecting the phyllosphere microbiota. Plos Genet 10:e1004283

    PubMed  PubMed Central  Google Scholar 

  • Boller T (1993) Antimicrobial functions of the plant hydrolases, Chitinase and ß-1,3-glucanase. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses, developments in plant pathology, vol 2. Springer, Dordrecht, Netherlands, pp 391–400. https://doi.org/10.1007/978-94-011-1737-1_124

    Chapter  Google Scholar 

  • Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E (2022) Bacteria as biological control agents of plant diseases. Microorganisms 10:1759. https://doi.org/10.3390/microorganisms10091759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouffaud ML, Renoud S, Dubost A, Moenne-Loccoz Y, Muller D (2018) 1-Aminocyclo-propane-1- carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6:114. https://doi.org/10.1186/s40168-018-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Brand MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indole acetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98:3454–3459

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Vale’ro JR, (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342. https://doi.org/10.1016/jprocbio200507015

    Article  CAS  Google Scholar 

  • Brar SK, Sarma SJ, Chaabouni E (2012) Shelf-life of biofertilizers: an accord between formulations and genetics. J BiofertilBiopestic 3:e109

    Google Scholar 

  • Braun SD, Hofmann J, Wensing A, Weingart H, Ullrich MS, Spiteller D (2010) In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. J Phytopathol 158:288–295

    CAS  Google Scholar 

  • Brewin NJ, Rae AL, Perotto S, Knox JP, Roberts K, LeGal MF, Sindu SS, Wood EA, Kannenberg EL (1990) Immunological dissection of the plant-microbe interface in pea nodules. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 227–234

    Google Scholar 

  • Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486. https://doi.org/10.3389/fmicb201500486

    Article  PubMed  PubMed Central  Google Scholar 

  • Brownbridge M (2017) Seeing through the fog. Grower Talks 80(10):68–70

    Google Scholar 

  • Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Themaat E, Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    CAS  PubMed  Google Scholar 

  • Burbank L, Mohammadi M, Roper MC (2015) Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 81:139–148

    PubMed  Google Scholar 

  • Buren S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 365(2):fnx274

    PubMed  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford. https://doi.org/10.1079/9780851993560.0000

    Book  Google Scholar 

  • Cao M, Narayanan M, Shi X, Chen X, Li Z, Ma Y (2023) Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res 217:114924. https://doi.org/10.1016/j.envres.2022.114924

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Perazzolli M, Antonielli L, Nesler A, Torboli E, Bianchedi PL, Pindo M, Puopolo G, Pertot I (2016) Leaf treatments with a protein-based resistance inducer partially modify phyllosphere microbial communities of grapevine. Front Plant Sci 7:1053. https://doi.org/10.3389/fpls.2016.01053

    PubMed  PubMed Central  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333

    PubMed  PubMed Central  Google Scholar 

  • Carvalho FK, Antunassi UR, Chechetto RG, Mota AAB, DeJesus MG, deCarvalho LR (2017) Viscosity, surface tension and droplet size of sprays of different formulations of insecticides and fungicides. Crop Prot 101:19–23

    CAS  Google Scholar 

  • Cassan F, Diaz-Zorita M (2016) Azospirillum sp in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    CAS  Google Scholar 

  • Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Bok Lee Y, Kim JF, Giaever G (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10:119–129

    CAS  PubMed  Google Scholar 

  • Chang HB, Lin CW, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L) roots. Plant Growth Regul 46:261–266

    CAS  Google Scholar 

  • Chang WS, Van De Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary D, Kumar R, Kumari A, Rashmi JR (2017) Explicit effect of phyllospheric microorganisms on growth promotion of pearl millet (Pennisetum glaucum). Intern J Curr Microbiol Appl Sci 6:1046–1051

    CAS  Google Scholar 

  • Chaudhary V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021) Shaping the leaf microbiota: plant-microbe-microbe interactions. J Exp Bot 72:36–56

    Google Scholar 

  • Chaudhary S, Sindhu SS, Dhanker R, Kumari A (2023) Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiol Res 271:127340. https://doi.org/10.1016/j.micres.2023.127340

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Chen MH, Zhang L, Zhang X (2011) Isolation and inoculation of endophytic actinomycetes in root nodules of Elaeagnus angustifolia. Mod Appl Sci 5:264–267

    CAS  Google Scholar 

  • Chen D, Saeed M, Ali MNHA, Raheel M, Ashraf W, Hassan Z, Hassan MZ, Farooq U et al (2023) Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 13:550. https://doi.org/10.3390/agronomy13020550

    Article  CAS  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chien YC, Huang CH (2020) Biocontrol of bacterial spot-on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur J Plant Pathol 156:995–1003. https://doi.org/10.1007/s10658-020-01947-5

    Article  CAS  Google Scholar 

  • Chihaoui SA, Trabelsi D, Jdey A, Mhadhbi H, Mhamdi R (2015) Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp 10C2 affect richness and structure of rhizosphere bacterial communities and enhances nodulation and growth. Arch Microbiol 197:805–813

    CAS  PubMed  Google Scholar 

  • Chilosi G, Aleandri MP, Luccioli E, Stazi SR, Marabottini R, Morales-Rodríguez C, Vettraino AM, Vannini A (2020) Suppression of soil-borne plant pathogens in growing media amended with espresso spent coffee grounds as a carrier of Trichoderma spp. Sci Hortic 259:108666

    CAS  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci USA 110:15728–15733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6:130

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    CAS  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface sterilized wheat roots. Appl Environ Microbiol 69:5643–5656

    Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28:274–285

    CAS  PubMed  Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012a) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520

    Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau M-L, Vacher C (2012b) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519

    PubMed  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249

    CAS  Google Scholar 

  • Corwin DL (2021) Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci 72:842–862

    Google Scholar 

  • Costa RRGF, da Silva Ferreira Quirino G, de Freitas Naves DC, Santos CB, de Souza Rocha AF (2015) Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize. Pesqui Agropecu Trop 45(3):304–311

    Google Scholar 

  • Cowan PW (2001) Fungi-Life Supports for Ecosystem Essential. ARB 4:1–5

    Google Scholar 

  • Crombie AT, Larke-Mejía NL, Emery H, Dawson R, Pratscher J, Murphy GP (2018) Poplar Phyllosphere Harbors Disparate Isoprene-Degrading Bacteria. Proc Natl Acad Sci USA 115:13081–13086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui K, Xu T, Chen J, Yang H, Liu X, Zhuo R, Peng Y, Tang W, Wang R, Chen L, Zhang X, Zhang Z, He Z, Wang X, Liu C, Chen Y, Zhu Y (2022) Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J Clean Prod 367:133110. https://doi.org/10.1016/jjclepro2022133110

    Article  CAS  Google Scholar 

  • Curran WS, Lingenfelter DD (2009) Agronomy facts 37: Adjuvants for enhancing herbicide performance. Penn State Extension 1–16

  • Daft GC, Leben C (1966) A method for bleaching leaves for microscope investigation of microflora on the leaf surface. Plant Dis Rep 50:493

    Google Scholar 

  • Dahiya A, Kumar R, Sindhu SS (2021) Microbial endophytes: Sustainable approach for managing phosphorus deficiency in agricultural soils. In: Maheshwari DK, Dheeman S (eds) Endophytes: mineral nutrient management, volume 3. Sustainable development and biodiversity, vol 26. Springer, Cham, pp 35–75. https://doi.org/10.1007/978-3-030-65447-4_3

    Chapter  Google Scholar 

  • Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, Håkansson Å, Uhlig E, Becher PG (2019) Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ 675:501–512

    CAS  PubMed  Google Scholar 

  • da Silva LR, Valadares-Inglis MC, Peixoto GHS, de Luccas BEG, Muniz PHPC, Magalhães DM, Moraes MCB, de Mello SCM (2021) Volatile organic compounds emitted by Trichoderma azevedoi promote the growth of lettuce plants and delay the symptoms of white mold. Biol Control 152:104447

    Google Scholar 

  • Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A (2022) Microbe-mediated thermotolerance in plants and pertinent mechanisms - a meta-analysis and review. Front Microbiol 13:833566. https://doi.org/10.3389/fmicb2022833566

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza R, Beneduzi A, Ambrosini A, Da Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LM (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    CAS  PubMed  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6(1):183–194

    CAS  PubMed  Google Scholar 

  • Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20. https://doi.org/10.1016/jfemsec200410005

    Article  CAS  PubMed  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Détain A, Bhowmik P, Leborgne-Castel N, Ochatt S (2022) Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes. Environ Exp Bot 197:104824. https://doi.org/10.1016/jenvexpbot2022104824

    Article  Google Scholar 

  • Devarajan AK, Muthukrishanan G, Truu J, Truu M, Ostonen I, Panneerselvam P, Gopalasubramanian SK (2021) The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L). Plants 10:387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhayanithy G, Subban K, Chelliah J (2019) Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol 19:22

    PubMed  PubMed Central  Google Scholar 

  • Dhungana I, Kantar MB, Nguyen NH (2023) Root exudate composition from different plant species influences the growth of rhizosphere bacteria. Rhizosphere 25:100645. https://doi.org/10.1016/j.rhisph.2022.100645

    Article  Google Scholar 

  • Díaz-Cruz GA, Cassone BJ (2022) Changes in the phyllosphere and rhizosphere microbial communities of soybean in the presence of pathogens. FEMS Microbiol Ecol 98:fiac022. https://doi.org/10.1093/femsec/fiac022

    Article  CAS  PubMed  Google Scholar 

  • Dickinson CH, Watson J, Wallace B (1974) An impression method for examining epiphytic microorganisms and its application to phylloplane studies. Trans Br Mycol Soc 63:616–619

    Google Scholar 

  • Dissanayaka DMSB, Plaxton WC, Lambers H, Siebers M, Marambe B, Wasaki J (2018) Molecular mechanisms underpinning phosphorus-use efficiency in rice. Plant Cell Environ 41:1483–1496

    CAS  PubMed  Google Scholar 

  • Doan HK, Leveau JH (2015) Artificial surfaces in phyllosphere microbiology. Phytopathology 105:1036–1040

    PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    CAS  Google Scholar 

  • Dobrovol’skaya T, Khusnetdinova K, Manucharova N, Golovchenko A (2017) Structure of epiphytic bacterial communities of weeds. Microbiology 86:257–263

    Google Scholar 

  • Dorr GJ, Hewitt AJ, Adkins SW, Hanan J, Zhang H, Noller B (2013) A comparison of initial spray characteristics produced by agricultural nozzles. Crop Prot 53:109–117

    Google Scholar 

  • Dourado MN, Neves AAC, Santos DS, Araujo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. Biomed Res Int 2015:909016

    PubMed  PubMed Central  Google Scholar 

  • Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ, Ma BP, Guo BL, Yu LY (2013) Allonocardiopsis opalescens gen nov, sp nov, a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 63:900–904

    CAS  PubMed  Google Scholar 

  • Dudeja SS, Suneja-Madan P, Paul M, Maheshwari R, Kothe E (2021) Bacterial endophytes: molecular intractions with their hosts. J Basic Microbiol 61:475–505. https://doi.org/10.1002/jobm202000657

    Article  CAS  PubMed  Google Scholar 

  • Dunger G, Relling VM, Tondo ML, Barreras M, Ielpi L, Orellano EG, Ottado J (2007) Xanthan is not essential for pathogenicity in citrus canker, but contributes to Xanthomonas epiphytic survival. Arch Microbiol 188:127–135

    CAS  PubMed  Google Scholar 

  • Dunlap CA, Schisler DA (2014) Characterization of the surface properties of wheat spikelet components grown under different regimens and the biocontrol yeast Cryptococcus flavescens. J Agric Food Chem 62:809–815. https://doi.org/10.1021/jf404181f

    Article  CAS  PubMed  Google Scholar 

  • Durand A, Maillard F, Alvarez-Lopez V, Guinchard S, Bertheau C, Valot B, Blaudez D, Chalot M (2018) Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: community characterization and isolation of Hg-resistant plant growth-promoting bacteria. Sci Total Environ 622:1165–1177

    PubMed  Google Scholar 

  • Durgadevi D, Harish S, Manikandan R, Prabhukarthikeyan SR, Alice D, Raguchander T (2021) Proteomic profiling of defense/resistant genes induced during the tripartite interaction of Oryza sativa, Rhizoctonia solani AG1-1A, and Bacillus subtilis against rice sheath blight. Physiol Mol Plant Pathol 115:101669

    CAS  Google Scholar 

  • Dursun A, Ekinci M, Dönmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield, and growth of tomato (Lycopersicon exculentum L) and cucumber (Cucumis sativus L). Pak J Bot 42(5):3349–3356

    CAS  Google Scholar 

  • Ehrlich PR, Harte J (2015) To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci U.S.A. 112(48):14743–14744. https://doi.org/10.1073/pnas.1519841112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichmann R, Richards L, Schafer P (2021) Hormones as go-betweens in plant microbiome assembly. Plant J 105:518–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padill C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic gram-positive bacteria. Front Microbiol 10:463

    PubMed  PubMed Central  Google Scholar 

  • El Habbasha SF, Tawfik MM, El Kramany MF (2013) Comparative efficacy of different bio-chemical foliar applications on growth, yield and yield attributes of some wheat cultivars. World J Agri Sci 9(4):345–353

    Google Scholar 

  • Elsakhawy T, Ghazi A, Abdel-Rahman MA (2021) Developing liquid Rhizobium inoculants with enhanced long-term survival, storage stability, and plant growth promotion using ectoine additive. Curr Microbiol 78(1):282–291

    CAS  PubMed  Google Scholar 

  • Elsayed EA, Othman NZ, Malek R, Awad HM, Wu K, Aziz R, Wadaan MA, El-Enshasy HA (2014) Bioprocess development for high cell mass and endospore production by Bacillus thuringiensis var israelensis in semi-industrial scale. J Pure Appl Microbiol 8:2773–2783

    CAS  Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Negishi TTH, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecol 53:524–536

    CAS  Google Scholar 

  • Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314

    CAS  PubMed  Google Scholar 

  • Esitken A, Karlidag AH, Ercisli S, Sahin F (2002) Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft 67:139–142

    CAS  Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    CAS  Google Scholar 

  • Eslahi N, Kowsari M, Motallebi M, Zamani MR, Moghadasi Z (2020) Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth related genes. Sci Hortic 261:108932. https://doi.org/10.1016/jscienta2019108932

    Article  CAS  Google Scholar 

  • Essghaier B, Hedi A, Halaoui MR, Boudabous A, Sadfi-Zouaoui N (2012) In vivo and in vitro evaluation of antifungal activities from a halotolerant Bacillus subtilis strain J9. Afr J Microbiol Res 6:4073–4083

    CAS  Google Scholar 

  • Estiken A, Karlideg H, Ercish S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L cv Hacihaliloglu). Aust J Agric Res 54:377–380

    Google Scholar 

  • Etesami H, Glick BR (2020) Halotolerant plant growth-promoting bacteria: prospects for alleviating salinity stress in plants. Environ Exp Bot 178:104–124

    Google Scholar 

  • Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria and silicon to P uptake by plant. Front Plant Sci 12:699618. https://doi.org/10.3389/fpls2021699618

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans HC (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7:47–60. https://doi.org/10.1111/j1365-23111982tb00643x

    Article  Google Scholar 

  • Fadiji AE, Kanu JO, Babalola OO (2021) Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems. Int Microbiol 24:325–335. https://doi.org/10.1007/s10123-021-00169-x

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Brisset MN, Perino C, Vian B, Barny MA, Paulin JP, Tharaud M (2006) Protection of apple against fire blight induced by an hrpL mutant of Erwinia amylovora. Biol Plant 50:667–674. https://doi.org/10.1007/s10535-006-0104-3

    Article  CAS  Google Scholar 

  • Farias TP, de Melo Castro E, Tangerina MP (2022) Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants. Braz J Microbiol 53:1843–1856. https://doi.org/10.1007/s42770-022-00824-z

    Article  CAS  Google Scholar 

  • Farre-Armegnol G, Filella I, Llusia J, Penuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol 213:1–6

    CAS  Google Scholar 

  • Felipe V, Bianco MI, Terrestre M, Mielnichuk N, Romero AM, Yaryura PM (2021) Biocontrol of tomato bacterial spot by novel Bacillus and Pseudomonas strains. Eur J Plant Pathol 160:935–948

    CAS  Google Scholar 

  • Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, Deslandes L, Marco Y (2012) Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol 194:1035–1045

    CAS  PubMed  Google Scholar 

  • Fernando W, Nakkeeran S, Zhang Y, Savchuk S (2018) Biological control of Sclerotinia sclerotiorum (lib) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    Google Scholar 

  • Finkel OM, Salas-Gonzalez I, Castrillo G, Spaepen S, Law TF, Teixeira P, Jones CD, Dangl JL (2019) The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. Plos Biol 17:e3000534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fokkema NJ, Schippers B (1986) Phyllosphere vs rhizosphere as environments for saprophytic colonization. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, London, United Kingdom, pp 137–159

    Google Scholar 

  • Freeman BC, Chen CL, Yu XL, Nielsen L, Peterson K, Beattie GA (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 195:4742–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rica premontane rain forest. Oecologia 117:9–18

    PubMed  Google Scholar 

  • Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulate. Lab Fungal Biol 120:433–448

    CAS  PubMed  Google Scholar 

  • Fu J, Wang Y, Liu Z, Li Z, Yang K (2018) Trichoderma asperellum alleviates the effects of saline–alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. Plant Growth Regul 85:363–374. https://doi.org/10.1007/s10725-018-0386-4

    Article  CAS  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Expr 6:3. https://doi.org/10.1186/s13568-015-0171-y

    Article  CAS  Google Scholar 

  • Furnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    PubMed  Google Scholar 

  • Gafni Y, Icht M, Rubinfeld BZ (1995) Stimulation of Agrobacterium tumefaciens virulence with indole-3-acetic acid. Lett Appl Microbiol 20(2):98–101

    CAS  Google Scholar 

  • Gajera HP, Hirpara DG, Savaliya DD, Golakiya BA (2020) Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia solani Kuhn in cotton. Physiol Mol Plant Pathol 112:101547. https://doi.org/10.1016/jpmpp2020101547

    Article  CAS  Google Scholar 

  • Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    CAS  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G (2005) Colonization of tomato root seedling by Pseudomonas fluorescens 92rkG5: spatio-temporal dynamics localization, organization, viability and culturability. Microbial Ecol 50:289–297

    Google Scholar 

  • Gan-Mor S, Matthews GA (2003) Recent developments in sprayers for application of biopesticides - an overview. Biosyst Eng 84:119–125. https://doi.org/10.1016/S1537-5110(02)00277-5

    Article  Google Scholar 

  • Gao X, Sun H, Liu R (2022) The impact of sugarcane brown rust and host resistance on the phyllosphere bacterial community. Sugar Tech. https://doi.org/10.1007/s12355-021-01088-x

    Article  Google Scholar 

  • Garrido-Jurado I, Fernandez-Bravo M, Campos C, Quesada-Moraga E (2015) Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems. J Invertebr Pathol 130:97–106. https://doi.org/10.1016/jjip201506001

    Article  PubMed  Google Scholar 

  • Gasparetti C, Nordlund E, Jänis J, Buchert J, Kruus K (2012) Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Biochim Biophys Acta (BBA)-Proteins Proteom 1824:598–607. https://doi.org/10.1016/jbbapap201112012

    Article  CAS  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balance in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Ghazy N, El-Nahrawy S (2021) Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch Microbiol 203:1195–1209. https://doi.org/10.1007/s00203-020-02113-5

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech Adv 29:792–803

    CAS  Google Scholar 

  • Girma B, Panda AN, Roy PC, Ray L, Mohanty S, Chowdhary G (2022) Molecular, biochemical, and comparative genome analysis of a rhizobacterial strain Klebsiella sp KBG62 imparting salt stress tolerance to Oryza sativa L. Environ Exp Bot 203:105066. https://doi.org/10.1016/jenvexpbot2022105066

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Glick BR, Gamalaro E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9:1533. https://doi.org/10.3390/microorganisms9071533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Cheng ZY, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Gong T, Xin XF (2021) Phyllosphere microbiota: community dynamics and its interaction with plant hosts. J Integr Plant Biol 63:297–304

    PubMed  Google Scholar 

  • Gossen BD, Peng G, Wolf TM, McDonald MR (2008) Improving spray retention to enhance the efficacy of foliar-applied disease- and pest management products in field and row crops. Can J Plant Pathol 30:505–516

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    PubMed  Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci 103:13186–13191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim H (2018) Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp isolated from decayed wood. Ecotoxicol Environ Saf 151:279–284. https://doi.org/10.1016/jecoenv201801020

    Article  CAS  PubMed  Google Scholar 

  • Gowtham HG, Duraivadivel P, Hariprasad P, Niranjana SR (2017) A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato (Solanum lycopersicum L). Sci Hortic 224:351–357

    CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2000) Addressing micronutrient nutrition through enhancing the nutritional quality of staple foods. Adv Agron 70:77–161

    Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462

    CAS  Google Scholar 

  • Gravouil C (2012) Identification of the barley phyllosphere and the characterisation of manipulation means of the bacteriome against leaf scald and powdery mildew. Doctoral dissertation, University of Nottingham

    Google Scholar 

  • Greenfield M, Gomez-Jimenez MI, Ortiz V, Vega FE, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48. https://doi.org/10.1016/jbiocontrol201601002

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L) plants under limited synthetic fertilizers application. Photosynthetica 55:510–521. https://doi.org/10.1007/s11099-017-0716-1

    Article  CAS  Google Scholar 

  • Guerreiro MA, Brachmann A, Begerow D, Peršoh D (2018) Transient leaf endophytes are the most active fungi in 1-year-old beech leaf litter. Fungal Divers 89:237–251

    Google Scholar 

  • Gupta R, Elkabetz D, Leibman-Markus M (2022a) Cytokinin-microbiome interactions regulate developmental functions. Environ Microbiome 17:2. https://doi.org/10.1186/s40793-022-00397-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M (2022b) The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology 112(4):784–793

    CAS  PubMed  Google Scholar 

  • Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G (2023) Trichoderma species: our best fungal allies in the biocontrol of plant diseases–A review. Plants 12:432. https://doi.org/10.3390/plants12030432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Modarres Sanavy SAM (2012) A comparison between foliar application and seed inoculation of biofertilizers on canola (Brassica napus L) grown under waterlogged conditions. AJCS 6:1435–1440

    CAS  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589. https://doi.org/10.1146/annurev-phyto-080516-35623

    Article  CAS  PubMed  Google Scholar 

  • Hadapad AB, Hire RS, Vijayalakshmi N, Dongre TK (2009) UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. J Invert Pathol 100:147–152. https://doi.org/10.1016/jjip200812003

    Article  CAS  Google Scholar 

  • Hajiabadi AA, Arani AM, Etesami H (2022) Salt-tolerant genotypes and halotolerant rhizobacteria: a potential synergistic alliance to endure high salinity conditions in wheat. Environ Exp Bot 202:105033. https://doi.org/10.1016/jenvexpbot2022105033

    Article  Google Scholar 

  • Hanemian M, Zhou B, Deslandes L, Marco Y, Trémousaygue D (2013) Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Plant Signal Behav 8:e25678

    PubMed  PubMed Central  Google Scholar 

  • Haque MA, Simo Prodhan MY, Ghosh S, Hossain MS, Rahman A, Sarker UK, Haque MA (2023) Enhanced rice plant (BRRI-28) growth at lower doses of urea caused by diazinon mineralizing endophytic bacterial consortia and explorations of relevant regulatory genes in a Klebsiella sp. strain HSTU-F2D4R. Arch Microbiol 205:231. https://doi.org/10.1007/s00203-023-03564-2

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. Plos One 7:e30438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE (2011) Trichoderma – not just for biocontrol any more. Phytoparasitica 39:103–108

    Google Scholar 

  • Harsonowati W, Astuti RI, Wahyudi AT (2017) Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. J Gen Plant Pathol 83:98–108

    CAS  Google Scholar 

  • Hasan N, Khan IU, Farzand A, Heng Z, Moosa A, Saleem M, Canming T (2022) Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 promote plant growth through upregulation of growth-promoting genes in upland cotton. Jappl Microbiol 132:3812–3824. https://doi.org/10.1111/jam15511

    Article  CAS  Google Scholar 

  • Herpell JB, Schindler F, Bejtoviæ M, Fragner L, Diallo B, Bellaire A (2020) The potato yam phyllosphereecto-symbiont Paraburkholderia sp Msb3 is a potent growth promoter in tomato. Front Microbiol 11:581

    PubMed  PubMed Central  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    CAS  PubMed  Google Scholar 

  • Herzfeld D, Sargent K (2011) Pesticide formulations. In: Private pesticide applicator safety education manual, pesticide safety & environmental education program University of Minnesota extension, 19th edn. Virginia Tech, St. Paul, pp 85–108

    Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Product Rep 27:637–657

    CAS  Google Scholar 

  • Hilty J, Muller B, Pantin F, Leuzinger S (2021) Plant growth: the what, the how, and the why. New Phytol 232:25–41. https://doi.org/10.1111/nph.17610

    Article  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae- a pathogen, ice nucleus and epiphyte. Microbiol Mol Biol Rev 64:624–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland M (2011) Nitrogen: give and take from phyllosphere microbes. In: Todd CD (ed) Ploacco JC. Ecological Aspects of Nitrogen Metabolism in Plants, Wiley, pp 217–230

    Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biol 4:682–687

    Google Scholar 

  • Horton P, Long SP, Smith P, Banwart SA, Beerling DJ (2021) Technologies to deliver food and climate security through agriculture. Nature Plants 250:250–255

    Google Scholar 

  • Hoyos-carvajal L, Orduz S, Bissett J (2009) Growth stimulation in bean (Phaseolus vulgaris L) by Trichoderma. Biol Control 51:409–416. https://doi.org/10.1016/jbiocontrol200907018

    Article  Google Scholar 

  • Huang HC, Bremer E, Hynes RK, Erickson RS (2000) Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol Control 18:270–276. https://doi.org/10.1006/bcon20000829

    Article  Google Scholar 

  • Huang R, McGrath SP, Hirsch PR, Clark IM, Storkey J, Wu L, Zhou J, Liang Y (2019) Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbiol Biotechnol 12:1464–1475

    CAS  Google Scholar 

  • Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol 23:1497–1515

    CAS  PubMed  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    CAS  Google Scholar 

  • Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    CAS  PubMed  Google Scholar 

  • Iacobellis NS, Sisto A, Surico G, Evidente A, Dimaio E (1994) Pathogenicity of Pseudomonas syringae subsp Savastanoi mutants defective in phytohormone production. J Phytopathol 140:238–248

    Google Scholar 

  • Iguchi H, Sato I, Yurimoto H, Sakai Y (2013) Stress resistance and C1 metabolism involved in plant colonization of a methanotroph Methylosinus sp B4S. Arch Microbiol 195:717–726

    CAS  PubMed  Google Scholar 

  • Illmer PA, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L) with a Japanese isolate of Xanthomonas campestris pv poae (JT-P482). Biol Control 8:7–14

    Google Scholar 

  • Inacio J, Pereira P, deCarvalho M, Fonseca A, Amaral-Collaco MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microbial Ecol 44:344–353

    CAS  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishfaq M, Kiran A, Rehman H, Farooq M, Ijaz NH, Nadeem F, Azeem I, Li X, Wakeel A (2022) Foliar nutrition: potential and challenges under multifaceted agriculture. Environ Exp Bot 200:104909. https://doi.org/10.1016/jenvexpbot2022104909

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    CAS  Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV, Trotsenko YA (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiol 75:494–496

    CAS  Google Scholar 

  • Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. Plos One 11:e0160951. https://doi.org/10.1371/journalpone0160951

    Article  PubMed  PubMed Central  Google Scholar 

  • Izhaki I, Fridman S, Gerchman Y, Halpern M (2013) Variability of bacterial community composition on leaves between and within plant species. Curr Microbiol 66:227–235

    CAS  PubMed  Google Scholar 

  • Jaber L, Ownley B (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45. https://doi.org/10.1016/jbiocontrol201701013

    Article  Google Scholar 

  • Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67:5488–5496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JL, Carroll TL, Sundin GW (2005) The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb Ecol 49:104–113

    CAS  PubMed  Google Scholar 

  • Jaivel N, Sivakumar U, Marimuthu P (2017) Characterization of zinc solubilization and organic acid detection in Pseudomonassp RZ1 from rice phyllosphere. Intern J Chem Stud 5:272–277

    CAS  Google Scholar 

  • Jambhulkar PP, Sharma P, Yadav R (2016) Delivery systems for introduction of microbial inoculants in the field. In: Microbial inoculants in sustainable agricultural productivity: Vol. 2: Functional applications. Springer, pp 199–218. https://doi.org/10.1007/978-81-322-2644-4_13

    Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    CAS  PubMed  Google Scholar 

  • Jameson PE (2023) Zeatin: The 60th anniversary of its identification. Plant Physiol 192:34–55. https://doi.org/10.1093/plphys/kiad094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangra R, Kumar S, Chaudhary D, Rashmi KA, Kumar R (2018) Screening of epiphytic isolates from different crops for plant growth promoting traits. Intern J Curr Microbiol Appl Sci 7:1057–1064

    Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    CAS  PubMed  Google Scholar 

  • Jiao X, TakishitaY ZG, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796. https://doi.org/10.3389/fpls2021634796

    PubMed  PubMed Central  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Ito SP (2018) Different mechanisms of Trichoderma virens- mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19:870–882. https://doi.org/10.1111/mpp12571

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN (2014) Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biol 14:233

    PubMed  PubMed Central  Google Scholar 

  • Jones K (1970) Nitrogen fixation in the phyllosphere of the Douglas Fir, Pseudotsuga douglasii. Ann Bot 34:239–244

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acid in the mobilization of nutrient from the rhizosphere. Plant Soil 66:247–257

    Google Scholar 

  • Jurkevitch EJ, Shapira G (2000) Structure and colonization dynamics of epiphytic bacterial communities and of selected component strains on tomato (Lycopersicon esculentum) leaves. Microbial Ecol 40:300–308

    Google Scholar 

  • Kadivar H, Stapleton AE (2003) Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microbial Ecol 45:353–361

    CAS  Google Scholar 

  • Kamble MV, Joshi SM, Hadimani S, Jogaiah S (2021) Biopriming with rhizosphere Trichoderma harzianum elicit protection against grapevine downy mildew disease by triggering histopathological and biochemical defense responses. Rhizosphere 19:100398

    Google Scholar 

  • Kaniganti S, Bhattacharya J, Petla BP, Reddy PR (2022) Strigolactone, a neglected plant hormone, with a great potential for crop improvement: crosstalk with other plant hormones. Environ Exp Bot 204:105072. https://doi.org/10.1016/jenvexpbot2022105072

    Article  CAS  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Google Scholar 

  • Kannojia P, Choudhary KK, Srivastava AK, Singh AK (2019) PGPR bioelicitors: Induced systemic resistance (ISR) and proteomic perspective on biocontrol. In: Singh AK, Kumar A, Singh PK (eds) PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, pp 67–84

    Google Scholar 

  • Karadbhajne V, Jambhekar H (2018) Multi-Functional Liquid Biofertilizers 8:1–10

    Google Scholar 

  • Kecskeméti E, Berkelmann-Löhnertz B, Reineke A, Cantu D (2016) Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L) different between conventional, organic, and biodynamic grapes? Plos One 11:e0160852

    PubMed  PubMed Central  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA 111:13715–13720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MdA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    CAS  Google Scholar 

  • Khandelwal A, Sindhu SS (2013) ACC deaminase containing rhizobacteria enhance nodulation and plant growth in clusterbean (Cyamopsis tetragonoloba L). J Microbiol Res 3:117–123

    Google Scholar 

  • Khanna K, Kohli SK, Sharma P, Kour J, Singh AD, Sharma N, Ohri P, Bhardwaj R (2021) Antioxidant potential of plant growth-promoting rhizobacteria (PGPR) in agricultural crops infected with root-knot nematodes. In: Singh HB, Vaishnav A, Sayyed R (eds) Antioxidants in plant-microbe interaction. Springer, Singapore, pp 339–379. https://doi.org/10.1007/978-981-16-1350-0_16

    Chapter  Google Scholar 

  • Kim M, Singh D, Lai-Hoe A, Go R, Rahim RA, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecol 63:674–681

    Google Scholar 

  • Kinkel LLM, Wilson LSE (2000) Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microbial Ecol 39:1–11

    CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    CAS  PubMed  Google Scholar 

  • Knief C, Frances L, Vorholt JA (2010) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microbial Ecol 60:440–452. https://doi.org/10.1007/s00248-010-9725-3

    Article  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    CAS  PubMed  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level transzeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845. https://doi.org/10.3389/fpls201900845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotasthane AS, Agrawal T, Waris ZN, Singh US (2017) Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3Biotech 7:137

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 2: Perspective for value-added products and environments, fungal biology. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Krishnamoorthy R, Kwon SW, Kumutha K, Senthilkumar M, Ahmed S, Sa T, Anandham R (2018) Diversity of culturable methylotrophic bacteria in diffrent genotypes of groundnut and their potential for plant growth promotion. 3Biotech 8:275

    CAS  Google Scholar 

  • Kroll S, Agler MT, Kemen E (2017) Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding. Curr Opin Plant Biol 36:71–78

    CAS  PubMed  Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129. https://doi.org/10.4172/2471-27281000e129

    Article  Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369

    CAS  PubMed  Google Scholar 

  • Kumar J, Babele PK, Singh D, Kumar A (2016a) UV-B radiation stress causes alterations in whole cell protein profile and expression of certain genes in the rice phyllospheric bacterium Enterobacter cloacae. Front Microbiol 7:1440

    PubMed  PubMed Central  Google Scholar 

  • Kumar M, Tomar RS, Lade H, Paul D (2016b) Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32:120

    PubMed  Google Scholar 

  • Kumar S, Chaudhary D, Rashmi JR, Kumari A, Kumar R (2018a) Exploring phyllosphere bacteria for growth promotion and yield of potato (Solanum tuberosum L). Intern J Curr Microbiol Appl Sci 7:1065–1071

    Google Scholar 

  • Kumar S, Chaudhary D, Rashmi JR, Kumari A, Kumar R (2018b) Establishment of antifungal phyllospheric bacteria in potato (Solanum tuberosum L). Intern J Curr Microbiol Appl Sci 7:1048–1056

    Google Scholar 

  • Kumar DA, Sabarinathan KG, Kannan R, Balachandar D, Gomathy M (2019a) Isolation and characterization of drought tolerant bacteria from rice phyllosphere. Intern J Curr Microbiol Appl Sci 8:2655–2664

    CAS  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019b) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar S, Chaudhary T, Diksha SSS, Chaudhary D, Kumar R (2022a) Mycorrhizal fungi: an eco-friendly input for sustenance of soil fertility and plant health. In: Malik DK, Rathi M, Kumar R, Bhatia D (eds) Microbes for humanity and its applications. Daya Publishing House, New Delhi, pp 21–74

    Google Scholar 

  • Kumar S, Diksha, Sindhu SS, Kumar R (2022) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microbial Sci 3:100094. https://doi.org/10.1016/jcrmicr2021100094

    Article  CAS  Google Scholar 

  • Kumar M, Saxena R, Rai PK, Tomar RS, Yadav N, Rana KL, Kour D, Yadav AN (2019b) Genetic diversity of methylotrophic yeast and their impact on environments. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 3: Perspective for sustainable environments. Fungal Biology. Springer, Cham, pp 53–71. https://doi.org/10.1007/978-3-030-25506-0_3

    Chapter  Google Scholar 

  • Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF (2014) Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph methylotroph in the phyllosphere. Plos One 9:e106704

    PubMed  PubMed Central  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2016) Tree phyllosphere bacterial communities: exploring the magnitude of intra- and interindividual variation among host species. Peer J 4:e2367

    PubMed  PubMed Central  Google Scholar 

  • Langvad F (1980) A simple and rapid method for qualitative and quantitative study of the fungal flora of leaves. Can J Microbiol 26:666–670

    CAS  PubMed  Google Scholar 

  • Leben C, Keitt GW (1954) Antibiotics and plant disease: effects of antibiotics in control of plant diseases. J Agric Food Chem 2:234–239

    CAS  Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L) by production of phytohormone of N2 fixing methylotrophic isolates. Biol Fertil Soils 42:402–408

    CAS  Google Scholar 

  • Lee G, Lee SH, Kim KM, Ryu CM (2017) Foliar application of the leaf-colonizing yeast Pseudozymachurashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci Rep 7:39432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke M, DeSalle R (2023) The next generation of microbial ecology and its importance in environmental sustainability. Microb Ecol 85:781–795. https://doi.org/10.1007/s00248-023-02185-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CC, Zhu BJ, Xu L, Li XZ, Yao MJ (2020) Differentiations of prokaryotic communities in leaf and root endosphere of dominant plants and bulk soils in alpine meadows. Acta Ecol Sinica 40:4942–4953

    CAS  Google Scholar 

  • Li Y, Li H, Han X, Han G, Xi J, Liu Y, Zhang Y, Xue Q, Guo Q, Lai H (2022) Actinobacteria biofertilizer improves the yields of different plants and alters the assembly processes of rhizosphere microbial communities. Appl Soil Ecol 171:104345

    Google Scholar 

  • Li X, Wang Y, Guo P, Zhang Z, Cui X, Hao B, Guo W (2023) Arbuscular mycorrhizal fungi facilitate Astragalus adsurgens growth and stress tolerance in cadmium and lead contaminated saline soil by regulating rhizosphere bacterial community. Appl Soil Ecol 187:104842. https://doi.org/10.1016/j.apsoil.2023.104842

    Article  Google Scholar 

  • Lin CS, Wu JT (2014) Tolerance of soil algae and cyanobacteria to drought stress. J Phycol 50:131–139

    CAS  PubMed  Google Scholar 

  • Lin CS, Lin YH, Wu JT (2012) Biodiversity of the epiphyllous algae in a Chamaecyparis forest of northern Taiwan. Bot Stud 53:489–499

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Leveau JHJ (2002) Phyllospheric microbiology. Curr Opin Biotechnol 13:238–243

    CAS  PubMed  Google Scholar 

  • Lindsay WLP, Vlek LG, Chien SH (1989) Phosphate minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environment, 2nd edn. Soil Science Society of America, Madison, USA, pp 1089–1130

    Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017a) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:1–17

    Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017b) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936

    CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844

    CAS  PubMed  Google Scholar 

  • Loper JE, Lindow SE (1987) Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv syringae on bean leaf surfaces. Phytopathology 77:1449–1454

    Google Scholar 

  • Lopez-Bucio J, de la Vega OM, Guevara-Garcia A, Herreera-Estrella I (2000) Enhanced phosphate uptake in transgenic tobacco plants that over-produce citrate. Nat Biotechnol 18:450–453

    CAS  PubMed  Google Scholar 

  • Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA (2011) Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol 110:1203–1214

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurevmicro62081307162918

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Zhang Z, Wang P, Han Y, Jin D, Su P, Tan X, Zhang D, Muhammad-Rizwan H, Lu X, Liu Y (2019) Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express 9:76. https://doi.org/10.1186/s13568-019-0800-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv D, Ma A, Bai Z, Zhuang X, Zhuang G (2012) Response of leaf-associated bacterial communities to primary acyl-homoserine lactone in the tobacco phyllosphere. Res Microbiol 163:119–124

    CAS  PubMed  Google Scholar 

  • Lyn ME, Abbas HK, Zablotowicz RM, Johnson BJ (2009) Delivery systems for biological control agents to manage aflatoxin contamination of pre-harvest maize. Food Add Contamin 26:381–387. https://doi.org/10.1080/02652030802441521

    Article  CAS  Google Scholar 

  • Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J (2020) The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiol Res 240:126552. https://doi.org/10.1016/jmicres126552

    Article  PubMed  Google Scholar 

  • Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87

    Google Scholar 

  • Madhaiyan M, Suresh Reddy BV, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa TM (2006) Plant growth-promoting Methylobacterium induce defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogen. Curr Microbiol 53:270–276

    CAS  PubMed  Google Scholar 

  • Maghsoudi S, Jalali E (2017) Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Sci Rep 7:11019. https://doi.org/10.1038/s41598-017-11080-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA (2010) Biofertilizers in organic agriculture. J Phytol 2:42–54

    Google Scholar 

  • MahjenAbadi VAJM, Sepehri M, Rehmani HA, Zarei M, Ronaghi A, Taghavi SM, Shamshiripour M (2020) Role of dominant phyllosphere bacteria with plant growth–promoting characteristics on growth and nutrition of maize (Zea mays L). J Soil Sci Plant Nutr 20:2348–2363

    Google Scholar 

  • Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:e00682-00613

    PubMed  PubMed Central  Google Scholar 

  • Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13:1318

    CAS  Google Scholar 

  • Malik DK, Sindhu SS (2008) Transposon-derived mutants of Pseudomonas strains altered in indole acetic acid production: effect on nodulation and plant growth in green gram (Vigna radiata L.). Physiol Mol Biol Plants 14:315–320

    CAS  PubMed  Google Scholar 

  • Malik DK, Sindhu SS (2011) Phytostimulatory effect of IAA-producing Pseudomonas strains on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow MAX, Verdier V, Beer SV, Machado MA, Toth IAN (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    PubMed  PubMed Central  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    CAS  PubMed  Google Scholar 

  • Maor R, Haskin S, Levi-Kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides sp aeschynomene. Appl Environ Microbiol 70:1852–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. Plos One 7:e48479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marco ML, Legac J, Lindow SE (2005) Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 7:1379–1391

    CAS  PubMed  Google Scholar 

  • Martins F, Pereira JA, Bota P, Bento A, Baptista P (2016) Fungal endophyte communities in above and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol 20:193–201

    Google Scholar 

  • Masand M, Jose PA, Menghani E, Jebakumar SRD (2015) Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 31:1863–1875

    CAS  PubMed  Google Scholar 

  • Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA (2020) Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J 14:245–258

    CAS  PubMed  Google Scholar 

  • Massoni J, Bortfeld-Miller M, WidmerA VJA (2021) Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proc Natl Acad Sci USA 118(41):e2100150118. https://doi.org/10.1073/pnas2100150118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M, White FF (1994) A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176:1374–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37:181–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones. Springer, Dordrecht, pp 98–117. https://doi.org/10.1007/978-94-011-0473-9_5

    Chapter  Google Scholar 

  • McGuire MR, Shasha BS, Eastman CE, Oloumi-Sadeghi H (1996) Starch- and flour-based sprayable formulations: effect on rainfastness and solar stability of Bacillus thuringiensis. J Econ Entomol 89:863–869

    Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Anton Van Leeuwen 101:777–786

    CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    CAS  PubMed  Google Scholar 

  • Mercl F, Garcia-Sanchez M, Kulhánek M, Košnář Z, Száková J, Tlustoš P (2020) Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp PK112 and Trichoderma harzianum OMG08 on acidic soil. Appl Soil Ecol 147:103360. https://doi.org/10.1016/japsoil201909010

    Article  Google Scholar 

  • Meyling NV, Eilenberg J (2006) Isolation and characterisation of Beauveria bassiana isolates from phylloplanes of hedgerow vegetation. Mycol Res 110:188–195. https://doi.org/10.1016/jmycres200509008

    Article  CAS  PubMed  Google Scholar 

  • Michavila G, Adler C, De Gregorio PR, Lami MJ, Caram Di Santo MC, Zenoff AM (2017) Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol 19:608–617

    CAS  PubMed  Google Scholar 

  • Mikolasch A, Hammer E, Schauer F (2003) Synthesis of imidazol- 2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol 69:1670–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ER, Kearns PJ, Niccum BA, Schwartz JO, Ornstein A, Wolfe BE (2019) Establishment limitation constrains the abundance of lactic acid bacteria in the Napa cabbage phyllosphere. Appl Environ Microbiol 85:00269–00319. https://doi.org/10.1128/AEM00269-19

    Article  Google Scholar 

  • Mina D, Pereira JA, Lino-Neto T, Baptista P (2020) Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microbial Ecol 80:145–157

    Google Scholar 

  • Mitter BN, Pfaffenbichler R, Flavell S, Compant L, Antonielli A, Petric A, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11

    PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno M, Yurimoto H, Iguchi H, Tani A, Sakai Y (2013) Dominant colonization and inheritance of Methylobacterium sp strain OR01 on Perilla plants. Biosci Biotechnol Biochem 77:1533–1538

    CAS  PubMed  Google Scholar 

  • Monier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70:346–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B (2020) Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA 117:1148–1159

    CAS  PubMed  Google Scholar 

  • Morris CE (2002) Phyllosphere. Encycl Life Sci. https://doi.org/10.1038/npgels0000400

    Article  Google Scholar 

  • Morris CE, Kinkel LL (2002) Fifty years of phylosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliott V (eds) Phyllosphere microbiology. APS Press, St Paul, Minn, pp 365–375

    Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Ann Rev Phytopathol 51:85–104

    CAS  Google Scholar 

  • Mueller UG, Juenger TE, Kardish MR, Carlson AL, Burns K, Edwards JA, Smith CC, Fang CC, Des Marais DL (2016) Artificial microbiome-selection to engineer microbiomes that confer salt-tolerance to plants. BioRxiv 081521

  • Mueller JA, Mueller WP (1970) Colpoda cucullus: a terrestrial aquatic. Am Midl Nat 84:1–12

    Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30:1–8. https://doi.org/10.1186/s41938-020-00333-x

    Article  Google Scholar 

  • Mukhtar I, Khokhar I, Sobia M, Ali A (2010) Diversity of epiphytic and endophytic microorganisms in some dominant weeds. Pak J Weed Sci Res 16:287–297

    Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    PubMed  PubMed Central  Google Scholar 

  • Muller CA, Obermeier MM, Berg G (2016) Bioprospecting plant-associated microbiomes. J Biotechnol 235:171–180

    PubMed  Google Scholar 

  • Murgese P, Santamaria P, Leoni B, Crecchio C (2020) Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in Barattiere (Cucumis melo L). J Soil Sci Plant Nutr 20:784–793

    CAS  Google Scholar 

  • Nácher-Vázquez M, Santos B, Azevedo NF, Cerqueira L (2022) The role of nucleic acid mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 262:127086

    PubMed  Google Scholar 

  • Nácher-Vázquez M, Santos B, Azevedo NF, Cerqueira L (2022) Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 127199. https://doi.org/10.1016/jmicres2022127199

  • Nalini MS, Prakash HS (2017) Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 64:261–270

    CAS  PubMed  Google Scholar 

  • Narayanan Z, Glick BR (2022) Secondary metabolites produced by plant bacterial endophytes. Microorganisms 10:2008. https://doi.org/10.3390/microorganisms10102008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan Z, Glick BR (2023) Biotechnologically Engineered Plants. Biology 12:601. https://doi.org/10.3390/biology12040601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento FX, Glick BR, Rossi MJ (2019) Isolation and characterization of novel soil- and plant-associated bacteria with multiple phytohormone-degrading activities using a targeted methodology. Access Microbiol 1:e000053. https://doi.org/10.1099/acmi0000053

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento FX, Uron P, Glick BR, Giachini A, Rossi MJ (2021) Genome analysis of the ACC deaminase-producing Pseudomonas thivervalensis SC5 reveals its multifaceted roles in soil and in beneficial interactions with plants. Front Microbiol 12:752288

    PubMed  PubMed Central  Google Scholar 

  • Naseem M, Wolfling M, Dandekar T (2014) Cytokinins for immunity beyond growth, galls and green islands. Trends Plant Sci 19:481–484. https://doi.org/10.1016/j.tplants.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  • Nasraala AE, Osam AAO, Soliman KG (1998) Effect of increased phosphorus and potassium or sulphur application in their different combinations on yield, components and chemical composition of peanut in a newly reclaimed sandy soil Zagazig. J Agric Res 25:557–579

    Google Scholar 

  • Nasrabadi RG, Greiner R, Mayer-miebach E, Menezes-Blackburn D (2023) Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and P accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiol J. https://doi.org/10.1080/01490451.2023.2168799

    Article  Google Scholar 

  • Nayak S, Prasanna R (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113

    Google Scholar 

  • Neilands JB (2014) Microbial iron metabolism: a comprehensive treatise. Academic Press, New York and London

    Google Scholar 

  • Nguyen XH, Naing KW, Lee YS, Kim YH, Moon JH, Kim KY (2015) Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsica. J Basic Microbiol 55:45–53

    CAS  PubMed  Google Scholar 

  • Ning J, Gang G, Bai Z (2012) In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front Environ Sci Engin 6:231–237

    CAS  Google Scholar 

  • O’Brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 44:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Okinaka Y, Yang CH, Perna NT, Keen NT (2002) Microarray profiling of Erwinia chrysanthemi 3937 genes that are regulated during plant infection. Mol Plant Microbe Interact 15:619–629

    CAS  PubMed  Google Scholar 

  • Oliveira CES, Jalal A (2022) Leaf inoculation of Azospirillum brasilense and Trichoderma harzianumin hydroponic arugula improve productive components and plant nutrition and reduce leaf nitrate. Pesq Agropec Trop Goiânia 52:e72755. https://doi.org/10.1590/1983-40632022v5272755

    Article  Google Scholar 

  • Oliveira AL, Santos OJ, Marcelino PR, Milani KM, Zuluaga MY, Zucareli C, Gonçalves LS (2017) Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. Front Microbiol 8:1873

    PubMed  PubMed Central  Google Scholar 

  • Omer ZS, Tombolini R, Broberg A, Gerhardson B (2004) Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul 43:93–96

    CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/jtim200712009

    Article  CAS  PubMed  Google Scholar 

  • Ördög V, Stirk WA, Takács G, Pőthe P, Illés A, Bojtor C, Széles A, Tóth B, van Staden J, Nagy J (2021) Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L) in field experiments. South Afr J Bot 140:153–160. https://doi.org/10.1016/jsajb202103026

    Article  Google Scholar 

  • Orozco-Mosqueda MC, Rocha-Granados MC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanism. Microbiol Res 208:25–31

    CAS  PubMed  Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391

    PubMed  Google Scholar 

  • Ostrov N, Beal J, Ellis T, Gordon DB, Karas BJ, Lee HH, Lenaghan SC, Schloss JA, Stracquadanio G, Trefzer A, Bader JS (2019) Technological challenges and milestones for writing genomes. Science 366:310–312

    CAS  PubMed  Google Scholar 

  • Ottesen AR, Gorham S, Reed E, Newell MJ, Ramachandran P, Canida T, Allard M, Evans P, Brown E, White JR (2016) Using a control to better understand phyllosphere microbiota. Plos One 11:1–16

    Google Scholar 

  • Panwar V, Aggarwal A, Singh G, Verma A, Sharma I, Saharan MS (2014) Efficacy of foliar spray of Trichoderma isolates against Fusarium graminearum causing head blight (head scab) of wheat. J Wheat Res 6:1

    Google Scholar 

  • Parasuraman P, Pattnaik S, Busi S (2019) Phyllosphere microbiome: functional importance in sustainable agriculture. In: Singh JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 135–148. https://doi.org/10.1016/B978-0-444-64191-500010-9

    Google Scholar 

  • Patel SH, Viradiya MB, Prajapati BJ (2021) Effect of potassium and potassium mobilizing bacteria (KMB) with and without FYM on yield of wheat (Triticum aestivum L). J Pharmac Phytochem 10:1615–1620

    CAS  Google Scholar 

  • Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces–horses for courses. Micron 39:1049–1061

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick B (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattnaik S, Rajkumari J, Paramnandham P, Busi S (2017) Indole acetic acid production and growth promoting activity of Methylobacterium extorquens MP1 and Metylobacterium zatmanii MS4 in tomato. Intern J Veg Sci 23:321–330

    Google Scholar 

  • Pavlova AS, Leontieva MR, Smirnova TA, Kolomeitseva GL, Netrusov AI, Tsavkelova EA (2017) Colonization strategy of the endophytic plant growth promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid Dendrobium Nobile Lind. J Appl Microbiol 123:217–232

    CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Wolf TM (2008) Spray retention and its potential impact on bioherbicide efficacy. Pest Technol 2:70–80

    Google Scholar 

  • Peng G, Byer KN, Bailey KL (2004) Pyricularia setariae: a potential bioherbicide agent for control of green foxtail (Setaria viridis). Weed Sci 52:105–114

    CAS  Google Scholar 

  • Penuelas J, Terradas J (2014) The foliar microbiome. Trends Plant Sci 19:278–280

    CAS  PubMed  Google Scholar 

  • Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, Pindo M, Pertot I (2014) Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol 80:3585–3596

    PubMed  PubMed Central  Google Scholar 

  • Perez-Montano F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jimenez-Guerrero I, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    CAS  PubMed  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín R, Del Cerro P, Espuny M, Jiménez-Guerrero I (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    PubMed  Google Scholar 

  • Perreault R, Laforest-Lapointe I (2022) Plant-microbe interactions in the phyllosphere: facing challenges of the Anthropocene. ISME J 16:339–345. https://doi.org/10.1038/s41396-021-01109-3

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2020) Exploiting plant growth promoting bacteria for salt tolerance and crop productivity in mustard. Appl Soil Ecol 149:103518. https://doi.org/10.1016/japsoil2020103518

    Article  Google Scholar 

  • Phour M, Sindhu SS (2022) Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta 256:85. https://doi.org/10.1007/s00425-022-03997-x

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589. https://doi.org/10.1016/j.micres.2020.126589

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2023) Soil salinity and climate change: Microbiome-based strategies for mitigation of salt stress to sustainable agriculture. In: Parray JA (ed) Climate change and microbiome dynamics: carbon cycle feedbacks. Springer International Publishing, Cham, pp 191–243. https://doi.org/10.1007/978-3-031-21079-2_13

    Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nature Chem Biol 5:308–316

    CAS  Google Scholar 

  • Pieterse CM, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Develop Biol 28:489–521

    CAS  Google Scholar 

  • Pola S, Kesharwani AK, Singh J, Singh D, Kalia VK (2022) Endophytic ability of indigenous Bacillus thuringiensis strain VKK-BB2: new horizons for the development of novel insect pest-resistant crops. Egypt J Biol Pest Contr 32:1–12. https://doi.org/10.1186/s41938-022-00512-y

    Article  Google Scholar 

  • Pontonio E, Di Cagno R, Tarraf W, Filannino P, De Mastro G, Gobbetti M (2018) Dynamic and assembly of epiphyte and endophyte lactic acid bacteria during the life cycle of Origanum vulgare L. Front Microbiol 9:1372. https://doi.org/10.3389/fmicb201801372

    Article  PubMed  PubMed Central  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Thangaraju M, Ryu JH, Chung KY, Sa TM (2005) Effects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum L) and blackgram (Vigna mungo L). J Microbiol Biotechnol 15:903–908

    CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    CAS  PubMed  Google Scholar 

  • Pradana MG, Priwiratama H, Rozziansha TAP, Prasetyo AE, Susanto A (2022) Field evaluation of Bacillus thuringiensis product to control Metisa plana bagworm in oil palm plantation. In IOP Conference Series: Earth Environ Sci IOP Publishing 974:012025

    Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Google Scholar 

  • Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    CAS  PubMed  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507–511

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  PubMed  Google Scholar 

  • Raimi A, Roopnarain A, Adeleke R (2021) Biofertilizer production in Africa: current status, factors impeding adoption and strategies for success. Sci Afric 11:e00694

    CAS  Google Scholar 

  • Rajagopal L, Sundari C, Balasubramanian D, Sonti R (1997) The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett 414:119–124

    Google Scholar 

  • Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G, Uma SR (2021) Inhibition of plant pathogenic fungi by endophytic Trichoderma spp through mycoparasitism and volatile organic compounds. Microbiol Res 242:126595. https://doi.org/10.1016/jmicres2020126595

    Article  CAS  PubMed  Google Scholar 

  • Rasha S, El-Serafy AA, El-Sheshtawy, (2020) Effect of nitrogen fixing bacteria and moringa leaf extract on fruit yield, estragole content and total phenols of organic fennel. Sci Hortic 265:109209. https://doi.org/10.1016/jscienta2020109209

    Article  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    CAS  PubMed  Google Scholar 

  • Reddy MS, Ryu CM, Zhang S, Yan Z, Kloepper JW (2001) Aqueous formulation of plant growth- promoting rhizobacteria for control of foliar pathogens. Phytopathology 917:9–85

    Google Scholar 

  • Redford A, Bowers R, Knight R (2011) Variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR, Reed C (2008) Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–2934

    PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus sp and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    PubMed  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    CAS  PubMed  Google Scholar 

  • Remus-Emsermann MNP, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218:1327–1333

    PubMed  Google Scholar 

  • Remus-Emsermann MN, Kim EB, Marco ML, Tecon R, Leveau JH (2013) Draft genome sequence of the phyllosphere model bacterium Pantoea agglomerans 299R. Genome Announc 1:2012–2013

    Google Scholar 

  • Reyes RY, Brinkman R (1989) The effect of zinc application and other land and crop management measure on wetland rice productivity in a zinc-deficient Philippine soil. J Crop Sci 61:7–13

    Google Scholar 

  • Rico L, Ogaya R, Terradas J, Peñuelas J (2014) Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol 16:586–593

    CAS  PubMed  Google Scholar 

  • Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv citri. Mol Plant-Microbe Interact 20:1222–1230

    CAS  PubMed  Google Scholar 

  • Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Kent A, Fiore MF (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80:312–322

    CAS  PubMed  Google Scholar 

  • Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Bio Med Res Int 12:6105865. https://doi.org/10.1155/2019/6105865

    Article  CAS  Google Scholar 

  • Rocha FYO, de Oliveira CM, da Silva PRA, de Melo LHV, do Carmo MGF, Baldani JI, (2017) Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f sp lycopersici. Appl Soil Ecol 120:8–19

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, FalterBraun P (2019) Systems biology of plant-microbiome interactions. Mol Plant 12:804–821

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N (2020) Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice (NY) 13:72

    Google Scholar 

  • Rosa PAL, Galindo FS, Oliveira CEdS, Jalal A, Mortinho ES, Fernandes GC, Marega EMR, Buzetti S, Teixeira Filho MCM (2022) Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms 10:192. https://doi.org/10.3390/microorganisms10010192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz JA, Bernar EM, Jung K (2015) Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5. Plos One 10:e0117040. https://doi.org/10.1371/journalpone0117040

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Madhaiyan M, Poonguzhali S, Yim W, Indiragandhi P, Kim K, Anandham R, Yun J, Kim KH, Sa T (2006) Plant growth substances produced by Methylobacterium spp and their effect on tomato (Lycopersicon esculentum L) and red pepper (Capsicum annuum L) growth. J Microbiol Biotechnol 16:1622–1628

    CAS  Google Scholar 

  • Saadaoui N, Silini A, Cherif-Silini H, Bouket AC, Alenezi FN, Luptakova L, Boulahouat S, Belbahri L (2022) Semi-arid-habitat-adapted plant-growth-promoting rhizobacteria allows efficient wheat growth promotion. Agronomy 12:2221. https://doi.org/10.3390/agronomy12092221

    Article  CAS  Google Scholar 

  • Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2018) Biocontrol of Sclerotinia sclerotiorum (Lib) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res 211:21–30

    PubMed  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H (2022) How do plants remember drought? Planta 256:7. https://doi.org/10.1007/s00425-022-03924-0

    Article  CAS  PubMed  Google Scholar 

  • Safronova V, Sazanova A, Belimov A, Guro P, Kuznetsova I, Karlov D, Chirak E, Yuzikhin O, Verkhozina A, Afonin A, Tikhonovich I (2023) Synergy between rhizobial co-microsymbionts leads to an increase in the efficiency of plant–microbe interactions. Microorganisms 11:1206. https://doi.org/10.3390/microorganisms11051206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu GK, Sindhu SS (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6:735–749

    Google Scholar 

  • Sahu KP, Kumar A, Patel A, Kumar M, Gopalakrishnan S, Prakash G, Rathour R, Gogoi R (2021) Rice blast lesions: an unexplored phyllosphere microhabitat for novel antagonistic bacterial species against Magnaporthe oryzae. Microbial Ecol 81:731–745. https://doi.org/10.1007/s00248-020-01617-3

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Google Scholar 

  • Salazar B, Ortiz A, Keswani C, Minkina T, Mandzhieva S, Singh SP, Rekadwad B, Borriss R, Jain A, Singh HB, Sansinenea E (2022) Bacillus spp as bio-factories for antifungal secondary metabolites: innovation beyond whole organism formulations. Microbial Ecol 86:1–24. https://doi.org/10.1007/s00248-022-02044-2

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Santoyo G, Hernandez-Pacheco C, Hernandez-Salmeron J, Hernandez-Lean R (2017) The role of abiotic factors modulating the plant-microbe-soil interaction: toward sustainable agriculture. Spanish J Agric Res 15:03–10

    Google Scholar 

  • Santoyo GS, Anchez-Yanez JM, de los Santos-Villalobos S (2019) Methods for detecting biocontrol and plant growth-promoting traits in rhizobacteria. Methods in rhizosphere biology research. Springer, Singapore, pp 133–149

    Google Scholar 

  • Santoyo G, Guzman-Guzman P, Parra-Cota FI, de los Santos-Villalobos S, Orozco-Mosqueda MC, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11:219. https://doi.org/10.3390/qgronomy11020219

    Article  CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 34:121–125

    Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Google Scholar 

  • Sartori M, Nesci A, García J, Passone MA, Montemarani A, Etcheverry M (2017) Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilumturcicum in maize. Rev Argent Microbiol 49:75–82. https://doi.org/10.1016/jram201609008

    Article  PubMed  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2016) Elevation of defense network in chilli against Colletotrichum capsici by phyllospheric Trichoderma strain. J Plant Growth Regul 35:377–389. https://doi.org/10.1007/s00344-015-9542-5

    Article  CAS  Google Scholar 

  • Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, Heidelberg, pp 265–285. https://doi.org/10.1007/978-3-642-37241-4_11

    Chapter  Google Scholar 

  • Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784. https://doi.org/10.3389/fpls201400784

    Article  PubMed  PubMed Central  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillusspp for biological control of plant diseases. Phythopathology 94:1267–1271

    CAS  Google Scholar 

  • Segarra G, Casanova E, Aviles M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial Ecol 59:141–149

    Google Scholar 

  • Segarra G, Puopolo G, Giovannini O, Pertot I (2015) Stepwise flow diagram for the development of formulations of non-spore-forming bacteria against foliar pathogens: the case of Lysobactercapsici AZ78. J Biotechnol 216:56–64. https://doi.org/10.1016/jjbiotec201510004

    Article  CAS  PubMed  Google Scholar 

  • Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 4:220–225

    Google Scholar 

  • Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32(1):15–38. https://doi.org/10.1016/S1002-0160(21)60058-9

    Article  CAS  Google Scholar 

  • Sehrawat A, Phour M, Kumar R, Sindhu SS (2021) Bioremediation of pesticides: an eco-friendly approach for environment sustainability. In: Panpatte DG, Jhala YK (eds) Microbial rejuvenation of polluted environment. Microorganisms for sustainability, vol 25. Springer, Singapore, pp 23–84. https://doi.org/10.1007/978-981-15-7447-4_2

    Chapter  Google Scholar 

  • Şesan TE, Oancea AO, Ştefan LM, Mănoiu VS, Ghiurea M, Răut I, Constantinescu-Aruxandei D, Toma A, Savin S, Bira AF, Pomohaci CM, Oancea F (2020) Effects of foliar treatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea L. yield and quality. Microorganisms 8:123. https://doi.org/10.3390/microorganisms8010123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setati ME, Jacobson D, Andong UC, Bauer F (2012) The vineyard yeast microbiome, a mixed model microbial map. Plos One 7:e52609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y (2021) Targeting salt stress coping mechanisms for stress tolerance in brassica: a research perspective. Plant PhysiolBiochem 158:53–64

    CAS  Google Scholar 

  • Shanks CM, Rice JH, Yan ZB, Schaller GE, Hewezi T, Kieber JJ (2016) The role of cytokinin during infection of Arabidopsis thaliana by the cyst nematode Heteroderaschachtii. Mol Plant-Microbe Interact 29:57–68. https://doi.org/10.1094/MPMI-07-15-0156-R

    Article  CAS  PubMed  Google Scholar 

  • Sharath S, Triveni S, Nagaraju Y, Latha PC, Vidyasagar B (2021) The role of phyllosphere bacteria in improving cotton growth and yield under drought conditions. Front Agron 3:680466. https://doi.org/10.3389/fagro2021680466

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    CAS  PubMed  Google Scholar 

  • Sharma PS, D’Souza F, Kutner W (2012) Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. Trac Trend Anal Chem 34:59–77

    CAS  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Google Scholar 

  • Sharma R, Dahiya A, Sindhu SS (2019) Harnessing proficient rhizobacteria to minimize the use of agrochemicals. Intern J CurrMicrobiol Appl Sci 7:3186–3197

    Google Scholar 

  • Shikano I (2017) Evolutionary ecology of multitrophic interactions between plants, insect herbivores and entomopathogens. J Chem Ecol 43:586–598

    CAS  PubMed  Google Scholar 

  • Sieper T, Forczek S, Matucha M, Krämer P, Hartmann A, Schröder P (2014) N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol 201:545–555. https://doi.org/10.1111/nph12519

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Dadarwal KR (1994) Biosynthesis of exopolysaccharides and its role during nodule development in Rhizobium-legume symbiosis. In: Vashampayan A, Prasad AB (eds) Biology and application of nitrogen-fixing organisms - problems and prospectus. Scientific Publishers, Jodhpur, pp 189–240

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonassp antagonistic to fungal pathogens enhances nodulation by MesorhizobiumspCicer in chickpea (Cicer arietinum). Microbiol Res 156:353–358

    CAS  PubMed  Google Scholar 

  • Sindhu SS, Sharma R (2019) Amelioration of biotic stress by application of rhizobacteria for agriculture sustainability. In: Sayyed R (ed) Plant growth promoting rhizobacteria for sustainable stress management:Volume 2: Rhizobacteria in biotic stress management. Microorganisms for sustainability, vol 13. Springer, Singapore, pp 111–168. https://doi.org/10.1007/978-981-13-6986-5_5

    Chapter  Google Scholar 

  • Sindhu SS, Sharma R (2020) Plant growth promoting rhizobacteria (PGPR): a sustainable approach for managing soil fertility and crop productivity. In: Malik DK, Rathi M, Kumar R, Bhatia D (eds) Microbes for humankind and application. Daya Publishing House, New Delhi, pp 97–130

    Google Scholar 

  • Sindhu D, Sindhu S (2023) Biological databases and resources: their engineering and applications in synthetic biology. Int J Adv Sci Eng 9(4):3085–3098. https://doi.org/10.29294/IJASE.9.4.2023.3085-3098

    Article  Google Scholar 

  • Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulations of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiwal PK (eds) Plant genetic engineering, vol 1. applications and limitations. Sci Tech Publ LCC Houston, USA, pp 199–228

    Google Scholar 

  • Sindhu SS, Rakshiya YS, Sahu G (2009) Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technol 3:10–21

    Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien/NewYork, Germany, pp 195–235

    Google Scholar 

  • Sindhu SS, Dua S, Sahu G (2012) Biological control of plant diseases. In: Rana MK (ed) Modern concepts of vegetable production. Biotech Books, Daryaganj, New Delhi, pp 470–517

    Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR, Chaudhary D (2014) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer-Verlag, Berlin, Heidelberg, pp 199–237

    Google Scholar 

  • Sindhu SS, Goyal A, Sindhu S, Goyal S (2017a) Food and water-borne diseases. In: Rana MK (ed) Human health through better nutrition and hygiene. Brillion Publishing, New Delhi, pp 399–442

    Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Khandelwal A (2017b) Biological control of insect pests for sustainable agriculture. In: Adhya T, Mishra B, Annapurna K, Verma D, Kumar U (eds) Advances in soil microbiology: recent trends and future prospects: Volume 2: Soil-microbe-plant interaction. Microorganisms for sustainability, vol 4. Springer, Singapore, pp 189–218. https://doi.org/10.1007/978-981-10-7380-9_9

  • Sindhu SS, Sharma R, Sindhu S, Phour M (2019a) Plant nutrient management through inoculation of zinc solubilizing bacteria for sustainable agriculture. In: Giri B, Prasad R, Wu QS, Varma A (eds) Biofertilizers for sustainable agriculture and environment. Singapore Pte Ltd., Springer Nature, pp 173–201

    Google Scholar 

  • Sindhu SS, Sharma R, Sindhu S, Sehrawat A (2019b) Soil fertility improvement by symbiotic rhizobia for sustainable agriculture. In: Jhala YK (ed) Panpatte DG. Singapore Pte Ltd., Soil fertility management for sustainable development Springer Nature, pp 101–166

    Google Scholar 

  • Sindhu S, Dahiya A, Gera R, Sindhu SS (2020) Mitigation of abiotic stress in legume-nodulating rhizobia for sustainable crop production. Agric Res 9:444–459

    CAS  Google Scholar 

  • Sindhu D, Redhu NS, Sindhu S, Yadav SK (2021a) Computational biology: Use of NifA protein amino acid sequences of Azorhizobium strain for phylogenetic analysis among nitrogen-fixing organisms. Intern J Adv Res Sci Engin Technol 8(3):16828–16838

    Google Scholar 

  • Sindhu S, Redhu NS, Sindhu D, Yadav SK (2021b) Computational analysis of phylogenetic diversity and evolutionary relationships using nifH gene sequences among nitrogen-fixing organisms. Intern J Engin Res Technol 10(2):249–257

    Google Scholar 

  • Sindhu SS, Sehrawat A, Glick BR (2022a) The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 204:720. https://doi.org/10.1007/s00203-022-03321-x

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Sehrawat A, Phour M, Kumar R (2022b) Nutrient acquisition and soil fertility: contribution of rhizosphere microbiomes in sustainable agriculture. In: Arora NK, Bouizgarne B (eds) Microbial biotechnology for sustainable agriculture, Microorganisms for sustainability, vol 33, vol 1. Springer, Singapore, pp 1–44. https://doi.org/10.1007/978-981-16-4843-4_1

    Chapter  Google Scholar 

  • Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 9:1767

    PubMed  PubMed Central  Google Scholar 

  • Singh P, Shukla AK, Behera SK, Tiwari PK (2019a) Zinc application enhances superoxide dismutase and carbonic anhydrase activities in zinc-efficient and zinc-inefficient wheat genotypes. J Soil Sci Plant Nutr 19:477–487

    CAS  Google Scholar 

  • Singh SP, Pandey S, Mishra N, Giri VP, Mahfooz S, Bhattacharya A, Kumari M, Chauhan P, Verma P, Nautiyal CS, Mishra A (2019b) Supplementation of Trichoderma improves the alteration of nutrient allocation and transporter genes expression in rice under nutrient deficiencies. Plant Physiol Biochem 143:351–363. https://doi.org/10.1016/jplaphy201909015

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Ao NT, KangjamV RG, Banik S (2022) Plant growth promoting microbial consortia against late blight disease of tomato under natural epiphytotic conditions. Indian Phytopathology 75(2):527–539

    Google Scholar 

  • Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K (2020) Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham, pp 113–172. https://doi.org/10.1007/978-3-030-38453-1_5

  • Smirnova I, Sadanov A, Baimakhanova G, Faizulina E, Tatarkina L (2022) Metabolic interaction at the level of extracellular amino acids between plant growth-promoting rhizobacteria and plants of alfalfa (Medicago sativa L). Rhizosphere 21:100477. https://doi.org/10.1016/jrhisph2022100477

    Article  Google Scholar 

  • Smith CM (2021) Conventional breeding of insect-resistant crop plants: still the best way to feed the world population. CurrOpin Insect Sci 45:7–13. https://doi.org/10.1016/jcois202011008

    Article  Google Scholar 

  • Soares AS, Nascimento VL, de Oliveira EE, Jumbo LV, dos Santos GR, Queiroz LL, da Silva RR, Arauzo Filho RN, Romero MA, de Souza Aguiar RW (2023) Pseudomonas aeruginosa and Bacillus cereus isolated from Brazilian Cerrado soil act as phosphate-solubilizing bacteria. CurrMicrobiol 80:146. https://doi.org/10.1007/s00284-023-03260-w

    Article  CAS  Google Scholar 

  • Solanki MK, Yandigeri M, Kumar S, Singh RK, Srivastava AK (2019) Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato. Antonie Leeuwenhoek 112:1–12

    Google Scholar 

  • Sornakili A, Thankappan S, Sridharan AP, Nithya P, Uthandi S (2020) Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol Mol Plant Pathol 112:101525

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring HarbPerspectBiol 3(4):a001438

    Google Scholar 

  • Srinivasan K, Mathivanan N (2009) Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biol Control 51:395–402. https://doi.org/10.1016/jbiocontrol200907013

    Article  Google Scholar 

  • Srithaworn M, Jaroenthanyakorn J, Tangjitjaroenkun J, Suriyachadkun C, Chunhachart O (2023) Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean (Glycine max L. Merr.). Peer J 11:e15128. https://doi.org/10.7717/peerj.15128

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanton DE, Batterman SA, Von Fischer JC, Hedin LO (2019) Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100(9):e02795

    PubMed  Google Scholar 

  • Steven B, Huntley RB, Zeng Q (2018) The influence of flower anatomy and apple cultivar cultivar on the apple flower phytobiome. Phytobiomes J 2:171–179

    Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Controlling bias in biodiversity data. In: Scott JM, Heglund PJ, Morrison M, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington DC, pp 537–546

    Google Scholar 

  • Stone BWG, Weingarten EA, Jackson CR (2018) The role of phyllosphere microbiome in plant health and function. Annu Plant Rev 1:1–24. https://doi.org/10.1002/9781119312994apr0614

    Article  Google Scholar 

  • Stout JD (1960a) Bacteria of soil and pasture leaves at Claude lands showgrounds NZJ. Agric Res 3:413–430

    Google Scholar 

  • Stout JD (1960b) Biological studies of some tussock-grass lands oils. NZJ Agric Res 3:214–223

    Google Scholar 

  • Subhaswaraj P, Jobina R, Parasuraman P, Siddhardha B (2017) Plant growth promoting activity of pink pigmented facultative methylotroph-Methylobacteriumextorquens MM2 on Lycopersicon esculentum L. J Appl Biol Biotechnol 4:42–46

    Google Scholar 

  • Suda W, Nagasaki A, Shishido M (2009) Powdery mildew-infection changes bacterial community composition in the phyllosphere. Microbes Environ 24:217–223

    PubMed  Google Scholar 

  • Sudharkar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Google Scholar 

  • Sultana S, Alam S, Karim MM (2021) Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J Agric Food Res 4:100150

    CAS  Google Scholar 

  • Sundin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogea L). Microbial Ecol 38:27–38

    CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L). Can J Microbiol 53:1195–1202

    CAS  PubMed  Google Scholar 

  • Tamez-Guerra P, McGuire MR, Behle RW, Hamm JJ, Sumner HR, Shasha BS (2000) Sunlight persistence and rain fastness of spray dried formulations of Baculovirus isolated from Anagraphafalcifera (Lepidoptera: Noctuidae). J Eco Etomol 93:210–218

    CAS  Google Scholar 

  • Tamir-Ariel D, Navon N, Burdman S (2007) Identification of genes in Xanthomonas campestris pvvesicatoria induced during its interaction with tomato. J Bacteriol 189:6359–6371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaochan N, Ngampongsai A, Prabhakar CS, Hu Q (2021) Beauveria bassiana PSUB01 simultaneously displays biocontrol activity against Lipaphiserysimi (Kalt) (Hemiptera: Aphididae) and promotes plant growth in Chinese kale under hydroponic growing conditions. Biocontrol Sci Technol 31:997–1015

    Google Scholar 

  • Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68:229–245. https://doi.org/10.1007/s13213-018-1331-5

    Article  CAS  Google Scholar 

  • Thapa S, Ranjan K, Ramakrishnan B, Velmourougane K, Prasanna R (2018) Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 58:172–186

    CAS  PubMed  Google Scholar 

  • Thapa S, Prasanna R, Ramakrishnan B, Mahawar H, Bharti A, Kumar A, Velmourougane K, Shivay YS, Kumar A (2021) Microbial inoculation elicited changes in phyllosphere microbial communities and host immunity suppress Magnaportheoryzae in a susceptible rice cultivar. Physiol Mol Plant Pathol 114:01625. https://doi.org/10.1016/jpmpp2021101625

    Article  Google Scholar 

  • Thaung MM (2008) Pathologic and taxonomic analysis of leaf spot and tar spot diseases in a tropical dry to wet monsoon ecosystem of lowland Burma. Aust Plant Pathol 37:180–197

    Google Scholar 

  • Thomashow LS, Bonsall RE, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington DC, pp 493–499

    Google Scholar 

  • Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 150:177–191

    Google Scholar 

  • Tilman D, Cassman KC, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Timm CM, Pelletier DA, Jawdy SS, Gunter LE, Henning JA, Engle N, Lu TY (2016) Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system. Front Plant Sci 7:497

    PubMed  PubMed Central  Google Scholar 

  • Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS (2020) Influence of plant fraction, soil and plant species on microbiota: a multi kingdom comparison. mBio 11:e02785-02719

    PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240. https://doi.org/10.1155/2013/863240

    Article  PubMed  PubMed Central  Google Scholar 

  • Trognitz F, Hackl E, Widhalm S, Sessitsch A (2016) The role of plant– microbiome interactions in weed establishment and control. FEMS Microbiol Ecol 92(10):138. https://doi.org/10.1093/femsec/fiw138

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    CAS  PubMed  Google Scholar 

  • Tyagi J, Ahmad S, Malik M (2022) Nitrogenous fertilizers: impact on environment sustainability, mitigation strategies, and challenges. Int J Environ Sci Technol 19:11649–11672

    CAS  Google Scholar 

  • Vacher C, Hamper A, Porte AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant-climate interface. Annu Rev Ecol Evol Syst 47:1–24

    Google Scholar 

  • Vadivukkarasi P, Suseela Bhai R (2019) Phyllosphere-associated Methylobacterium: a potential bio-stimulant for ginger (Zingiber officinale Rosc) cultivation. Arch Microbiol 202:369–375. https://doi.org/10.1007/s00203-019-01753-6

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Gonzalez-Tirante M, Medina-Sierra M, Rivas R, Santa-Regina I, Igual JM (2016) Culturable bacterial diversity from the chestnut (Castanea sativa Mill) phyllosphere and antagonism against the fungi causing the chestnut blight and ink diseases. AIMS Microbiol 3:293–314

    Google Scholar 

  • van Loon LC (2000) Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria. In: Vries GE, Metzlaff K (eds) Developments in plant genetics and breeding. Elsevier, Amsterdam, pp 203–213

    Google Scholar 

  • van Wees SC, De Swart EA, Van Pelt JA, Van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    PubMed  PubMed Central  Google Scholar 

  • van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. CurrOpin Plant Biol 11:443–448

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20:441–447

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler Lobermann B, Malusa E (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996

    CAS  PubMed  Google Scholar 

  • Veliz EA, Martínez-Hidalgo P, Hirsch AM (2017) Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol 3:689–705. https://doi.org/10.3934/microbiol20173689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016) Diversity and functional traits of culturable microbiome members, including cyanobactera in the rice phyllosphere. Plant Biol 18:627–637

    CAS  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J CurrMicrobiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/jsjbs201601042

    Article  PubMed  PubMed Central  Google Scholar 

  • Victoria Arellano AD, Silva GM, Guatimosim E, Dorneles KR, Moreira LG, Dallagnol LJ (2021) Seeds coated with Trichoderma atroviride and soil amended with silicon improve the resistance of Lolium multiflorum against Pyriculariaoryzae. Biol Control 154:104499

    CAS  Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian M, Vasumathi K (1997) Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46:291–297

    Google Scholar 

  • Voˇríšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    PubMed  Google Scholar 

  • Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci 12:1231. https://doi.org/10.3390/app12031231

    Article  CAS  Google Scholar 

  • Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207

    CAS  PubMed  Google Scholar 

  • Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HI, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microbial Ecol 64:714–724

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    CAS  PubMed  Google Scholar 

  • Wagi S, Ahmad A (2017) Phyllospheric plant growth promoting bacteria. J Bacteriol Mycol 5:00119

    Google Scholar 

  • Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waight K, Pinyakong O, Luepromchai E (2007) Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J Gen Appl Microbiol 53:265–272

    CAS  PubMed  Google Scholar 

  • Waked DA, Mahgoub HAM, Eleawa M, Rataba A (2020) Bioefficacy of bacterium, Pseudomonas fluorescens using foliar spray and cultivated soil application against Tetranychusurticae on cucumber plants comparing with an Acaricide. J Plant ProtPathol 11:259–262

    Google Scholar 

  • Wang NR, Haney CH (2020) Harnessing the genetic potential of the plant microbiome. Biochemistry 42:20–25

    CAS  Google Scholar 

  • Wang M, Bian Z, Shi J, Wu Y, Yu X, Yang Y, Ni H, Chen H, Bian X, Li T, Zhang Y (2020) Effect of the nitrogen-fixing bacterium Pseudomonas protegens CHA0-retS-nif on garlic growth under different field conditions. Indust Crops Prod 145:111982

    CAS  Google Scholar 

  • Wang CB, Bian DR, Jiang N, Xue H, Piao C-G, Li Y (2022) Rhizobium quercicola sp. nov., isolated from the leaf of Quercus variablis in China. Arch Microbiol 204:596. https://doi.org/10.1007/s00203-022-03188-y

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Weng L, Huang Y, Ling Y, Zhen Z, Lin Z, Hu H, Li C, Guo J, Zhou JL, Chen S, Jia Y, Ren L (2022) Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea rice. Sci Total Environ 843:156817. https://doi.org/10.1016/jscitotenv2022156817

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Dai J, Luo L, Liu Y, Jin D, Zhang Z, Li X, Fu W, Tang T, Xiao Y, Hu Y, Liu E (2022) Scale-dependent effects of growth stage and elevational gradient on rice phyllosphere bacterial and fungal microbial patterns in the terrace field. Front Plant Sci 12:766128. https://doi.org/10.3389/fpls2021766128

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang J, Zhou Y, Huang Y, Tang X (2022d) Prospecting the plant growth–promoting activities of endophytic bacteria Cronobactersp YSD YN2 isolated from Cyperus esculentus L var sativus leaves. Ann Microbiol 72:1. https://doi.org/10.1186/s13213-021-01656-2

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Shen Z, Miao Y, Wang J, Jiang X, Shen Q, Li R (2022) Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Appl Soil Ecol 170(10):4300. https://doi.org/10.1016/j.apsoil2021104300

    Article  Google Scholar 

  • Wei QY, Li YY, Xu C, Wu YX, Zhang YR, Liu H (2020) Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisiatabaci. Arthropod-Plant Interact 14:289–300

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. https://doi.org/10.1093/jxb/52suppl_1487

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    CAS  PubMed  Google Scholar 

  • Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PR, Hein I (2014) Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front Plant Sci 5:655. https://doi.org/10.3389/fpls201400655

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams TR, Moyne AL, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. Plos One 7:1–10

    Google Scholar 

  • Wong WS, Tan SN, Ge L, Chen X, Yong JWH (2015) The importance of phytohormones and microbes in biofertilizers. In: Maheshwari D (ed) Bacterial metabolites in sustainable agroecosystem. sustainable development and biodiversity, vol 12. Springer, Cham, pp 105–158. https://doi.org/10.1007/978-3-319-24654-3_6

    Chapter  Google Scholar 

  • Wraight SP, Ramos ME (2015) Delayed efficacy of Beauveria bassiana foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations. Biol Control 83:51–67. https://doi.org/10.1016/jbiocontrol201412019

    Article  Google Scholar 

  • Wraight SP, Ugine TA, Ramos ME, Sanderson JP (2016) Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions. Biol Control 97:31–47. https://doi.org/10.1016/jbiocontrol201602016

    Article  Google Scholar 

  • Wu CH, Bernard S, Andersen G, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol 2:428–440

    CAS  Google Scholar 

  • Wu Z, Kan FWK, She YM, Walker VK (2012) Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community. Appl BiochemMicrobiol 48:363–370. https://doi.org/10.1134/s0003683812040138

    Article  CAS  Google Scholar 

  • Wu J, Wang Y, Lin X (2013) Purple phototrophic bacterium enhances stevioside yield by Stevia reboudianaBertoni via foliar spray and rhizosphere irrigation. Plos One 8:e67644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie QY, Wang C, Wang R, Qu Z, Lin HP, Goodfellow M, Hong K (2011) Jishengellaendophytica gen nov, spnov, a new member of the family Micromonosporaceae. Intern J Syst Evol Microbiol 61:1153–1159

    CAS  Google Scholar 

  • Xie B, Chen Y, Cheng C, Ma R, Zhao D, Li Z, Li Y, An X, Yang X (2022) Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil. Appl Soil Ecol 180:104627. https://doi.org/10.1016/j.apsoil.2022.104627

    Article  Google Scholar 

  • Xue C, Ryan Penton C, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotech Bioeng 6:38–41

    Google Scholar 

  • Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features. Microbial Ecol 50:185–196

    CAS  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-10480-1

    Article  Google Scholar 

  • Yan B, Hou J, Cui J, He C, Li W, Chen X, Li M, Wang W (2019) The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis. Plants (basel) 8(11):519. https://doi.org/10.3390/plants8110519

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT, Yang CH (2004) Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant Microbe Interact 17:999–1008

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Rya C (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    PubMed  Google Scholar 

  • Yashiro E, Spear RN, McManus PS (2011) Culture- dependent and culture independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110:1284–1296

    CAS  PubMed  Google Scholar 

  • You C, Zhang C, Kong F, Feng C, Wang J (2016) Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol Eng 91:119–125

    Google Scholar 

  • Yu C, Fan L, Gao J, Wang M, Wu Q, Tang J, Li Y, Chan J (2015) The platelet-activating factor acetyl hydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway. J Environ Sci Health B 50:708–717

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    CAS  PubMed  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio 6:e02527-e2514

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y (2016a) Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant 9:1302–1314

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang X, Zhang Y, Wu S, Gelbič I, Xu L, Guan X (2016b) A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Reports 6:39425. https://doi.org/10.1038/srep39425

    Article  CAS  Google Scholar 

  • Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z (2021) Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245:126690. https://doi.org/10.1016/jmicres2020126690

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song J, Yan W, Li T, Li R, Wang J, Wang X, Zhou Q (2023) Regulation of rhizospheric microbial network to enhance plant growth and resist pollutants: unignorable weak electric field. Sci Total Environ 855:158888. https://doi.org/10.1016/jscitotenv2022158888

    Article  CAS  PubMed  Google Scholar 

  • Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanism of the rice sheath blight pathogen. Nat Commun 4:14

    Google Scholar 

  • Zhu Z, He Y, Xu J, Zhou Z, Kumar A, Xia Z (2022) Effects of pesticide application and plant sexual identity on leaf physiological traits and phyllosphere bacterial communities. J Plant Ecol 16(2):rtac084. https://doi.org/10.1093/jpe/rtac084

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Microbiology Department for their critical suggestions during reviewing and compilation of the manuscript and for providing valuable comments and inputs to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SK and SSS conceived and designed the review. SK and Diksha designed the figures. SK, RK, AP, and AK contributed in writing and original draft preparation. SSS performed the editing. All the authors have read and agreed to the submission of the manuscript for publication in the esteemed journal Journal of Soil Science and Plant Nutrition.

Corresponding author

Correspondence to Satyavir Singh Sindhu.

Ethics declarations

Ethical Approval

The work submitted does not include any experiment related to animals. No conflicts, informed consent, or human or animal rights are applicable to this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Diksha, Sindhu, S.S. et al. Harnessing Phyllosphere Microbiome for Improving Soil Fertility, Crop Production, and Environmental Sustainability. J Soil Sci Plant Nutr 23, 4719–4764 (2023). https://doi.org/10.1007/s42729-023-01397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01397-y

Keywords

Navigation