Skip to main content
Log in

Exploring the mycobiota of bromeliads phytotelmata in Brazilian Campos Rupestres

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The phytotelmata is a water-filled tank on a terrestrial plant, and it plays an important role in bromeliad growth and ecosystem functioning. Even though previous studies have contributed to elucidate the composition of the prokaryotic component of this aquatic ecosystem, its mycobiota (fungal community) is still poorly known. In the present work, ITS2 amplicon deep sequencing was used to examine the fungal communities inhabiting the phytotelmata of two bromeliads species that coexist in a sun-exposed rupestrian field of Southeastern Brazil, namely Aechmea nudicaulis (AN) and Vriesea minarum (VM). Ascomycota was the most abundant phylum in both bromeliads (57.1 and 89.1% in AN and VM respectively, on average), while the others were present in low abundance (< 2%). Mortierellomycota and Glomeromycota were exclusively observed in AN. Beta-diversity analysis showed that samples from each bromeliad significantly clustered together. In conclusion, despite the considerable within-group variation, the results suggested that each bromeliad harbor a distinct fungi community, what could be associated with the physicochemical characteristics of the phytotelmata (mainly total nitrogen, total organic carbon, and total carbon) and plant morphological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The ecological datasets in the current study are available from the corresponding author on reasonable request.

References

  1. Giongo A, Medina-Silva R, Astarita LV, Borges LGA, Oliveira RR, Simão TLL, Gano KA, Davis-Richardson AG, Brown CT, Fagen JR, Arzivenco PM, Neto CP, Abichequer AD, Lindholz CG, Baptista-Silva A, Mondin CA, Utz LRP, Triplett EW, Eizirik E (2019) Seasonal physiological parameters and phytotelmata bacterial diversity of two bromeliad species (Aechmea gamosepala and Vriesea platynema) from the Atlantic Forest of Southern Brazil. Diversity 11:111. https://doi.org/10.3390/d11070111

    Article  CAS  Google Scholar 

  2. Vergne A, Darbot V, Bardot C, Enault F, Le Jeune A-H et al (2021) Assemblages of anoxygenic phototrophic bacteria in tank bromeliads exhibit a host-specific signature. J Ecol 109:2550–2565. https://doi.org/10.1111/1365-2745.13657

    Article  CAS  Google Scholar 

  3. Marques AR, Resende AA, Gomes FCO, Santos ARO, Rosa CA, Duarte AA, de Lemos-Filho JP, Dos Santos VL (2021) Plant growth-promoting traits of yeasts isolated from the tank bromeliad Vriesea minarum L.B. Smith and the effectiveness of Carlosrosaea vrieseae for promoting bromeliad growth. Braz J Microbiol 52:1417–1429. https://doi.org/10.1007/s42770-021-00496-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, Cambridge, p 675. https://doi.org/10.1017/CBO9780511565175

    Book  Google Scholar 

  5. Brandt FB, Martinson GO, Conrad R (2017) Bromeliad tanks are unique habitats for microbial communities involved in methane turnover. Plant Soil 410:167–179. https://doi.org/10.1007/s11104-016-2988-9

    Article  CAS  Google Scholar 

  6. Laviski BFDS, Monteiro IDM, de Pinho LC, Baptista RLC, Mayhé-Nunes AJ, Racca‐Filho F, Nunes‐Freitas AF (2021) Bromeliad habitat regulates the richness of associated terrestrial and aquatic fauna. Austral Ecol 46(5):860–870

  7. Gomes FCO, Safar SVB, Marques AR, Medeiros AO, Santos ARO, Carvalho C, Lachance MA, Sampaio JP, Rosa CA (2015) The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov. Anton Leeuw Int J G 107:597–611. https://doi.org/10.1007/s10482-014-0356-4

    Article  CAS  Google Scholar 

  8. Rocha FH, Lachaud JP, Pérez-Lachaud G (2020) Myrmecophilous organisms associated with colonies of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae) nesting in Aechmea bracteata bromeliads: a biodiversity hotspot apparatus. Myrmecol News 30:73–92. https://doi.org/10.25849/myrmecol.news_030:073

    Article  Google Scholar 

  9. Safar SVB, Gomes FCO, Marques AR, Lachance MA, Rosa CA (2013) Kazachstania rupicola sp. nov., a yeast species isolated from water tanks of a bromeliad in Brazil. Int J Syst Evol Microbiol 63:1165–1168. https://doi.org/10.1099/ijs.0.048462-0

    Article  PubMed  Google Scholar 

  10. Simão TLL, Borges AG, Gano KA, Davis-Richardson AG, Brown CT, Fagen JR, Triplett EW, Dias R, Mondin CA, da Silva RM, Eizirik E, Utz LRP (2017) Characterization of ciliate diversity in bromeliad tank waters from the Brazilian Atlantic Forest. Eur J Protistol 61:359–365. https://doi.org/10.1016/j.ejop.2017.05.005

    Article  PubMed  Google Scholar 

  11. Endres I, Mercier H (2001) Influence of nitrogen forms on the growth and nitrogen metabolism of bromeliads. J Plant Nutr 24:29–42. https://doi.org/10.1081/PLN-100000310

    Article  CAS  Google Scholar 

  12. Leroy C, Carrias JF, Céréghino R, Corbara B (2015) The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J Plant Ecol 9:241–255. https://doi.org/10.1093/jpe/rtv052

    Article  Google Scholar 

  13. Romero GQ, Mazzafera P, Vasconcellos-Neto J, Trivelin PCO (2006) Bromeliad-living spiders improve host plant nutrition and growth. Ecology 87:803–808

    Article  PubMed  Google Scholar 

  14. Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A, Carrias J-F (2012) Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biol 57:815–823. https://doi.org/10.1111/j.1365-2427.2012.02749.x

    Article  Google Scholar 

  15. Kitching RL (2000) Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Hellings L, Dehairs F, Van Damme S, Baeyens W (2001) Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnol Oceanogr 46:1406–1414. https://doi.org/10.4319/lo.2001.46.6.1406

    Article  CAS  Google Scholar 

  17. Suberkropp K, Klug MJ (1980) The maceration of deciduous leaf litter by aquatic hyphomycetes. Can J Bot 58:1025–1031

    Article  CAS  Google Scholar 

  18. Abdullah SK, Taj-Aldeen SJ (1989) Extracellular enzymatic activity of aquatic and aero-aquatic conidial fungi. Hydrobiologia 174:217–223

    Article  CAS  Google Scholar 

  19. Abdel-Raheem A, Ali E (2004) Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157:277–286

    Article  CAS  PubMed  Google Scholar 

  20. Hendel B, Sinsabaugh RL & Marxsen J (2005) Lignin-degrading enzymes: phenoloxidase and peroxidase. Methods to Study Litter Decomposition (Graça MAS, Bärlocher F & Gessner MO eds), pp. 273–278. Springer, Dordrecht, the Netherlands.

    Chapter  Google Scholar 

  21. Brighigna L, Montaini P, Favilli F, Trejo AC (1992) Role of the nitrogen-fixing bacterial microflora in the epiphytism of Tillandsia (Bromeliaceae). Am J Bot 79:723–727

    Article  Google Scholar 

  22. Goffredi SK, Kantor AH, Woodside WT (2011) Aquatic microbial habitats within a neotropical rainforest: bromeliads and pH-associated trends in bacterial diversity and composition. Microb Ecol 61:529–542. https://doi.org/10.1007/s00248-010-9781-8

    Article  PubMed  Google Scholar 

  23. Bouard O, Cereghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A et al (2012) Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biol 57:815–823

    Article  Google Scholar 

  24. Ngai JT, Srivastava DS (2006) Ngai JT, Srivastava DS. Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314:963. https://doi.org/10.1126/science.1132598

    Article  CAS  PubMed  Google Scholar 

  25. Brozio S, Manson C, Gourevitch E, Burns TJ, Greener MS, Downie JR, Hoskisson PA (2017) Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in Bromeliad Phytotelmata. PLoS One 12:e0170619. https://doi.org/10.1371/journal.pone.0170619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. González AL, Romero GQ, Srivastava DS (2014) Detrital nutrient content determines growth rate and elemental composition of bromeliad-dwelling insects. Freshwater Biol 59:737–747. https://doi.org/10.1111/fwb.12300

    Article  CAS  Google Scholar 

  27. Marino NA, Srivastava DS, Farjalla VF (2013) Aquatic macroinvertebrate community composition in tank-bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conserv Divers 6:372–380

    Article  Google Scholar 

  28. Antonetti DA, Malfatti E, Utz LRP (2021) Influence of environmental and morphological parameters on the microfauna community present in phytotelmata of a bromeliad in a fragment of Atlantic Forest, southern Brazil. Neotrop Biol Conserv 16:59–70. https://doi.org/10.3897/neotropical.16.e56186

    Article  Google Scholar 

  29. Haubrich CS, Pires APF, Esteves FA, Farjalla VF (2009) Bottom-up regulation of bacterial growth in tropical phytotelm bromeliads. Hydrobiologia 632:347–353. https://doi.org/10.1007/s10750-009-9841-6

    Article  Google Scholar 

  30. Rowe AR, Pringle A (2005) Morphological and molecular evidence of arbuscular mycorrhizal fungal associations in Costa Rican epiphytic bromeliads. Biotropica 37:245–250. https://doi.org/10.1111/j.1744-7429.2005.00033.x

    Article  Google Scholar 

  31. Rodriguez-Nuñez KM, Rullan-Cardec JM, Rios-Velazquez C (2017) The metagenome of bromeliads phytotelma in Puerto Rico. Data Brief 6:19–22. https://doi.org/10.1016/j.dib.2017.10.065

    Article  Google Scholar 

  32. Herrera-García JA, Martinez M, Zamora-Tavares P, Vargas-Ponce O, Hernández-Sandoval L, Rodríguez-Zaragoza FA (2022) Metabarcoding of the phytotelmata of Pseudalcantarea grandis (Bromeliaceae) from an arid zone. PeerJ 10:e12706. https://doi.org/10.7717/peerj.12706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Louca S, Jacques SMS, Pires APF, Leal JS, González AL, Doebeli M, Farjalla VF (2017) Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ Microbiol 19:3132–3151. https://doi.org/10.1111/1462-2920.13788

    Article  CAS  PubMed  Google Scholar 

  34. Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N (2021) Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. New Phytol 231:1195–1209. https://doi.org/10.1111/nph.17288

    Article  PubMed  Google Scholar 

  35. Hagler AN, Rosa CA, Morais PB, Mendonça-Hagler LC, Franco GM, Araujo FV, Soares CA (1993) Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil. Can J Microbiol 39:973–977. https://doi.org/10.1139/m93-146

    Article  CAS  PubMed  Google Scholar 

  36. Morais PB, de Sousa FMP, Rosa CA (2020) Yeast in plant phytotelmata: is there a “core” community in different localities of rupestrian savannas of Brazil? Braz J Microbiol 51:1209–1218. https://doi.org/10.1007/s42770-020-00286-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tellez PH, Woods CL, Formel S, Bael SAV (2020) Relationships between foliar fungal endophyte communities and ecophysiological traits of CAM and C3 epiphytic Bromeliads in a neotropical rainforest. Diversity 12(10):378. https://doi.org/10.3390/d12100378

    Article  CAS  Google Scholar 

  38. Marques AR, Lemos-Filho JP, Mota RC (2012) Diversity and conservation status of bromeliads from Serra da Piedade, Minas Gerais, Brazil. Rodriguésia 63:243–255. https://doi.org/10.1590/S2175-78602012000200001

    Article  Google Scholar 

  39. Bert TM, Luther HE (2005) Aechmea Information. Florida Council of Bromeliad Societies, Sarasota, FL

    Google Scholar 

  40. Chaves CJN, Leal BSS, Lemos-filho JP (2017) How are endemic and widely distributed bromeliads responding to warming temperatures? A case study in a Brazilian hotspot. Flora 238:110–118. https://doi.org/10.1016/j.flora.2017.05.003

    Article  Google Scholar 

  41. Versieux LM, Louzada RB, Viana PL, Mota N, Wanderley MGL (2010) An illustrated checklist of Bromeliaceae from Parque Estadual do Rio Preto, Minas Gerais, Brazil, with notes on phytogeography and one new species of Cryptanthus. Phytotaxa 10:1–16. https://doi.org/10.11646/phytotaxa.10.1.1

    Article  Google Scholar 

  42. Versieux LM (2011) Brazilian plants urgently needing conservation: the case of Vriesea minarum (Bromeliaceae). Phytotaxa 28:35–49. https://doi.org/10.11646/phytotaxa.28.1.5

    Article  Google Scholar 

  43. Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodivers Conserv 16:2989–3009. https://doi.org/10.1007/s10531-007-9157-7

    Article  Google Scholar 

  44. Jacobi CM, do Carmo FF, de Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio 40:540–543. https://doi.org/10.1007/s13280-011-0151-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brandão M, Gavilanes ML (1990) Mais uma contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais (Serra da Piedade) −II. Daphne 1:26–43

    Google Scholar 

  46. Sampaio MC, Perissé LE, de Oliveira GA, Rios RI (2002) The contrasting clonal architecture of two bromeliads from sandy coastal plains in Brazil. Flora 197:443–451. https://doi.org/10.1078/0367-2530-00061

    Article  Google Scholar 

  47. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7(7):e40863. https://doi.org/10.1371/journal.pone.0040863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  49. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2022) UNITE general FASTA release for Fungi. UNITE Comm. https://doi.org/10.15156/BIO/2483911

  52. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Oksanen MJ (2013) Package ‘vegan’. Community ecology package, version. 2(9):1-295

  54. Lahti L, Shetty S (2018) Introduction to the microbiome R package. Bioconductor 2018. Available online: https://microbiome.github.io/. Accessed 18 May 2023

  55. Hammer O, Harper D AT, Rian PD. Past: paleontological statistics software package for education and data analysis. Version 1.37. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  56. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15(12):1–21

    Article  Google Scholar 

  57. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo K, Guo P (2022) Microbial: do 16s data analysis and generate figures. R package version 0.0.20, v. 1, n. 4, 2021. https://cran.r-project.org/web/packages/microbial/microbial.pdf

  59. Reynolds NK, Jusino MA, Stajich JE, Smith ME (2022) Understudied, underrepresented, and unknown: methodological biases that limit detection of early diverging fungi from environmental samples. Mol Ecol Resour 22:1065–1085. https://doi.org/10.1111/1755-0998.13540

    Article  CAS  PubMed  Google Scholar 

  60. Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zen-gler K (ed) Accessing uncultivated microorganisms: from the environments to organisms and genomes and back. ASM Press, Washington, DC, USA, pp 95–115

    Google Scholar 

  61. Dunthorn M, Stoeck T, Wolf K, Breiner H-W, Foissner W (2012) Diversity and endemism of ciliates inhabiting Neotropical phytotelmata. System Biodivers 10(2):195–205. https://doi.org/10.1080/14772000.2012.685195

    Article  Google Scholar 

  62. Goh TK, Hyde KD (1996) Biodiversity of freshwater fungi. J Ind Microbiol 17:328–345

    CAS  Google Scholar 

  63. Lange L, Barrett K, Pilgaard B et al (2019) Enzymes of early-diverging, zoosporic fungi. Appl Microbiol Biotechnol 103:6885–6902. https://doi.org/10.1007/s00253-019-09983-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller DS et al (2017) Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 19:3802–3822. https://doi.org/10.1111/1462-2920.13827

    Article  PubMed  Google Scholar 

  65. Lugo MA, Molina MG, Crespo EM (2009) Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment. Symbiosis 47:17–21. https://doi.org/10.1007/BF03179966

    Article  Google Scholar 

  66. Goffredi SK, Jang GE, Haroon MF (2015) Transcriptomics in the tropics: total RNA-based profiling of Costa Rican bromeliad-associated communities. Comput Struct Biotechnol J 13:18–23. https://doi.org/10.1016/j.csbj.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  67. Martin R, Gazis R, Skaltsas D, Chaverri P, Hibbett D (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107:284–297. https://doi.org/10.3852/14-206

    Article  PubMed  Google Scholar 

  68. Kersten P, Cullen D (2013) Recent advances on the genomics of litter- and soil-inhabiting Agaricomycetes. Genomics Soil Plant Assoc Fungi 36:45–88. https://doi.org/10.1007/978-3-642-39339-6

    Article  Google Scholar 

  69. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087. https://doi.org/10.3852/mycologia.98.6.1076

    Article  CAS  PubMed  Google Scholar 

  70. Persoh D (2013) Factors shaping community structure of endophytic fungi-evidence from the Pinus-Viscum-system. Fungal Diversity 60:55–69. https://doi.org/10.1007/s13225-013-0225-x

    Article  Google Scholar 

  71. Leroy C, Maes AQ, Louisanna E, Séjalon-Delmas N (2019) How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species. Fungal Ecol 39:296–306. https://doi.org/10.1016/j.funeco.2019.01.004

    Article  Google Scholar 

  72. Olech M (2002) Plant communities on King George Island. In: Geoecology of Antarctic Ice-Free Coastal Landscapes. Springer, Berlin, Heidelberg, pp 215–231

    Chapter  Google Scholar 

  73. Lim YW, Kim BK, Kim C, Jung HS, Kim BS, Lee JH, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Microbiology of Universidade Federal de Minas Gerais and Department of Biological Sciences of Centro Federal de Educação Tecnológica de Minas Gerais for research facilities. The authors are also thankful for the support from the agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) grant no. CBB-APQ-02639-15.

Funding

This research was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) grant no. CBB-APQ-02639-15.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analyses were performed by Ubiana Cássia Silva, Andrea R. Marques, Alessandra Abrão Resende, and Vera Lúcia dos Santos. Writing of original draft, Vera Lúcia dos Santos. Writing and review editing, data analysis, and discussion were carried out by Sara Cuadros-Orellana, Andrea R. Marques, Alessandra Abrão Resende, Marcela França Dias, and Vera Lúcia dos Santos. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vera Lúcia dos Santos.

Ethics declarations

Ethics approval

Permissions for collection according to ICMBio instructions. Document 57088-1 was registered by AA Resende in SISBIO and document 097/2015 was registered by AA Resende in IEF/MG as authorization for collection of phytotelmata water and seed samples for scientific activities.

Consent to participate

All authors agreed with the content and gave explicit consent to submit and obtained consent from the responsible authorities at the institute where the work has been carried out.

Consent for publication

All authors read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Melissa Fontes Landell

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, V.L., Silva, U.C., Santos, E.H. et al. Exploring the mycobiota of bromeliads phytotelmata in Brazilian Campos Rupestres. Braz J Microbiol 54, 1885–1897 (2023). https://doi.org/10.1007/s42770-023-00977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00977-5

Keywords

Navigation