Skip to main content
Log in

A critical review on bioaerosols—dispersal of crop pathogenic microorganisms and their impact on crop yield

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abad P, Castagnone-Sereno P, Rosso MN, et al (2009) Invasion, feeding and development. Root-knot Nematodes 163–181. https://doi.org/10.1079/9781845934927.0163

  2. Abasova LV, Aghayeva DN, Takamatsu E (2018) Erysiphe azerbaijanica and E. linderae: Two new powdery mildew species (Erysiphales) belonging to the Microsphaera lineage of Erysiphe. Mycoscience 59:181–187

    Google Scholar 

  3. Adams GC, Wingfield MJ, Common R, Roux J (2005) Phylogenetic relationships and morphology of Cytospora species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. Stud Mycol 52

  4. Adhikari A, Reponen T, Grinshpun SA et al (2006) Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environ Pollut 140:16–28. https://doi.org/10.1016/j.envpol.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  5. Adiyoga W, Moekasan TK, Uhan TS, Suenaryo E, Hendarsih (2000) Present status of pest and disease management on food and vegetable crops and its future development. PEI (Perhimpunan Entomologi Indonesia), Surakarta and PT. PCI, Jakarta

  6. Aegerter BJ, Nuñez JJ, Davis RM (2003) Environmental factors affecting rose downy mildew and development of a forecasting model for a nursery production system. Plant Dis 87:732–738. https://doi.org/10.1094/PDIS.2003.87.6.732

    Article  CAS  PubMed  Google Scholar 

  7. Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, London, UK

    Google Scholar 

  8. Akbulut S, Yüksel B, Serin M, Erdem M (2015) Comparison of pathogenic potential of Bursaphelenchus species on conifer seedlings between greenhouse and outdoor conditions. Phytoparasitica 43:209–214. https://doi.org/10.1007/s12600-014-0433-2

    Article  CAS  Google Scholar 

  9. Akhtar J, Kumar Jha V, Kumar A, Lal HC (2009) Occurrence of banded leaf and sheath blight of maize in Jharkhand with reference to diversity in Rhizoctonia solani. Asian J Agric Sci 1:32–35

    Google Scholar 

  10. Al Raish SM, Saeed EE, Sham A et al (2020) Molecular characterization and disease control of stem canker on royal poinciana (Delonix regia) caused by neoscytalidium dimidiatum in the United Arab Emirates. Int J Mol Sci 21:1033. https://doi.org/10.3390/ijms21031033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ali S, Rodriguez-Algaba J, Thach T et al (2017) Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front Plant Sci 8:1057. https://doi.org/10.3389/fpls.2017.01057

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci 36:801–812. https://doi.org/10.1016/j.jaerosci.2004.10.012

    Article  ADS  CAS  Google Scholar 

  13. Almeida RPP, Daane KM, Bell VA et al (2013) Ecology and management of grapevine leafroll disease. Front Microbiol 4:94. https://doi.org/10.3389/fmicb.2013.00094

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alvarado MJ, Lonsdale CR, Yokelson RJ et al (2015) Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmos Chem Phys 15:6667–6688. https://doi.org/10.5194/acp-15-6667-2015

    Article  ADS  CAS  Google Scholar 

  15. Amari K, Ruiz D, Gómez G et al (2007) An important new apricot disease in Spain is associated with Hop stunt viroid infection. Eur J Plant Pathol 118:173–181. https://doi.org/10.1007/s10658-007-9127-7

    Article  Google Scholar 

  16. Amato P, Parazols M, Sancelme M et al (2007) An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France). Atmos Environ 41:8253–8263

    ADS  CAS  Google Scholar 

  17. Anderson PJ (1926) Comparative susceptibility of onion varieties and of species of Allium to Urocystis cepulae. J Agric Res 31:275–285

    Google Scholar 

  18. Andrade O, Muñoz G, Galdames R et al (2004) Characterization, in vitro culture, and molecular analysis of Thecaphora solani, the causal agent of potato smut. Phytopathology 94:875–882. https://doi.org/10.1094/PHYTO.2004.94.8.875

    Article  CAS  PubMed  Google Scholar 

  19. Andret-Link P, Laporte C, Valat L et al (2004) Grapevine fanleaf virus: still a major threat to the grapevine industry. J Plant Pathol 86:183–195. https://doi.org/10.1080/01904167.2015.1112950

    Article  CAS  Google Scholar 

  20. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Phytopathology 38:145–180

    Google Scholar 

  21. Antignus Y, Lachman O, Pearlsman M (2007) The spread of Tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Dis 91:47–50

    CAS  PubMed  Google Scholar 

  22. Ariya PA, Amyot M (2004) New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos Environ 38:1231–1232. https://doi.org/10.1016/j.atmosenv.2003.12.006

    Article  ADS  CAS  Google Scholar 

  23. Arshad M, Suhail A (2010) Studying the sucking insect pest community in transgenic Bt cotton. Int J Agric Biol 12:764–768

    Google Scholar 

  24. Asibi AE, Chai Q, Coulter JA (2019) Rice blast: A disease with implications for global food security. Agronomy 9:451. https://doi.org/10.3390/agronomy9080451

    Article  CAS  Google Scholar 

  25. Atallah SS, Gómez MI, Fuchs MF, Martinson TE (2012) Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. Am J Enol Vitic 63:73–79. https://doi.org/10.5344/ajev.2011.11055

    Article  Google Scholar 

  26. Aylor DE, Taylor GS (1982) Aerial dispersal and drying of Peronospora tabacina conidia in tobacco shade tents. Proc Natl Acad Sci 79:697–700.https://doi.org/10.1073/pnas.79.2.697

  27. Azegami K (2001) Burkholderia spp. associated with rice. In: Mew TW, Cottyn BG (eds) Seed health and seed-associated microorganisms for rice disease management. IRRI, Limited Proceedings No. 6., Los Banos, Philippines

  28. Bae C, Han SW, Song YR et al (2015) Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor Appl Genet 128:1219–1229. https://doi.org/10.1007/s00122-015-2521-1

    Article  CAS  PubMed  Google Scholar 

  29. Baertsch C, Paez-Rubio T, Viau E, Peccia J (2007) Source tracking aerosols released from land-applied class B biosolids during high-wind events. Appl Environ Microbiol 73:4522–4531. https://doi.org/10.1128/AEM.02387-06

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bambang HI, Khusnul M (2014) Effectiveness of resistance and biopesticide induction on Cercospora and Anthracnose leaves in chili (Capsicum annuum L.). Planta Tropika J Agro Sci 2:106–114

    Google Scholar 

  31. Barnwal MK, Kotasthane A, Magculia N et al (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136:443–457

    Google Scholar 

  32. Barrow GH and Feltham RKA (1993) Cowan and steel’s manual for identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge, pp 331. https://doi.org/10.1017/CBO9780511527104

  33. Barton IS, Fuqua C, Platt TG (2018) Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Physiol Behav 20:16–29. https://doi.org/10.1111/1462-2920.13976.Ecological

    Article  Google Scholar 

  34. Bashan Y, Sharon E, Oleon Y, Henis Y (1981) Scanning electron and ligbl microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomalo. Physiol Plant Palhol 19:3944

    Google Scholar 

  35. Bastiaans L (1991) Ratio between virtual and visual lesion size as measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology 81:611–615

    Google Scholar 

  36. Bates GD, Rothrock CS, Rupe JC (2008) Resistance of the soybean cultivar Archer to Pythium damping-off and root rot caused by several Pythium spp. Plant Dis 92:763–766

    CAS  PubMed  Google Scholar 

  37. Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64:109–119

    CAS  Google Scholar 

  38. Baylor ER, Baylor MB (1980) Surf-to-wind transfer of viruses. Ann NY Acad Sci 353:201–208

    ADS  CAS  PubMed  Google Scholar 

  39. Baylor ER, Baylor MB, Blanchard DC et al (1977) Water-to-air transfer of virus. Science 198:575–580

    ADS  CAS  PubMed  Google Scholar 

  40. Baylor ER, Peters V, Baylor MB (1977) Water-to-air transfer of virus. Science 197:763–764

    ADS  CAS  PubMed  Google Scholar 

  41. Beattie GA, Lindow SE (1995) The Secret Life of Foliar Bacterial Pathogens on Leaves. Annu Rev Phytopathol 33:145–172. https://doi.org/10.1146/annurev.phyto.33.1.145

    Article  CAS  PubMed  Google Scholar 

  42. Beddow JM, Pardey PG, Chai Y et al (2015) Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 1:15132. https://doi.org/10.1038/nplants.2015.132

    Article  PubMed  Google Scholar 

  43. Benfradj N, Metoui N, Boughalleb N (2016) Screening for tolerance of different citrus rootstocks against zoospores of Phytophthora nicotianae in infested soil. J Phytopathol Pest Management 3:63–75

    Google Scholar 

  44. Bent AF, Kunkel BN, Dahlbeck D et al (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science (80-) 265:1856–1860

    ADS  CAS  Google Scholar 

  45. Berlin A, Samils B, Djurle A et al (2013) Disease development and genotypic diversity of Puccinia graminis f. sp. avenae in Swedish oat fields. Plant Pathol 62:32–40. https://doi.org/10.1111/j.1365-3059.2012.02609.x

    Article  CAS  Google Scholar 

  46. Bernardes-de-Assis J, Storari M, Zala M et al (2009) Genetic structure of populations of the rice-Infecting pathogen rhizoctonia solani AG-1 IA from China. Phytopathology 99:1090–1099. https://doi.org/10.1094/PHYTO-99-9-1090

    Article  PubMed  Google Scholar 

  47. Bhangar S, Huffman JA, Nazaroff WW (2014) Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air 24:604–617. https://doi.org/10.1111/ina.12111

    Article  CAS  PubMed  Google Scholar 

  48. Bhangar S, Adams RI, Pasut W, Huffman JA, Arens EA, Taylor JW, Bruns TD, Nazaroff WW (2016) Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles. Indoor Air 26:193–206

    CAS  PubMed  Google Scholar 

  49. Bhat RG, Subbarao KV (1999) Host range specificity in Verticillium dahliae. Phytopathology 89:1218–1225. https://doi.org/10.1094/PHYTO.1999.89.12.1218

    Article  CAS  PubMed  Google Scholar 

  50. Bhattacharya I, Dutta S, Mondal S, Mondal B (2014) Special issue: Clubroot disease on Brassica crops in India. Canadian J Plant Pathol 36:154–160. https://doi.org/10.1080/07060661.2013.875064

  51. Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS (2021). Sugarcane Smut, Caused by Sporisorium scitamineum, a major disease of sugarcane: A contemporary review. Phytopathol 111. https://doi.org/10.1094/PHYTO-05-21-0221-RVW

  52. Bigirimana V de P, Hua GKH, Nyamangyoku OI, Hòfte M (2015) Rice sheath rot: An emerging ubiquitous destructive disease complex. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.01066

  53. Bird DMK, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Mol Plant Pathol 62:115–123. https://doi.org/10.1016/S0885-5765(03)00045-6

    Article  Google Scholar 

  54. Black R, Jonglaekha N (1989) Plant diseases and other aspects of plant protection in northern thailand with special reference to highland development programmes. Trop Pest Manag 35:289–296. https://doi.org/10.1080/09670878909371383

    Article  Google Scholar 

  55. Boland GJ, Melzer MS, Hopkin A, Higgins V, Nassuth A (2004) Climate change and plant diseases in Ontario. Canadian J Plant Pathol 26:335–350

    Google Scholar 

  56. Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575. https://doi.org/10.1111/j.1364-3703.2008.00487.x

    Article  PubMed  PubMed Central  Google Scholar 

  57. Borines L, Sagarino R, Calamba R et al (2015) Potential of Chitosan for the Control of Tomato Bacterial Wilt Caused by Ralstonia solanacearum (Smith) Yabuuchi et al. Ann Trop Res 37:57–69. https://doi.org/10.32945/atr3725.2015

  58. Botella MA, Parker JE, Frost LN et al (1998) Three genes of the arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860. https://doi.org/10.1105/tpc.10.11.1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bovallius Å, Bucht B, Roffey R, Anas P (1978) Long-Range Transmission of Bacteria. Appl Environ Microbiol 35:1231–1232. https://doi.org/10.1111/j.1749-6632.1980.tb18922.x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bove JM, Garnier M (2003) Phloem-and xylem-restricted plant pathogenic bacteria. Plant Sci 164:423–438

    Google Scholar 

  61. Bowers RM, Clements N, Emerson JB et al (2013) Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol 47:12097–12106. https://doi.org/10.1021/es402970s

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Bowers RM, McLetchie S, Knight R, Fierer N (2011) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612. https://doi.org/10.1038/ismej.2010.167

    Article  CAS  PubMed  Google Scholar 

  63. Bowers RM, Sullivan AP, Costello EK et al (2011) Sources of bacteria in outdoor air across cities in the midwestern United States. Appl Environ Microbiol 77:6350–6356. https://doi.org/10.1128/AEM.05498-11

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Broders KD, Boland GJ (2011) Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia. Fungal Biol 115:70–79. https://doi.org/10.1016/j.funbio.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  65. Brodie EL, DeSantis TZ, Moberg Parker JP et al (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304.https://doi.org/10.1073/pnas.0608255104

  66. Brown JKM, Hovmøll MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (80-) 297:537–541. https://doi.org/10.1126/science.1072678

    Article  ADS  CAS  Google Scholar 

  67. Brown RM, Larson DA, Bold HC (1964) Airborne algae: their abundance and heterogeneity. Science 143:583–585. https://doi.org/10.1126/science.143.3606.583

    Article  ADS  PubMed  Google Scholar 

  68. Brunt AA, CAB International (1996) Viruses of plants: descriptions and lists from the VIDE database / edited by Alan Brunt ... [et al.]. CAB International, Wallingford, Oxon, UK. http://www.loc.gov/catdir/enhancements/fy0637/96185674-t.html

  69. Bunster L, Fokkema NJ, Schippers B (1989) Effect of Surface-Active Pseudomonas spp. on Leaf Wettability. Appl Environ Microbiol 55:1340–1345. https://doi.org/10.1128/aem.55.6.1340-1345.1989

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burdsall AC, Xing Y, Cooper CW, Harper WF (2021) Bioaerosol emissions from activated sludge basins: Characterization, release, and attenuation. Sci Total Environ 753:141852

    ADS  CAS  PubMed  Google Scholar 

  71. Burrows SM, Butler T, Jöckel P et al (2009) Bacteria in the global atmosphere - Part 2: Modeling of emissions and transport between different ecosystems. Atmos Chem Phys 9:9281–9297. https://doi.org/10.5194/acp-9-9281-2009

    Article  ADS  CAS  Google Scholar 

  72. Burrows SM, Rayner PJ, Butler T, Lawrence MG (2013) Estimating bacteria emissions from inversion of atmospheric transport: Sensitivity to modelled particle characteristics. Atmos Chem Phys 13:5473–5488. https://doi.org/10.5194/acp-13-5473-2013

    Article  ADS  CAS  Google Scholar 

  73. Burt PJA (1995) The potato and the pathogen: the Irish potato famine of 1845. Weather 50:342–346. https://doi.org/10.1002/j.1477-8696.1995.tb05502.x

    Article  ADS  Google Scholar 

  74. Butler MI, Stockwell PA, Black MA et al (2013) Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One 8:e57464. https://doi.org/10.1371/journal.pone.0057464

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calderon C, Lacey J, McCartney HA, Rosas I (1995) Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana 34:260–268. https://doi.org/10.1080/00173139509429055

    Article  Google Scholar 

  76. Cao MJ, Atta S, Liu YQ et al (2009) First report of Citrus bent leaf viroid and Citrus dwarfing viroid from Citrus in Punjab, Pakistan. Plant Dis 93:840–840

    CAS  PubMed  Google Scholar 

  77. Carabez JRS, Ortiz DT, Pérez MRV, Peña HB (2019) The avocado sunblotch viroid: An invisible foe of avocado. Viruses 11:491. https://doi.org/10.3390/v11060491

    Article  CAS  Google Scholar 

  78. Card SD, Tapper BA, Lloyd-West C, Wright KM (2013) Assessment of fluorescein-based fluorescent dyes for tracing Neotyphodium endophytes in planta. Mycologia 105:221–229. https://doi.org/10.3852/12-062

    Article  CAS  PubMed  Google Scholar 

  79. Carducci A, Arrighi S, Ruschi A (1995) Detection of coliphages and enteroviruses in sewage and aerosol from an activated sludge wastewater treatment plant. Lett Appl Microbiol 21:207–209. https://doi.org/10.1111/j.1472-765X.1995.tb01042.x

    Article  CAS  PubMed  Google Scholar 

  80. Carducci A, Tozzi E, Rubulotta E et al (2000) Assessing airborne biological hazard from urban wastewater treatment. Water Res 34:1173–1178. https://doi.org/10.1016/S0043-1354(99)00264-X

    Article  CAS  Google Scholar 

  81. Carotenuto F, Georgiadis T, Gioli B et al (2017) Measurements and modeling of surface-atmosphere exchange of microorganisms in Mediterranean grassland. Atmos Chem Phys 17:14919–14936. https://doi.org/10.5194/acp-17-14919-2017

    Article  ADS  CAS  Google Scholar 

  82. Carvalho CR, Fernandes RC, Carvalho GMA et al (2011) Cryptosexuality and the genetic diversity paradox in coffee rust, Hemileia vastatrix. PLoS One 6:e26387. https://doi.org/10.1371/journal.pone.0026387

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Castillo JA, Staton SJR, Taylor TJ et al (2012) Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal Bioanal Chem 403:15–26. https://doi.org/10.1007/s00216-012-5725-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chalanska A, Bogumił A, Łabanowski G (2017) Management of foliar nematode Aphelenchoides ritzemabosi on Anemone hupehensis using plant extracts and pesticides. J Plant Dis Prot 124:437–443

    Google Scholar 

  85. Chase AR, Daughtrey ML (2013) Rose downy mildew review. Greenh Prod News Mag. 2013:32–34

    Google Scholar 

  86. Chaudhary A, Yadav J, Gupta A, Gupta K (2021) Integrated disease management of early blight (Alternaria Solani) of Potato. 77–81. https://doi.org/10.26480/trab.02.2021.77.81

  87. Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

    Article  CAS  PubMed  Google Scholar 

  88. Chen W, Wellings C, Chen X et al (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15:433–446. https://doi.org/10.1111/mpp.12116

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chen X, Ran P, Ho K et al (2012) Concentrations and size distributions of airborne microorganisms in guangzhou during summer. Aerosol Air Qual Res 12:1336–1344. https://doi.org/10.4209/aaqr.2012.03.0066

    Article  Google Scholar 

  90. Chen Y-H, Yan C, Yang Y-F, Ma J-X (2021) Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. J Neurol Sci 755:142615. https://doi.org/10.1016/j.scitotenv.2020.142615

    Article  CAS  Google Scholar 

  91. Chittem K, Porter L, McPhee K, Khan M, Goswami RS (2010) Fusarium avenaceum as causal agent of root rot in field peas and its control. In Phytopathology. AMER PHYTOPATHOLOGICAL SOC, 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA, pp S25–S25

  92. Cho BC, Hwang CY (2011) Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiol Ecol 76:327–341. https://doi.org/10.1111/j.1574-6941.2011.01053.x

    Article  CAS  PubMed  Google Scholar 

  93. Cho WK, Jo Y, Jo KM, Kim KH (2013) A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses 5:1099–1113. https://doi.org/10.3390/v5041099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983. https://doi.org/10.1105/tpc.9.11.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chou C, Castilla N, Hadi B et al (2020) Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Prot 135:104864. https://doi.org/10.1016/j.cropro.2019.104864

    Article  Google Scholar 

  96. Christensen LS, Mousing J, Mortensen S, Soerensen KJ, Strandbygaard SB, Henriksen CA, Andersen JB (1990) Evidence of long distance airborne transmission of Aujeszky’s disease (pseudorabies) virus. Vet Rec 127:471–474

    CAS  PubMed  Google Scholar 

  97. Christensen LS, Mortensen S, Bøtner A, Strandbygaard BS, Rønsholt L, Henriksen CA, Andersen JB (1993) Further evidence of long distance airborne transmission of Aujeszky’s disease (pseudorabies) virus. Vet Rec 132:317–321. https://doi.org/10.1136/vr.132.13.317

    Article  CAS  PubMed  Google Scholar 

  98. Ciliberti N, Fermaud M, Roudet J, Rossi V (2015) Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathol 105:1090–1096

    CAS  Google Scholar 

  99. Coccia AM, Gucci PMB, Lacchetti I et al (2010) Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies. Ann Ist Super Sanità 46:288–292. https://doi.org/10.4415/ANN

    Article  PubMed  Google Scholar 

  100. Comstock JC (2000) Smut. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Sauntally AS (eds) A Guide to Sugarcane Diseases. CIRAD/ISCCT Publishers; Montpellier, France, pp 181–185

    Google Scholar 

  101. Cook RJ, Flentj¢ NT (1967) Chlamydospore germination and germling survival of Fusarium solani f. pisi in soil as affected by soil water and pea seed exudation. Phytopathol 57:178–82

    Google Scholar 

  102. Cother EJ, Noble DH, van de Ven RJ et al (2010) Bacterial pathogens of rice in the Kingdom of Cambodia and description of a new pathogen causing a serious sheath rot disease. Plant Pathol 59:944–953. https://doi.org/10.1111/j.1365-3059.2010.02310.x

    Article  CAS  Google Scholar 

  103. Cox CS, Wathes CM (1995) Bioaerosols Handbook. Lewis Publishers, Boca Raton

    Google Scholar 

  104. Crandall SG, Rahman A, Quesada-Ocampo LM et al (2018) Advances in diagnostics of downy mildews: Lessons learned from other oomycetes and future challenges. Plant Dis 102:265–275. https://doi.org/10.1094/PDIS-09-17-1455-FE

    Article  CAS  PubMed  Google Scholar 

  105. Cranshaw WS (2004) Onion thrips in onions XXV. Agricultural Experiment Station, Colorado State University, Fort Collins, CO. http://wiki.bugwood.org/uploads/OnionThrips-Onions.pdf. Accessed Apr 2015

  106. Cummins GB, Hiratsuka Y (2003) Illustrated Genera of Rust Fungi. American Phytopathol. Society Press, St Paul, MN

    Google Scholar 

  107. Czosnek H (2008) Acquisition, circulation and transmission of begomoviruses by their whitefly vectors. In: Palombo EA, Kirkwood CD (eds) Viruses in the Environment. Research Signpost, Trivandrum, Kerala, India, pp 29–44

    Google Scholar 

  108. Damiri N (2011) Climate change, environment and plant diseases development. In: Proceedings of the International Seminar. Sriwijaya University cooperation with CRISU and CUPT, pp 200–205

  109. Dang T, Lavagi-Craddock I, Bodaghi S, Vidalakis G (2021) Next-generation sequencing identification and characterization of MicroRNAs in dwarfed citrus trees infected with citrus dwarfing viroid in high-density plantings. Front Microbiol 2. https://doi.org/10.3389/fmicb.2021.646273

  110. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. https://doi.org/10.1146/annurev.micro.61.080706.093316

    Article  CAS  PubMed  Google Scholar 

  111. Dato KMG, Dégbègni MR, Atchadé MN et al (2021) Spatial parameters associated with the risk of banana bunchy top disease in smallholder systems. PLoS One 16:e0260976. https://doi.org/10.1371/journal.pone.0260976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Davies CR, Wohlgemuth F, Young T et al (2021) Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol Rev 36:15–26

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Davis EL, Hussey RS, Mitchum MG, Baum TJ (2008) Parasitism proteins in nematode-plant interactions. Curr Opin Plant Biol 11:360–366. https://doi.org/10.1016/j.pbi.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  114. De Beer ZW, Marincowitz S, Duong T, Wingfield M (2017) Bretziella, a new genus to accommodate the oak wilt fungus, Ceratocystis fagacearum (Microascales, Ascomycota). MycoKeys 27:1–19. https://doi.org/10.3897/mycokeys.27.20657

    Article  Google Scholar 

  115. de Gruyter J, Aveskamp MM, Woudenberg JHC et al (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113:508–519

    PubMed  Google Scholar 

  116. de Silva DD, Groenewald JZ, Crous PW et al (2019) Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus 10:8. https://doi.org/10.1186/s43008-019-0001-y

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dean R, Van Kan JAL, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  118. Decraemer W, Hunt DJ (2006) Structure and classification. In: Nematology P (ed) Perry RN, Moens M. CAB International, Wallingford, UK, pp 3–32

    Google Scholar 

  119. Decraemer W, Hunt DJ (2013) Structure and classification. In: Perry RN, Moens M (Eds) Plant Nematology, 2 edn. Wallingford, UK: CABI Publishing, pp 3–39. https://doi.org/10.1079/9781780641515.0003

  120. DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM et al (2013) Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A 110:2575–2580.https://doi.org/10.1073/pnas.1212089110

  121. Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433.https://doi.org/10.1073/pnas.0905240106

  122. Delort AM, Vaïtilingom M, Amato P et al (2010) A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. Atmos Res 98:249–260. https://doi.org/10.1016/j.atmosres.2010.07.004

    Article  CAS  Google Scholar 

  123. Demirci E, Timur Döken M (1998) Host penetration and infection by the anastomosis groups of Rhizoctonia solani kühn isolated from potatoes. Turkish J Agric For 22:609–613. https://doi.org/10.3906/tar-97020

    Article  Google Scholar 

  124. Després VR, Alex Huffman J, Burrows SM et al (2012) Primary biological aerosol particles in the atmosphere: A review. Tellus, Ser B Chem Phys Meteorol 64. https://doi.org/10.3402/tellusb.v64i0.15598

  125. Després VR, Nowoisky JF, Klose M et al (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–1141. https://doi.org/10.5194/bg-4-1127-2007

    Article  ADS  Google Scholar 

  126. Di-Giovanni F, Kevan PG, Nasr ME (1995) The variability in settling velocities of some pollen and spores. Grana 34:39–44. https://doi.org/10.1080/00173139509429031

    Article  Google Scholar 

  127. Di Giorgio C, Krempff A, Guiraud H et al (1996) Atmospheric pollution by airborne microorganisms in the city of Marseilles. Atmos Environ 30:155–160. https://doi.org/10.1016/1352-2310(95)00143-M

    Article  ADS  Google Scholar 

  128. Di Serio F, Flores R, Verhoeven JTJ et al (2014) Current status of viroid taxonomy. Arch Virol 159:3467–3478. https://doi.org/10.1007/s00705-014-2200-6

    Article  CAS  PubMed  Google Scholar 

  129. Diaz-Cruz GA, Smith CM, Wiebe KF, Cassone BJ (2017) First Complete Genome Sequence of Tobacco necrosis virus D Isolated from Soybean and from North America. Genome Announc 5:e00781-e817. https://doi.org/10.1128/genomeA.00781-17

    Article  PubMed  PubMed Central  Google Scholar 

  130. Diehl K, Quick C, Matthias-Maser S et al (2001) The ice nucleating ability of pollen Part I: Laboratory studies in deposition and condensation freezing modes. Atmos Res 58:75–87

    Google Scholar 

  131. Dita M, Barquero M, Heck D, Mizubuti ESG et al (2018) Fusarium Wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci 9:1468. https://doi.org/10.3389/fpls.2018.01468

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dixon MS, Jones DA, Keddie JS et al (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459. https://doi.org/10.1016/S0092-8674(00)81290-8

    Article  CAS  PubMed  Google Scholar 

  133. Doddaraju P, Kumar P, Gunnaiah R, Gowda AA et al (2019) Reliable and early diagnosis of bacterial blight in pomegranate caused by Xanthomonas axonopodis pv. punicae using sensitive PCR techniques. Sci Rep 9:10097. https://doi.org/10.1038/s41598-019-46588-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dong L, Qi J, Shao C et al (2016) Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci Total Environ 541:1011–1018. https://doi.org/10.1016/j.scitotenv.2015.10.001

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Dongsheng D (2006) From the smallest virus to the biggest gene: Marching towards gene therapy for Duchenne muscular dystrophy. Discov Med 6:103–108

    Google Scholar 

  136. Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev 28:33–46

    CAS  Google Scholar 

  137. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: Progress and prospects. Ann Occup Hyg 47:187–200. https://doi.org/10.1093/annhyg/meg032

    Article  CAS  PubMed  Google Scholar 

  138. Dowd SE, Gerba CP, Pepper IL, Pillai SD (2000) Bioaerosol transport modeling and risk assessment in relation to biosolid placement. Encycl Ecol 29:343–348. https://doi.org/10.1016/B978-0-12-409548-9.11137-6

    Article  CAS  Google Scholar 

  139. Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Collectotrichum species complexes. Mycologia 97:641–658. https://doi.org/10.1080/15572536.2006.11832795

    Article  CAS  PubMed  Google Scholar 

  140. Du P, Du R, Ren W et al (2018) Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmos Environ 172:55–64

    ADS  CAS  Google Scholar 

  141. Dubovik IE (2002) Migrations of aerophytic algae and their colonization on different substrata. Int J Algae 4:48–55

    Google Scholar 

  142. Duchaine C, Roy CJ (2020) Bioaerosols and airborne transmission: Integrating biological complexity into our perspective. Sci Total Environ 825:154117. https://doi.org/10.1016/j.scitotenv.2022.154117

    Article  ADS  CAS  Google Scholar 

  143. Dungan RS, Leytem AB (2009) Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World J Microbiol Biotechnol 25:1505–1518. https://doi.org/10.1007/s11274-009-0043-1

    Article  Google Scholar 

  144. Duplessis S, Joly DJ, Dodds PN (2012) Rust effectors. In: Martin F, Kamoun S (eds) Effectors in Plant - Microbes Interactions. Wiley Blackwell, Oxford, pp 155–193

    Google Scholar 

  145. Eastburn DM, Degennaro MM, Delucia EH et al (2010) Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Glob Chang Biol 16:320–330. https://doi.org/10.1111/j.1365-2486.2009.01978.x

    Article  ADS  Google Scholar 

  146. EFSA Plh Panel (2014) Scientific opinion on the pest categorisation of Verticillium dahliae Kleb. EFSA J 12:3928. https://doi.org/10.2903/j.efsa.2014.3928

    Article  Google Scholar 

  147. El-Gamal AD (2008) Aerophytic cyanophyceae (Cyanobacteria) from some Cairo Districts. Egypt Pakistan J Biol Sci 11:1293–1302

    Google Scholar 

  148. Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588. https://doi.org/10.5194/acp-7-4569-2007

    Article  ADS  CAS  Google Scholar 

  149. Elbert W, Weber B, Burrows S et al (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462. https://doi.org/10.1038/ngeo1486

    Article  ADS  CAS  Google Scholar 

  150. Elleuch A, Marrakchi M, Perreault JP, Fakhfakh H (2003) First report of Australian grapevine viroid from the Mediterranean region. J Plant Pathol 53–57

  151. Ellis Jeffrey G, Lagudah Evans S, Spielmeyer Wolfgang, Dodds Peter N (2014) The past, present and future of breeding rust resistant wheat. Front. Plant Sci 5. https://doi.org/10.3389/fpls.2014.00641

  152. Ellstrand NC (1992) Gene Flow by Pollen: Implications for plant conservation genetics. Oikos 63:77–86. https://doi.org/10.2307/3545517

    Article  ADS  Google Scholar 

  153. Elsayed TR, Jacquiod S, Nour EH et al (2020) Biocontrol of bacterial Wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.02835

    Article  Google Scholar 

  154. Endo BY, Veech JA (1970) Morphology and histochemistry of soybean roots infected with heterodera glycines. Phytopathology 60:1493–1498

    CAS  Google Scholar 

  155. Eranthodi A, Schneiderman D, Harris LJ et al (2020) Enniatin production influences Fusarium avenaceum virulence on potato tubers, but not on durum wheat or peas. Pathogens. https://doi.org/10.3390/pathogens9020075

  156. Erginbas-Orakci G, Morgounov A, Dababat A (2018) Determination of resistance in winter wheat genotypes to the dryland root rots caused by Fusarium culmorum in Turkey. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi. 4:193–202. https://doi.org/10.24180/ijaws.414501

  157. Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, Advances in Botanical Research. (Oxford, UK: Elsevier), pp 1–32. https://doi.org/10.1016/bs.abr.2015.01.001

  158. Fadda Z, Daròs JA, Fagoaga C et al (2003) Eggplant latent viroid, the candidate type species for a new genus within the family avsunviroidae (Hammerhead Viroids). J Virol 77:6528–6532. https://doi.org/10.1128/jvi.77.11.6528-6532.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fahlgren C, Bratbak G, Sandaa RA et al (2011) Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia (Bologna) 27:107–120. https://doi.org/10.1007/s10453-010-9181-z

    Article  Google Scholar 

  160. Fahlgren C, Gómez-Consarnau L, Zábori J et al (2015) Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols. Environ Microbiol Rep 7:460–470. https://doi.org/10.1111/1758-2229.12273

    Article  CAS  PubMed  Google Scholar 

  161. Fan LM, Zhao Z, Assmann SM (2004) Guard cells: A dynamic signaling model. Curr Opin Plant Biol 7:537–546. https://doi.org/10.1016/j.pbi.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  162. Fan XL, Bezerra JDP, Tian CM, Crous PW (2020) Cytospora ( Diaporthales) in China. Persoonia 45:1–45. https://doi.org/10.3767/persoonia.2020.45.01

    Article  CAS  PubMed  Google Scholar 

  163. Fang Z, Ouyang Z, Zheng H et al (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol 54:487–496

    ADS  PubMed  Google Scholar 

  164. Favero-Longo SE, Sandrone S, Matteucci E et al (2014) Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors. Sci Total Environ 466–467:26–33. https://doi.org/10.1016/j.scitotenv.2013.06.057

    Article  ADS  CAS  PubMed  Google Scholar 

  165. Ference CM, Gochez AM, Behlau F et al (2018) Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol Plant Pathol 19:1302–1318. https://doi.org/10.1111/mpp.12638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases—a field perspective. Mol Plant Pathol 19:1523–1536. https://doi.org/10.1111/mpp.12618

    Article  PubMed  Google Scholar 

  167. Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947

    Article  ADS  CAS  PubMed  Google Scholar 

  168. Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed Rape (Brassica napus). Eur J Plant Pathol 114:3–15. https://doi.org/10.1007/s10658-005-2233-5

    Article  Google Scholar 

  169. Flores R, Hernández C, Llácer G, Desvignes JC (1991) Identification of a new viroid as the putative causal agent of pear blister canker disease. J Gen Virol 72:1199–1204. https://doi.org/10.1099/0022-1317-72-6-1199

    Article  CAS  PubMed  Google Scholar 

  170. Flores R, Randles JW, Bar-Joseph M, Diener TO (1998) A proposed scheme for viroid classification and nomenclature. Adv Virol 143:623–629

    CAS  Google Scholar 

  171. Flores-Tena FJ, Pardavé LM, Valenzuela I (2007) Estudio aerobiológico de la zona San Nicolás, municipio de Aguascalientes, México. Invest Cienc 15:13–18

    Google Scholar 

  172. Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547. https://doi.org/10.1016/j.pbi.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  173. Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Plant Sci 11:1125. https://doi.org/10.3389/fpls.2020.01125

    Article  PubMed  PubMed Central  Google Scholar 

  174. Fotopoulos V, Gilbert MJ, Pittman JK et al (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829. https://doi.org/10.1104/pp.103.021428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fox K, Fox A, Elßner T et al (2010) MALDI-TOF mass spectrometry speciation of staphylococci and their discrimination from micrococci isolated from indoor air of schoolrooms. J Environ Monit 12:917–923. https://doi.org/10.1039/b925250a

    Article  CAS  PubMed  Google Scholar 

  176. Fracchia L, Pietronave S, Rinaldi M, Martinotti MG (2006) The assessment of airborne bacterial contamination in three composting plants revealed site-related biological hazard and seasonal variations. J Appl Microbiol 100:973–984. https://doi.org/10.1111/j.1365-2672.2006.02846.x

    Article  CAS  PubMed  Google Scholar 

  177. Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86. https://doi.org/10.1111/j.1364-3703.2006.00323.x

    Article  CAS  PubMed  Google Scholar 

  178. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815. https://doi.org/10.1093/nar/gks1094

    Article  CAS  Google Scholar 

  179. Francis DM, Kabelka E, Bell J et al (2001) Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis 85:1171–1176. https://doi.org/10.1094/PDIS.2001.85.11.1171

    Article  PubMed  Google Scholar 

  180. Frohlich-Nowoisky J, Burrows SM, Xie Z et al (2012) Biogeography in the air: Fungal diversity over land and oceans. Biogeosciences 9:1125–1136. https://doi.org/10.5194/bg-9-1125-2012

    Article  ADS  CAS  Google Scholar 

  181. Frohlich-Nowoisky J, Hill TCJ, Pummer BG et al (2015) Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 12:1057–1071. https://doi.org/10.5194/bg-12-1057-2015

    Article  ADS  Google Scholar 

  182. Frohlich-Nowoisky J, Kampf CJ, Weber B et al (2016) Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos Res 182:346–376. https://doi.org/10.1016/j.atmosres.2016.07.018

    Article  CAS  Google Scholar 

  183. Frohlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106:12814–12819.https://doi.org/10.1073/pnas.0811003106

  184. Fu FH, Li SF, Jiang DM, Wang HQ, Liu AQ, Sang LW (2011) First report of Coleus blumei viroid 2 from commercial coleus in China. Plant Dis 95:494–494

    CAS  PubMed  Google Scholar 

  185. Fuchs M, Abawi GS, Marsella-Herrick P et al (2010) Occurrence of tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York State. J Plant Pathol 92:451–459

    CAS  Google Scholar 

  186. Gomez SY, Arbel ́aez G, (2005) Effect of temperature on the latency periodand production of sporangia of Peronospora sparsa Berkeley on three varieties of rose. Agron Colomb 23:246–255

    Google Scholar 

  187. Gago S, Elena SF, Flores R, Sanjuán R (2009) Extremely high mutation rate of a hammerhead viroid. Science (80-) 323:1308. https://doi.org/10.1126/science.1169202

    Article  ADS  CAS  Google Scholar 

  188. Galande DR, Simon S (2019) Effect of Intercropping on Purple Blotch (Alternaria porri) of Onion (Allium cepa L.). Int J Curr Microbiol Appl Sci 8:1105–1111. https://doi.org/10.20546/ijcmas.2019.802.129

  189. Gallet R, Michalakis Y, Blanc S (2018) Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 33:144–150. https://doi.org/10.1016/j.coviro.2018.08.005

    Article  PubMed  Google Scholar 

  190. Gandía M, Rubio L, Palacio A, Duran-Vila N (2005) Genetic variation and population structure of an isolate of Citrus exocortis viroid (CEVd) and of the progenies of two infectious sequence variants. Arch Virol 150:1945–1957. https://doi.org/10.1007/s00705-005-0570-5

    Article  CAS  PubMed  Google Scholar 

  191. Ganthaler A, Mayr S (2015) Temporal variation in airborne spore concentration of Chrysomyxa rhododendri: Correlation with weather conditions and consequences for Norway spruce infection. For Pathol 45:443–449. https://doi.org/10.1111/efp.12190

    Article  Google Scholar 

  192. Gao M, Jia R, Qiu T et al (2015) Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmos Environ 118:203–210. https://doi.org/10.1016/j.atmosenv.2015.08.004

    Article  ADS  CAS  Google Scholar 

  193. Gao M, Yan X, Qiu T et al (2016) Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos Environ 128:10–19. https://doi.org/10.1016/j.atmosenv.2015.12.008

    Article  ADS  CAS  Google Scholar 

  194. García-Blázquez G, Göker M, Voglmayr H et al (2008) Phylogeny of Peronospora, parasitic on Fabaceae, based on ITS sequences. Mycol Res 112:502–512. https://doi.org/10.1016/j.mycres.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  195. Garcia-Ruiz H (2019) Host factors against plant viruses. Mol Plant Pathol 20:1588–1601. https://doi.org/10.1111/mpp.12851

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gašić K, Pavlović, Santander RD et al (2018) First report of pseudomonas syringae pv. syringae associated with bacterial blossom blast on apple (Malus pumila) in the United States. Plant Dis 102:1848. https://doi.org/10.1094/PDIS-01-18-0184-PDN

  197. Genitsaris S, Kormas KA, Moustaka-Gouni M (2011) Airborne algae and cyanobacteria: occurrence and related health effects. Front Biosci 3:772–787. https://doi.org/10.1109/leoswt.2008.4444364

    Article  Google Scholar 

  198. Ghanim M, Medina V (2007) Localization of tomato yellow leaf curl virus in its whitefly vector Bemisia tabaci. Tomato Yellow Leaf Curl Virus Dis Manag Mol Biol Breed Resist 171–183. https://doi.org/10.1007/978-1-4020-4769-5_10

  199. Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421. https://doi.org/10.1016/j.pbi.2011.03.012

    Article  PubMed  Google Scholar 

  200. Ghini R, Hamada E, Pedro JM, Marengo J, Gonçalves R (2008) Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui Agrop Bras – PAB 43. https://doi.org/10.1590/S0100-204X2008000200005

  201. Gill CC, Westdal PH (1966) Virus Diseases of cereals and vector populations in the Canadian prairies during 1965. Canadian Plant Dis Surv 46:18

    Google Scholar 

  202. Gimenez-Ibanez S, Boter M, Ortigosa A et al (2017) JAZ2 controls stomata dynamics during bacterial invasion. New Phytol 213:1378–1392. https://doi.org/10.1111/nph.14354

    Article  CAS  PubMed  Google Scholar 

  203. Gladieux P, Zhang XG, Afoufa-Bastien D et al (2008) On the origin and spread of the scab disease of apple: Out of central Asia. PLoS One 3:e1455. https://doi.org/10.1371/journal.pone.0001455

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S (1999) An overview of Bacterial blight disease of rice and strategies for its management. Curr Sci 77:1435–1443

    Google Scholar 

  205. Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155. https://doi.org/10.3389/fpls.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  206. Górny RL, Reponen T, Willeke K et al (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68:3522–3531. https://doi.org/10.1128/AEM.68.7.3522-3531.2002

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  207. Goverse A, Smant G (2014) The activation and suppression of plant innate immunity by parasitic nematodes. Annu Rev Phytopathol 52:243–265. https://doi.org/10.1146/annurev-phyto-102313-050118

    Article  CAS  PubMed  Google Scholar 

  208. Goyeau H, Park R, Schaeffer B, Lannou C (2006) Distribution of pathotypes with regard to host cultivars in French wheat leaf rust populations. Phytopathology 96:264–273. https://doi.org/10.1094/PHYTO-96-0264

    Article  CAS  PubMed  Google Scholar 

  209. Graham B, Guyon P, Maenhaut W et al (2003) Composition and diurnal variability of the natural Amazonian aerosol. J Geophys Res Atmos 108. https://doi.org/10.1029/2003jd004049

  210. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    ADS  CAS  PubMed  Google Scholar 

  211. Green JR, Carver TLW, Gurr SJ (2002) The formation and function of infection and feeding structures. In Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The Powdery Mildews: A Comprehensive Treatise, American Phytopathological Society Press, pp 66–82. http://hdl.handle.net/2160/4098

  212. Greer G, Saunders C (2012) The costs of Psa-V to the New Zealand kiwifruit industry and the wider community. Agribusiness and Economics Researh Unit, Lincoln University, New Zealand

  213. Gregory PH (1973) The Microbiology of the Atmosphere, 2nd edn. Leonard Hill Books, Plant Series Monographs, Plymouth

    Google Scholar 

  214. Grenville-Briggs LJ, Anderson VL, Fugelstad J et al (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20:720–738. https://doi.org/10.1105/tpc.107.052043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Griffin DH (1996) Fungal physiology. John Wiley & Sons

    Google Scholar 

  216. Griffin DW (2004) Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia (Bologna) 20:135–140. https://doi.org/10.1023/B:AERO.0000032948.84077.12

    Article  Google Scholar 

  217. Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the caribbean atmosphere: Microbiology and public health. Entomol Exp Appl 17:203–213

    Google Scholar 

  218. Grinshpun SA, Clark JM (2005) Measurement and characterization of bioaerosols. J Aerosol Sci 36:553–555

    ADS  CAS  Google Scholar 

  219. Grisoli P, Rodolfi M, Villani S et al (2009) Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ Res 109:135–142. https://doi.org/10.1016/j.envres.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  220. Groth DE (2008) Effects of cultivar resistance and single fungicide application on rice sheath blight, yield, and quality. Crop Prot 27:1125–1130. https://doi.org/10.1016/j.cropro.2008.01.010

    Article  CAS  Google Scholar 

  221. Guo J, Xiong Y, Shi C et al (2020) Characteristics of airborne bacterial communities in indoor and outdoor environments during continuous haze events in Beijing: Implications for health care. Environ Int 139:105721. https://doi.org/10.1016/j.envint.2020.105721

    Article  PubMed  Google Scholar 

  222. Haas D, Galler H, Luxner J et al (2013) The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmos Environ 65:215–222. https://doi.org/10.1016/j.atmosenv.2012.10.031

    Article  ADS  CAS  Google Scholar 

  223. Hagerty CH, Cuesta-Marcos A, Cregan PB et al (2015) Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977

    CAS  Google Scholar 

  224. Hallar AG, Chirokova G, McCubbin I, Painter TH, Wiedinmyer C, Dodson C (2011) Atmospheric bioaerosols transported via dust storms in the western United States. Geophys Res Lett 38:L17801. https://doi.org/10.1029/2011GL048166

    Article  ADS  CAS  Google Scholar 

  225. Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant phytopathogenic fungus. Science 239:288–290

    ADS  CAS  PubMed  Google Scholar 

  226. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193. https://doi.org/10.1016/s0958-1669(03)00035-1

    Article  CAS  PubMed  Google Scholar 

  227. Hantsch L, Braun U, Scherer-Lorenzen M, Bruelheide H (2013) Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere 4:81. https://doi.org/10.1890/ES13-00103.1

    Article  Google Scholar 

  228. Hara K, Zhang D (2012) Bacterial abundance and viability in long-range transported dust. Atmos Environ 47:20–25. https://doi.org/10.1016/j.atmosenv.2011.11.050

    Article  ADS  CAS  Google Scholar 

  229. Hardham AR (2001) The cell biology behind Phytophthora pathogenicity. Aust Plant Pathol 30:91–98

    Google Scholar 

  230. Harrison RM, Jones AM, Biggins PDE et al (2005) Climate factors influencing bacterial count in background air samples. Int J Biometeorol 49:167–178. https://doi.org/10.1007/s00484-004-0225-3

    Article  PubMed  Google Scholar 

  231. Haseloff J, Mohamed N, Symons R (1982) Viroid RNAs of cadang-cadang disease of coconuts. Nature 299:316–321. https://doi.org/10.1038/299316a0

    Article  ADS  CAS  Google Scholar 

  232. Hayashi K, Yoshida T, Hayano-Saito Y (2019) Detection of white head symptoms of panicle blast caused by Pyricularia oryzae using cut-flower dye. Plant Methods 15:159. https://doi.org/10.1186/s13007-019-0548-z

    Article  PubMed  PubMed Central  Google Scholar 

  233. Hayes RJ, Trent MA, Truco MJ et al (2014) The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars. Hortic Res 1:14066. https://doi.org/10.1038/hortres.2014.66

    Article  PubMed  PubMed Central  Google Scholar 

  234. He YW, Wu J, Cha J-S, Zhang L-H (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187. https://doi.org/10.1186/1471-2180-10-187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Heald CL, Spracklen DV (2009) Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys Res Lett 38:L09806. https://doi.org/10.1029/2009GL037493

    Article  ADS  CAS  Google Scholar 

  236. Hewezi T, Baum TJ (2013) Manipulation of plant cells by cyst and root-knot nematode effectors. Mol Plant-Microbe Interact 26:9–16. https://doi.org/10.1094/MPMI-05-12-0106-FI

    Article  CAS  PubMed  Google Scholar 

  237. Hibberd J, Whitbread R, Farrar J (1996) Effect of 700 μmol mol−1 CO2 and infection by powdery mildew on the growth and carbon partitioning of barley. New Phytol 134:309–315

    Google Scholar 

  238. Hibberd JM, Whitbread R, Farrar JF (1996) Effect of elevated concentrations of CO2 in infection of barley by Erysiphe graminis. Physiol Mol Plant Pathol 48:37–53

    CAS  Google Scholar 

  239. Hoat TX, Quan MV, Anh DTL et al (2015) Phytoplasma diseases on major crops in Vietnam. Phytopathogenic Mollicutes 5:S69. https://doi.org/10.5958/2249-4677.2015.00029.8

    Article  Google Scholar 

  240. Hodgson R, Wall G, Randles J (1998) Specific identification of Coconut Tinangaja Viroid for differential Field diagnosis of viroids in Coconut Palm. Phytopathol 88:774–781. https://doi.org/10.1094/PHYTO.1998.88.8.774

    Article  CAS  Google Scholar 

  241. Hollingsworth CR, Gray FA, Koch DW, Groose R, Heald TE (2010) Distribution of Phoma sclerotioides and incidence of brown root rot of alfalfa in Wyoming, U.S.A. Canadian J Plant Pathol 215–217. https://doi.org/10.1080/07060660309507071

  242. Hoose C, Kristjánsson JE, Burrows SM (2010) How important is biological ice nucleation in clouds on a global scale? Environ Res Lett 5:024009. https://doi.org/10.1088/1748-9326/5/2/024009

    Article  ADS  CAS  Google Scholar 

  243. Hospodsky D, Qian J, Nazaroff WW et al (2012) Human occupancy as a source of indoor airborne bacteria. PLoS One 7:e34867. https://doi.org/10.1371/journal.pone.0034867

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hotez PJ, Bottazzi ME, Strych U et al (2015) Neglected tropical diseases among the association of Southeast Asian Nations (ASEAN): Overview and update. PLoS Negl Trop Dis 9:e0003575. https://doi.org/10.1371/journal.pntd.0003575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hu W, Strom N, Haarith D et al (2018) Mycobiome of cysts of the soybean cyst nematode under long term crop rotation. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00386

  246. Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16:406–413. https://doi.org/10.1016/j.pbi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  247. Huang J-S (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157

    Google Scholar 

  248. Huber L, Gillespie TJ (1992) Modelling leaf wetness in relation to plant disease epidemiology. Annu Rev Phytopathol 30:553–577

    Google Scholar 

  249. Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17. https://doi.org/10.1016/j.femsle.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  250. Huerta-Espino J, Singh RP, Germán S et al (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160. https://doi.org/10.1007/s10681-011-0361-x

    Article  Google Scholar 

  251. Huffman JA, Prenni AJ, Demott PJ et al (2013) High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys 13:6151–6164. https://doi.org/10.5194/acp-13-6151-2013

    Article  ADS  CAS  Google Scholar 

  252. Hugh-Jones ME, Wright PB (1970) Studies on the 1967–8 foot-and-mouth disease epidemic. The relation of weather to the spread of disease. J Hyg (Lond) 68:253–271. https://doi.org/10.1017/s0022172400028722

    Article  CAS  PubMed  Google Scholar 

  253. Hull R (2014) Plant Virology, 5th edn. Academic Press, Cambridge, MA. https://doi.org/10.1016/C2010-0-64974-1

    Book  Google Scholar 

  254. Hultin KAH, Krejci R, Pinhassi J et al (2011) Aerosol and bacterial emissions from Baltic Seawater. Atmos Res 99:1–14. https://doi.org/10.1016/j.atmosres.2010.08.018

    Article  Google Scholar 

  255. Hurtado L, Rodríguez G, López J et al (2014) Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico. Atmos Environ 96:430–436. https://doi.org/10.1016/j.atmosenv.2014.07.018

    Article  ADS  CAS  Google Scholar 

  256. Hurtado-Gonzales OP, Valentini G, Gilio TA et al (2017) Fine mapping of Ur-3, a historically important rust resistance locus in common bean. G3 (Bethesda) 7(2):557–569. https://doi.org/10.1534/g3.116.036061

  257. Hutchison ML, Johnstone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol Mol Plant Pathol 42:373–384. https://doi.org/10.1016/S0885-5765(05)80013-X

    Article  CAS  Google Scholar 

  258. Inderbitzin P, Bostock RM, Davis RM et al (2011) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One 6:e28341. https://doi.org/10.1371/journal.pone.0028341

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ingold CT (1953) Dispersal in Fungi. Oxford University Press, Oxford

    Google Scholar 

  260. Ingold CT (1999) Active liberation of reproductive units in terrestrial fungi. Mycologist 13:113–116. https://doi.org/10.1016/S0269-915X(99)80040-8

    Article  Google Scholar 

  261. Islam MT, Croll D, Gladieux P et al (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:1–12. https://doi.org/10.1186/s12915-016-0309-7

    Article  Google Scholar 

  262. Islam TMD, Toyota K (2004) Suppression of bacterial wilt of tomato by Ralstonia solanacearum by incorporation of composts in soil and possible mechanism. Microbes Environ 19:53–60. https://doi.org/10.1264/jsme2.2004.53

    Article  Google Scholar 

  263. Ivanović Ž, Perović T, Popović T et al (2017) Characterization of pseudomonas syringae pv. syringae, causal agent of citrus blast of mandarin in Montenegro. Plant Pathol J 33:21–33. https://doi.org/10.5423/PPJ.OA.08.2016.0161

    Article  PubMed  PubMed Central  Google Scholar 

  264. Jacobson MZ, Streets DG (2009) Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J Geophys Res Atmos 114:D08118. https://doi.org/10.1029/2008JD011476

    Article  ADS  CAS  Google Scholar 

  265. Jain A, Sarsaiya S, Wu Q et al (2019) A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10:409–424. https://doi.org/10.1080/21655979.2019.1649520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ji Z, Wang C, Zhao K (2018) Rice routes of countering xanthomonas oryzae. Int J Mol Sci 19:3008. https://doi.org/10.3390/ijms19103008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Jiang N, Yan J, Liang Y et al (2020) Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—an updated review. Rice 13:1–12. https://doi.org/10.1186/s12284-019-0358-y

    Article  Google Scholar 

  268. Jiang Y, Zhou H, Chen L et al (2018) Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Front Microbiol 9:2803. https://doi.org/10.3389/fmicb.2018.02803

    Article  PubMed  PubMed Central  Google Scholar 

  269. Jiehua Q, Shuai M, Yizhen D, Shiwen H, Yanjun K (2019) Ustilaginoidea virens: A fungus infects rice flower and threats world rice production. Rice Science 26:199–206. https://doi.org/10.1016/j.rsci.2018.10.007

    Article  Google Scholar 

  270. Jimenez-Diaz RM, Jimenez-Gasco M del M (2011) Integrated management of fusarium wilt diseases. In: Alves-Santos FM, Diez JJ (eds) Research Signpost, Control of. Research Signpost, Kerala, India, pp 177–215

  271. Jiménez-Díaz RM, Trapero-Casas A, de la Colina JC (1989) Races of fusarium oxysporum F. Sp. Ciceri infecting chickpeas in Southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular wilt diseases of plants. NATO ASI Series, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73166-2_39

  272. Jin X, Cao X, Wang X et al (2018) Three-dimensional architecture and biogenesis of membrane structures associated with plant virus replication. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00057

  273. Jo KR, Kim CJ, Kim SJ et al (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 14:1–10. https://doi.org/10.1186/1472-6750-14-50

    Article  ADS  Google Scholar 

  274. Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RG, Jacobsen E, Vossen JH (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biochem 14:1–10. https://doi.org/10.1186/1472-6750-14-50

    Article  Google Scholar 

  275. Johnson GR, Morawska L (2009) The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv 22:229–237. https://doi.org/10.1089/jamp.2008.0720

    Article  PubMed  Google Scholar 

  276. Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations - A review. Sci Total Environ 326:151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021

    Article  ADS  CAS  PubMed  Google Scholar 

  277. Jones DA, Thomas CM, Hammond-kosack KE et al (1994) Isolation of the Tomato Cf-9 Gene for Resistance to Cladosporium fulvum by Transposon Tagging. Science (80-) 266:789–793. https://doi.org/10.1126/science.7973631

    Article  ADS  CAS  Google Scholar 

  278. Jones JT, Haegeman A, Danchin EGJ et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  279. Jones K, Kim DW, Park JS, Khang CH (2016) Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol 16:1–8. https://doi.org/10.1186/s12870-016-0756-x

    Article  CAS  Google Scholar 

  280. Joung YS, Ge Z, Buie CR (2017) Bioaerosol generation by raindrops on soil. Nat Commun 8. https://doi.org/10.1038/ncomms14668

  281. Kamoun S, Furzer O, Jones JDG et al (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434. https://doi.org/10.1111/mpp.12190

    Article  PubMed  Google Scholar 

  282. Kappagantu M, Bullock JM, Nelson ME, Eastwell KC (2017) Hop stunt viroid: Effect on host (Humulus lupulus) transcriptome and its interactions with hop powdery mildew (Podospheara macularis). Mol Plant Microbe Interact 30:842–851

    CAS  PubMed  Google Scholar 

  283. Karra S, Katsivela E (2007) Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site. Water Res 41:1355–1365

    CAS  PubMed  Google Scholar 

  284. Kaushik R, Balasubramanian R (2013) Discrimination of viable from non-viable Gram-negative bacterial pathogens in airborne particles using propidium monoazide-assisted qPCR. Sci Total Environ 449:237–243. https://doi.org/10.1016/j.scitotenv.2013.01.065

    Article  ADS  CAS  PubMed  Google Scholar 

  285. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  286. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644. https://doi.org/10.1016/j.tree.2006.07.004

    Article  PubMed  Google Scholar 

  287. Kembel SW, Jones E, Kline J et al (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469–1479. https://doi.org/10.1038/ismej.2011.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Keykhasaber M, Thomma BPHJ, Hiemstra JA (2018) Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade trees. Eur J Plant Pathol 150:21–37. https://doi.org/10.1007/s10658-017-1273-y

    Article  Google Scholar 

  289. Khan MAI, Bhuiyna MR, Hossain MS et al (2014) Neck blast disease influences grain yield and quality traits of aromatic rice. Comptes Rendus - Biol 337:635–641. https://doi.org/10.1016/j.crvi.2014.08.007

    Article  Google Scholar 

  290. Khan M, Atiq M (2020) Technical Report: Prediction of citrus canker disease and its management. https://doi.org/10.13140/RG.2.2.33830.96329/1

  291. Kim HJ, Lee HR, Jo KR et al (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935. https://doi.org/10.1007/s00122-011-1757-7

    Article  CAS  PubMed  Google Scholar 

  292. Kim S, Kim CY, Park SY et al (2020) Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun 11:5845. https://doi.org/10.1038/s41467-020-19624-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  293. Kim YJ, Lin NC, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598. https://doi.org/10.1016/S0092-8674(02)00743-2

    Article  CAS  PubMed  Google Scholar 

  294. Kirk PM, Canoon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s Dictionary of the Fungi, 10th edn. CABI, Wallingford. https://doi.org/10.1079/9780851998268.0000

    Book  Google Scholar 

  295. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of verticillium species. Annu Rev Phytopathol 47:39–62. https://doi.org/10.1146/annurev-phyto-080508-081748

    Article  CAS  PubMed  Google Scholar 

  296. Kobayashi T, Ishiguro K, Nakajima T et al (2006) Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology 96:425–431. https://doi.org/10.1094/PHYTO-96-0425

    Article  CAS  PubMed  Google Scholar 

  297. Köhl J, Van Tongeren CAM, Groenenboom-de Haas BH, Van Hoof RA, Driessen R, Van Der Heijden L (2010) Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathol 59:358–367

    Google Scholar 

  298. Köhm BA, Goulden MG, Gilbert JE et al (1993) A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts. Plant Cell 5:913–920. https://doi.org/10.2307/3869659

    Article  PubMed  PubMed Central  Google Scholar 

  299. Kolmer JA, Hughes ME (2005) Physiologic specialization of Puccinia triticina on wheat in the United States in 2003. Plant Dis 89:1201–1206. https://doi.org/10.1094/PDIS-11-17-1701-SR

    Article  CAS  PubMed  Google Scholar 

  300. Kong P, Rubio L, Polek ML, Falk BW (2000) Population structure and genetic diversity within California Citrus tristeza virus (CTV) isolates. Virus Genes 21:139–145. https://doi.org/10.1023/A:1008198311398

    Article  CAS  PubMed  Google Scholar 

  301. Kovalev N, de Castro Martín IF, Pogany J et al (2016) Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase. J Virol 90:3611–3626. https://doi.org/10.1128/jvi.02775-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Kovalskaya N, Hammond RW (2014) Molecular biology of viroid-host interactions and disease control strategies. Eff Grain Boundaries Paraconductivity YBCO 228:48–60. https://doi.org/10.1016/j.plantsci.2014.05.006

    Article  CAS  Google Scholar 

  303. Kreuze JF, Souza-Dias JAC, Jeevalatha A, Figueira AR, Valkonen JPT, Jones RAC (2020) Viral diseases in potato. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham

  304. Krishnamoorthy S, Muthalagu A, Priyamvada H et al (2020) On distinguishing the natural and human-induced sources of airborne pathogenic viable bioaerosols: characteristic assessment using advanced molecular analysis. SN Appl Sci 2:1162. https://doi.org/10.1007/s42452-020-2965-z

    Article  CAS  Google Scholar 

  305. Krupa S, McGrath MT, Andersen CP et al (2001) Ambient ozone and plant health. Plant Dis 85:4–12

    PubMed  Google Scholar 

  306. Kumar D, Bhatt J, Sharma RL (2017) Efficacy of different bio control agents against Meloidogyne incognita and Fusarium oxysporum on Black gram (Vigna mungo L). Int J Current Microb Applied Sci 6:2287–2291

    Google Scholar 

  307. Kumar RR, Ansar M, Rajani K et al (2020) First report on molecular basis of potato leaf roll virus (PLRV) aggravation by combined effect of tuber and prevailing aphid. BMC Res Notes 13:523. https://doi.org/10.1186/s13104-020-05370-1

    Article  PubMed  PubMed Central  Google Scholar 

  308. Kuroda K (2001) Responses of Quercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetle Platypus quercivorus. J Wood Sci 47:425–429. https://doi.org/10.1007/BF00767893

    Article  Google Scholar 

  309. Kuske CR (2006) Current and emerging technologies for the study of bacteria in the outdoor air. Curr Opin Biotechnol 17:291–296. https://doi.org/10.1016/j.copbio.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  310. Kutsuwa K, Dickson DW, Brito JA et al (2015) Belonolaimus longicaudatus: An emerging pathogen of Peanut in Florida. J Nematol 47:87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Kuyek D, Biothai G et al (2000) Blast, biotech and big business: Implications of corporate strategies on Rice research in Asia. In: GRAIN. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Blast,+biotech+and+big+business#1. Accessed 28 Sep 2022

  312. Lacey J (1991) Aggregation of spores and its effect on aerodynamic behaviour. Grana 30:437–445. https://doi.org/10.1080/00173139109432005

    Article  Google Scholar 

  313. Lacey J (1996) Spore dispersal - Its role in ecology and disease: The British contribution to fungal aerobiology. Mycol Res 100:641–660

    Google Scholar 

  314. Lambert KN, Bekal S (2002) Introduction to plant parasitic nematodes. Plant Health Instr 10:1094–1218

    Google Scholar 

  315. Lamichhane JR, Dürr C, Schwanck AA et al (2017) Integrated management of damping-off diseases. A review. Agron Sustain Dev 37:1–25. https://doi.org/10.1007/s13593-017-0417-y

    Article  Google Scholar 

  316. Lamichhane JR, Varvaro L, Parisi L et al (2014) Disease and frost damage of woody plants caused by pseudomonas syringae: Seeing the forest for the trees. Adv Agron 126:235–295. https://doi.org/10.1016/B978-0-12-800132-5.00004-3

    Article  Google Scholar 

  317. LaMondia JA (2006) Management of lesion nematodes and potato early dying with rotation crops. J Nematol 38:442–448

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Landeras E, Estefanía TV, Máximo B, Ana G (2017) Short communication: Occurrence of angular leaf spot caused by Pseudocercospora griseola in Phaseolus vulgaris in Asturias, Spain. Spanish J Agricul Res 15:e10SC03. https://doi.org/10.5424/sjar/2017153-10798

    Article  Google Scholar 

  319. Langley RL, Morrow WEM (2010) Livestock handling-minimizing worker injuries. J Agromedicine 15:226–235. https://doi.org/10.1080/1059924X.2010.486327

    Article  PubMed  Google Scholar 

  320. Laundon JR (1985) Desmococcus Olivaceus—the name of the common subaerial green alga. Taxon 34:671–672

    Google Scholar 

  321. Lazazzara V, Bueschl C, Parich A, Pertot I, Schuhmacher R, Perazzolli M (2018) Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Sci Rep 8:1618. https://doi.org/10.1038/s41598-018-19776-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  322. Leben C (1969) Colonization of soybean buds by bacteria: observations with the scanning electron microscope. Can J Microbiol 15:319–321

    CAS  PubMed  Google Scholar 

  323. Leck C, Bigg EK (2005) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B Chem Phys Meteorol 57:305–316. https://doi.org/10.3402/tellusb.v57i4.16546

    Article  ADS  Google Scholar 

  324. Lee C, Sultana CM, Collins DB et al (2015) Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop. J Phys Chem A 119:8860–8870. https://doi.org/10.1021/acs.jpca.5b03488

    Article  CAS  PubMed  Google Scholar 

  325. Lee SW, Han M, Park CJ, Seo YS, Jeon JS (2011) The molecular mechanisms of rice resistance to the bacterial blight pathogen, Xanthomonas oryzae pathovar oryzae. In: Kader DM (ed) Advances in botanical research, vol 60. Academic Press, San Diego, pp 51–87

    Google Scholar 

  326. Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111. https://doi.org/10.1111/j.1364-3703.2005.00273.x

    Article  PubMed  Google Scholar 

  327. Lestari S, Hidayat S (2020) IOP Conference Series: Earth and Environmental Science Survey and detection of Banana bunchy top virus in Java Survey and detection of Banana bunchy top virus in Java. IOP Conf Ser Earth Environ Sci 583. https://doi.org/10.1088/1755-1315/583/1/012022

  328. Lewis DH, Smith DC (1967) Sugar alcohols (Polyols) in fungi and green plants. I. Distribution physiology and metabolism. New Phytologist 66:143–184

    CAS  Google Scholar 

  329. Li C, Yaegashi H, Kishigami R et al (2020) Apple russet ring and apple green crinkle diseases: Fulfillment of Koch’s postulates by virome analysis, amplification of full-length cDNA of viral genomes, in vitro transcription of infectious Viral RNAs, and reproduction of symptoms on fruits of apple T. Front Microbiol 11:1627. https://doi.org/10.3389/fmicb.2020.01627

    Article  PubMed  PubMed Central  Google Scholar 

  330. Li HL, Yuan HX, Fu B et al (2012) First report of Fusarium pseudograminearum causing Crown Rot of Wheat in Henan. China Plant Dis 96:1065. https://doi.org/10.1094/PDIS-01-12-0007-PDN

    Article  CAS  PubMed  Google Scholar 

  331. Li J, Pang Z, Duan S et al (2019) The in planta effective concentration of oxytetracycline against Candidatus Liberibacter asiaticus for suppression of citrus Huanglongbing. Phytopathol 109:2046–2054

    CAS  Google Scholar 

  332. Liberti D, Marais A, Svanella-Dumas L et al (2005) Characterization of Apricot pseudo-chlorotic leaf spot virus, a novel Trichovirus isolated from stone fruit trees. Phytopathol 95:420–426

    CAS  Google Scholar 

  333. Lighthart B (1984) Microbial aerosols: Estimated contribution of combine harvesting to an airshed. Appl Environ Microbiol 47:430–432. https://doi.org/10.1128/aem.47.2.430-432.1984

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  334. Lighthart B (1997) The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol Ecol 23:263–274

    CAS  Google Scholar 

  335. Lin WH, Li CS (2000) Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Sci Technol 32:359–368. https://doi.org/10.1080/027868200303678

    Article  ADS  CAS  Google Scholar 

  336. Lindow SE (2002) Differential survival of solitary and aggregated cells of Pseudomonas syringae on leaves. Phytopathol 92:S97

    Google Scholar 

  337. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  338. Liu C, Nelson RS (2013) The cell biology of tobacco mosaic virus replication and movement. Front Plant Sci 4:1–11. https://doi.org/10.3389/fpls.2013.00012

    Article  ADS  Google Scholar 

  339. Liu M, Hambleton S (2010) Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol 114:881–899. https://doi.org/10.1016/j.funbio.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  340. Liu W, Liu J, Triplett L et al (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241. https://doi.org/10.1146/annurev-phyto-102313-045926

    Article  CAS  PubMed  Google Scholar 

  341. Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant, Cell Environ 29:315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x

    Article  CAS  PubMed  Google Scholar 

  342. Lopez-Escudero FJ, Blanco-Lopez MA (2001) Effect of a single or double soil solarization to control Verticillium wilt in established olive orchards in Spain. Plant Dis 85:489–496. https://doi.org/10.1094/PDIS.2001.85.5.489

    Article  CAS  PubMed  Google Scholar 

  343. Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232. https://doi.org/10.1146/annurev.arplant.56.032604.144145

    Article  CAS  PubMed  Google Scholar 

  344. Lu G, Wang Z, Xu F et al (2021) Sugarcane mosaic disease: Characteristics, identification and control. Microorganisms 9:1984. https://doi.org/10.3390/microorganisms9091984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Lucas GB, Campbell CL, Lucas LT (1992) Diseases caused by airborne fungi. In: Introduction to Plant Diseases. Springer, US, Boston, MA, pp 586–594. https://doi.org/10.1007/978-1-4615-7294-7

  346. Lucas WJ (2006) Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184. https://doi.org/10.1016/j.virol.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  347. Luigi M, Manglli A, Tomassoli L, Faggioli F (2013) First report of Hop stunt viroid in Hibiscus rosa-sinensis in Italy. New Dis Reports 27:14–14. https://doi.org/10.5197/j.2044-0588.2013.027.014

    Article  Google Scholar 

  348. Mackintosh CA, Lidwell OM, Towers AG, Marples RR (1978) The dimensions of skin fragments dispersed into the air during activity. J Hyg (Lond) 81:471–480. https://doi.org/10.1017/S0022172400025341

    Article  CAS  PubMed  Google Scholar 

  349. Maddahian M, Massumi H, Heydarnejad J et al (2019) Biological and molecular characterization of hop stunt viroid variants from pistachio trees in Iran. J Phytopathol 167:163–173. https://doi.org/10.1111/jph.12783

    Article  CAS  Google Scholar 

  350. Madej T, Janowicz K, Błaszkowski J (2000) The diseases of ornamental plants caused by Aphelenchoides ritzemabosi in association with fungi. Arch Phytopathol Plant Prot 33:141–148. https://doi.org/10.1080/03235400009383338

    Article  Google Scholar 

  351. Madelin TM (1994) Fungal aerosols: A review. J Aerosol Sci 25:1405–1412. https://doi.org/10.1016/0021-8502(94)90216-X

    Article  ADS  CAS  Google Scholar 

  352. Maekawa T, Kracher B, Vernaldi S et al (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci U S A 109:20119–20123. https://doi.org/10.1073/pnas.1218059109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  353. Maki T, Hara K, Iwata A et al (2017) Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos Chem Phys 17:11877–11897. https://doi.org/10.5194/acp-17-11877-2017

    Article  ADS  CAS  Google Scholar 

  354. Maki T, Kakikawa M, Kobayashi F et al (2013) Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmos Environ 74:73–82. https://doi.org/10.1016/j.atmosenv.2013.03.029

    Article  ADS  CAS  Google Scholar 

  355. Maki T, Lee KC, Kawai K et al (2019) Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J Geophys Res Atmos 124:5579–5588. https://doi.org/10.1029/2018JD029597

    Article  ADS  Google Scholar 

  356. Maki T, Susuki S, Kobayashi F et al (2010) Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Sci Total Environ 408:4556–4562. https://doi.org/10.1016/j.scitotenv.2010.04.002

    Article  ADS  CAS  PubMed  Google Scholar 

  357. Maksimov IV, Sorokan AV, Burkhanova SV et al (2019) Mechanisms of plant tolerance to RNA viruses induced by plant-growth-promoting microorganisms. Plants 8:575. https://doi.org/10.3390/plants8120575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Manching Heather C, Balint-Kurti Peter J, Stapleton Ann E (2014) Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00403

  359. Manning W, Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Poll 88:219–245

    CAS  Google Scholar 

  360. Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

    Article  PubMed  PubMed Central  Google Scholar 

  361. Maranger R, Bird DF (1995) Viral abundance in aquatic systems: A comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226. https://doi.org/10.3354/meps121217

    Article  ADS  Google Scholar 

  362. Marchant WG, Gautam S, Hutton SF, Srinivasan R (2020) Tomato yellow leaf curl virus-resistant and -susceptible tomato genotypes similarly impact the virus population genetics. Front Plant Sci 11:599697. https://doi.org/10.3389/fpls.2020.599697

    Article  PubMed  PubMed Central  Google Scholar 

  363. Maree HJ, Almeida RPP, Bester R et al (2013) Grapevine leafroll-associated virus 3. Front Microbiol 4:82. https://doi.org/10.3389/fmicb.2013.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Marks R, Kruczalak K, Jankowska K, Michalska M (2001) Bacteria and fungi in air over the Gulf of Gdansk and Baltic sea. J Aerosol Sci 32:237–250

    ADS  CAS  Google Scholar 

  365. Marquez-molins J, Gomez G, Pallas V (2020) Hop stunt viroid : A polyphagous pathogenic RNA that has shed light on viroid – host interactions. Mol Plant Patholo 22:153–162. https://doi.org/10.1111/mpp.13022

    Article  CAS  Google Scholar 

  366. Marshall WA, Chalmers MO (1997) Airborne dispersal of antarctic terrestrial algae and cyanobacteria. Ecography (Cop) 20:585–594. https://doi.org/10.1111/j.1600-0587.1997.tb00427.x

    Article  ADS  Google Scholar 

  367. Martelli GP, Abou Ghanem-Sabanadzovic N, Agranovsky AA et al (2012) Taxonomic revision of the family closteroviridae with special reference to the grapevine leafroll-associated members of the genus ampelovirus and the putative species unassigned to the family. J Plant Pathol 94:7–19

    Google Scholar 

  368. Martin GB, Brommonschenkel SH, Chunwongse J et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science (80-) 262:1432–1436

    ADS  CAS  Google Scholar 

  369. Martínez-arias C, Sobrino-plata J, Gil L et al (2021) Priming of plant defenses against ophiostoma novo-ulmi by elm (Ulmus minor mill.) fungal endophytes. J Fungi 7:687. https://doi.org/10.3390/jof7090687

    Article  CAS  Google Scholar 

  370. Martinez-Soriano JP, Galindo-Alonso J, Maroon CJM et al (1996) Mexican papita viroid: Putative ancestor of crop viroids. Proc Natl Acad Sci 93:9397-9401

  371. Masurkar P, Bajpai R, Sahu V et al (2018) Invasion and nutrient acquisition strategies of phytopathogens: Fungi, bacteria and viruses. Int J Curr Microbiol Appl Sci 7:3132–3146. https://doi.org/10.20546/ijcmas.2018.708.335

    Article  CAS  Google Scholar 

  372. Matsushita Y, Yanagisawa H (2018) Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes 54:124–129. https://doi.org/10.1007/s11262-017-1510-7

    Article  CAS  PubMed  Google Scholar 

  373. Matthias-Maser S, Peters K, Jaenicke R (1995) Seasonal variation of primary biological aerosol particles. J Aerosol Sci 26:S545–S546. https://doi.org/10.1016/0021-8502(95)97180-M

    Article  ADS  Google Scholar 

  374. May NW, Gunsch MJ, Olson NE et al (2018) Unexpected contributions of sea spray and lake spray aerosol to inland particulate matter. Environ Sci Technol Lett 5:405–412. https://doi.org/10.1021/acs.estlett.8b00254

    Article  CAS  Google Scholar 

  375. May NW, Olson NE, Panas M et al (2018) Aerosol emissions from great lakes harmful algal blooms. Environ Sci Technol 52:397–405. https://doi.org/10.1021/acs.est.7b03609

    Article  ADS  CAS  PubMed  Google Scholar 

  376. Mayol E, Jiménez MA, Herndl GJ et al (2014) Resolving the abundance and air- sea fluxes of airborne microorganisms in the North Atlantic Ocean. Front Microbiol 5:557. https://doi.org/10.3389/fmicb.2014.00557

    Article  PubMed  PubMed Central  Google Scholar 

  377. Mburu H, Cortada L, Haukeland S et al (2020) Potato cyst nematodes: A new threat to potato production in East Africa. Front Plant Sci 11:670. https://doi.org/10.3389/fpls.2020.00670

    Article  PubMed  PubMed Central  Google Scholar 

  378. McCarthy M (2001) Dust clouds implicated in spread of infection. Lancet 358:478. https://doi.org/10.1016/S0140-6736(01)05677-X

    Article  CAS  PubMed  Google Scholar 

  379. Mehetre GT, Leo VV, Singh G et al (2021) Current developments and challenges in plant viral diagnostics: A systematic review. Viruses 13:412. https://doi.org/10.3390/v13030412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Meinhardt LW, Costa GG, Thomazella DP et al (2014) Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics 27:164. https://doi.org/10.1186/1471-2164-15-164

    Article  CAS  Google Scholar 

  381. Mejias J, Truong NM, Abad P et al (2019) Plant proteins and processes targeted by parasitic nematode effectors. Front Plant Sci 10:970. https://doi.org/10.3389/fpls.2019.00970

    Article  PubMed  PubMed Central  Google Scholar 

  382. Melloy P, Hollaway G, Luck J et al (2010) Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology – Glob Change Biol 16. https://doi.org/10.1111/j.1365-2486.2010.02178.x

  383. Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol 174:561–571. https://doi.org/10.1104/pp.16.01853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Mendgen K, Dressler E (1983) Culturing Puccinia coronata on a Cell Monolayer of the Avena sativa Coleoptile. J Phytopathol 108:226–234. https://doi.org/10.1111/j.1439-0434.1983.tb00583.x

    Article  Google Scholar 

  385. Meng S, Torto-Alalibo T, Chibucos MC et al (2009) Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms. BMC Microbiol 9:S7. https://doi.org/10.1186/1471-2180-9-S1-S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Menzies JG, Turkington TK, Knox RE (2009) Testing for resistance to smut diseases of barley, oats and wheat in western Canada. Can J Plant Pathol 31:265–279. https://doi.org/10.1080/07060660909507601

    Article  Google Scholar 

  387. Mieslerova B, Kitner M, Křístková E, Majeský Ľ, Lebeda A (2020) Powdery Mildews on Lactuca species – A complex view of host-pathogen interactions. Crit Rev Plant Sci 39:1–28. https://doi.org/10.1080/07352689.2020.1752439

    Article  CAS  Google Scholar 

  388. Milgroom MG, Wang K, Lipari SE, Kaneko S (1996) Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycol Soc Am 88:179–190. https://doi.org/10.1080/00275514.1942.12020904

    Article  Google Scholar 

  389. Min YY, Toyota K (2019) Occurrence of different kinds of diseases in sesame cultivation in Myanmar and their impact to sesame yield. J Exp Agric Int 38:1–9. https://doi.org/10.9734/jeai/2019/v38i430309

    Article  Google Scholar 

  390. Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099. https://doi.org/10.1016/0092-8674(94)90282-8

    Article  CAS  PubMed  Google Scholar 

  391. Miquel P (1883) Les Organismes Vivants de l’atmosphere. Gauthier-Villars, Paris

    Google Scholar 

  392. Mmbaga MT, Steadman JR, Stavely JR (1996) The use of host resistance in disease management of rust in common bean. Integr Pest Manag Rev 1:191–200. https://doi.org/10.1007/Bf00139763

    Article  Google Scholar 

  393. Moffett BF, Getti G, Henderson-Begg SK, Hill TCJ (2015) Ubiquity of ice nucleation in lichen’ possible atmospheric implications. Lindbergia 38:39–43. https://doi.org/10.25227/linbg.01070

    Article  Google Scholar 

  394. Mokrini F, Viaene N, Waeyenberge L et al (2018) Investigation of resistance to Pratylenchus penetrans and P. thornei in international wheat lines and its durability when inoculated together with the cereal cyst nematode Heterodera avenae, using qPCR for nematode quantification. Eur J Plant Pathol 151:875–889. https://doi.org/10.1007/s10658-018-1420-0

    Article  CAS  Google Scholar 

  395. Moletta M, Delgenes JP, Godon JJ (2007) Differences in the aerosolization behavior of microorganisms as revealed through their transport by biogas. Sci Total Environ 379:75–88

    ADS  CAS  PubMed  Google Scholar 

  396. Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci U S A 100:15977–15982. https://doi.org/10.1073/pnas.2436560100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  397. Monier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70:346–355. https://doi.org/10.1128/AEM.70.1.346-355.2004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  398. Montiflor MO, Vellema S, Digal LN (2019) Coordination as management response to the spread of a global plant disease: a case study in a major Philippine banana production area. Front Plant Sci 10:1048. https://doi.org/10.3389/fpls.2019.01048

    Article  PubMed  PubMed Central  Google Scholar 

  399. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134. https://doi.org/10.1016/S0168-1702(00)00193-3

    Article  CAS  PubMed  Google Scholar 

  400. Morris CE, Conen F, Alex Huffman J et al (2014) Bioprecipitation: A feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol 20:341–351. https://doi.org/10.1111/gcb.12447

    Article  ADS  PubMed  Google Scholar 

  401. Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere Microbiology. APS Press, Saint Paul, USA, pp 365–375

    Google Scholar 

  402. Morris CE, Leyronas C, Nicot PC (2014) Movement of Bioaerosols in the Atmosphere and the Consequences for Climate and Microbial Evolution. In: Colbeck I, Mihalis L (eds) Aerosol Science: Technology and Applications. John Wiley & Sons, Hoboken, NJ, pp 393–416

    Google Scholar 

  403. Morris CE, Sands DC, Bardin M et al (2011) Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 8:17–25. https://doi.org/10.5194/bg-8-17-2011

    Article  ADS  CAS  Google Scholar 

  404. Morris CE, Sands DC, Vinatzer BA et al (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334. https://doi.org/10.1038/ismej.2007.113

    Article  CAS  PubMed  Google Scholar 

  405. Mustilli A-C, Merlot S, Vavasseur A et al (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Am Soc Plant Biol 14:3089–3099. https://doi.org/10.1105/tpc.007906

    Article  CAS  Google Scholar 

  406. Nabeshima T, Doi M, Hosokawa M (2017) Comparative analysis of Chrysanthemum stunt viroid accumulation and movement in two Chrysanthemum (Chrysanthemum morifolium) cultivars with differential susceptibility to the viroid infection. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01940

  407. Nag R, Monahan C, Whyte P et al (2021) Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Sci Total Environ 791:148189. https://doi.org/10.1016/j.scitotenv.2021.148189

    Article  ADS  CAS  PubMed  Google Scholar 

  408. Nam M, Park SJ, Kim YJ et al (2012) First report of peanut stunt virus on glycine max in Korea. Plant Pathol J 28:330. https://doi.org/10.5423/PPJ.DR.07.2011.0138

    Article  Google Scholar 

  409. Naqvi SAH (2019) Bacterial leaf blight of rice: An overview of epidemiology and management with special reference to-indian-sub-continent. Pakistan J Agric Res 32:359–380. https://doi.org/10.17582/journal.pjar/2019/32.2.359.380

    Article  Google Scholar 

  410. Nathan R, Schurr FM, Spiegel O et al (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647. https://doi.org/10.1016/j.tree.2008.08.003

    Article  PubMed  Google Scholar 

  411. Nault LR, Ammar ED (1989) Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol 34:503–529. https://doi.org/10.1146/annurev.en.34.010189.002443

    Article  Google Scholar 

  412. Nazareno ES, Li F, Smith M et al (2018) Puccinia coronata f. sp. avenae: a threat to global oat production. Mol Plant Pathol 19:1047–1060. https://doi.org/10.1111/mpp.12608

    Article  PubMed  Google Scholar 

  413. Neff JC, Ballantyne AP, Farmer GL et al (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. https://doi.org/10.1038/ngeo133

    Article  ADS  CAS  Google Scholar 

  414. Neilson RP, Pitelka LF, Solomon AM et al (2005) Forecasting regional to global plant migration in response to climate change. Bioscience 55:749–759. https://doi.org/10.1641/0006-3568(2005)055[0749:FRTGPM]2.0.CO;2

    Article  Google Scholar 

  415. Nelson A (2017) Crop-health survey aims to fill data gaps. Nature 541:464. https://doi.org/10.1038/541464a

    Article  ADS  CAS  PubMed  Google Scholar 

  416. Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of singapore. Plant Ecol Evol 143:51–62. https://doi.org/10.5091/plecevo.2010.417

    Article  Google Scholar 

  417. Nicas M, Nazaroff WW, Hubbard A (2005) Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. J Occup Environ Hyg 2:143–154. https://doi.org/10.1080/15459620590918466

    Article  PubMed  Google Scholar 

  418. Nicol JM, Rivoal R (2007) Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crop nematodes. Springer, Dordrecht, The Netherlands, pp 251–294. https://doi.org/10.1007/978-1-4020-6063-2

  419. Nicol JM, Turner SJ, Coyne DL et al (2011) Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 21–44

  420. Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol Plant Pathol 7:303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.x

    Article  PubMed  Google Scholar 

  421. Noble WC, Habbema JDF, Van Furth R, Smith I, De Raay C (1976) Quantitative studies on the dispersal of skin bacteria into the air. Indian J Med Microbiol 9:53–61. https://doi.org/10.1099/00222615-9-1-53

    Article  CAS  Google Scholar 

  422. Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. In: Varshney RK, Tuberosa R (eds).Translational Genomics for Crop Breeding. John Wiley & Sons Ltd, pp 241–65

  423. Nyaku ST, Affokpon A, Danquah A, Brentu FC (2017) Harnessing useful rhizosphere microorganisms for nematode control. Nematol - Concepts, Diagnosis Control 153. https://doi.org/10.5772/intechopen.69164

  424. Nzioki H, Jamoza J, Olweny C, Rono J (2010) Characterization of physiologic races of sugarcane smut (Ustilago scitaminea) in Kenya. African J Microbiol Res 4:1694–1697

    Google Scholar 

  425. O’dowd C, Ceburnis D, Ovadnevaite J et al (2015) Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton dance or death disco? Sci Rep 5:14883. https://doi.org/10.1038/srep14883

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  426. Obidiegwu JE, Flath K, Gebhardt C (2014) Managing potato wart: A review of present research status and future perspective. Theor Appl Genet 127:763–780. https://doi.org/10.1007/s00122-014-2268-0

    Article  PubMed  PubMed Central  Google Scholar 

  427. Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43

    Google Scholar 

  428. Oerke EC, Dehne HW (2004) Safeguarding production - Losses in major crops and the role of crop protection. Crop Prot 23:275–285. https://doi.org/10.1016/j.cropro.2003.10.001

    Article  Google Scholar 

  429. Oka Y, Chet I, Spiegel Y (1993) Control of the rootknot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci Technol 3:115–126. https://doi.org/10.1080/09583159309355267

    Article  Google Scholar 

  430. Olaya Escobar DR, Perez Rojas FA (2006) Caracterización cualitativa - cuantitativa de Bioaerosoles relacionados con factores meteorológicos y material particulado en Puente Aranda. Universidada de La Salle, Bogotá D.C

    Google Scholar 

  431. Ona I, Cruz CV, Nelson RJ, Leach JE, Mew TW (1998) Epidemic development of bacterial blight on rice carrying resistance genes Xa-4, Xa-7, and Xa-10. Plant Dis 82:1337–1340. https://doi.org/10.1094/PDIS.1998.82.12.1337

    Article  Google Scholar 

  432. Onyile AB, Edwards HH, Gessner R V (1982) Adhesive material of the hyphopodia of Buergenerula spartinae. 74:777–784

  433. Orlovskis Z, Canale MC, Thole V et al (2015) Insect-borne plant pathogenic bacteria: Getting a ride goes beyond physical contact. Curr Opin Insect Sci 9:16–23. https://doi.org/10.1016/j.cois.2015.04.007

    Article  PubMed  Google Scholar 

  434. Orsini M, Laurenti P, Boninti F et al (2002) A molecular typing approach for evaluating bioaerosol exposure in wastewater treatment plant workers. Water Res 36:1375–1378. https://doi.org/10.1016/S0043-1354(01)00336-0

    Article  CAS  PubMed  Google Scholar 

  435. Osdaghi E, Jones JB, Sharma A, Goss EM, Abrahamian P, Newberry EA, Potnis N, Carvalho R, Choudhary M, Paret ML, Timilsina S, Vallad GE (2021) A centenary for bacterial spot of tomato and pepper. Mol Plant Pathol 22:1500. https://doi.org/10.1111/mpp.13125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Ou SH (1985) Rice disease, 2nd edn. Commonwealth Mycology Institute, Kew, Surrey, UK

  437. Owens RA (2007) Potato spindle tuber viroid: The simplicity paradox resolved? Mol Plant Pathol 8:549–560. https://doi.org/10.1111/j.1364-3703.2007.00418.x

    Article  CAS  PubMed  Google Scholar 

  438. Ozores-hampton M, Mcavoy E, Sargent S, Roberts P (2010) Evaluation of tomato yellow leaf curl virus ( tylcv ) resistant and Fusarium crown rot ( fcr ) resistant tomato variety under commercial conditions in southwest Florida. Tomato Inst Proc 53:11–15

    Google Scholar 

  439. Pahari AK, Dasgupta D, Patil RS, Mukherji S (2016) Emission of bacterial bioaerosols from a composting facility in Maharashtra, India. Waste Manag 53:22–31. https://doi.org/10.1016/j.wasman.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  440. Palomares-Rius JE, Escobar C, Cabrera J et al (2017) Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front Plant Sci 8:1987. https://doi.org/10.3389/fpls.2017.01987

    Article  PubMed  PubMed Central  Google Scholar 

  441. Panchal S, Melotto M (2017) Stomate-based defense and environmental cues. Plant Signal Behav 12:e1362517. https://doi.org/10.1080/15592324.2017.1362517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Pappu SS, Pappu HR, Langston DB et al (2000) Outbreak of Tomato yellow leaf curl virus (Family Geminiviridae ) in Georgia. Plant Heal Prog 1:34. https://doi.org/10.1094/php-2000-0601-02-hn

    Article  Google Scholar 

  443. Pasev G, Radeva-Ivanova V, Manoussopoulos Y et al (2018) First report of Peanut stunt virus on beans in Bulgaria. New Dis Reports 38:9–9. https://doi.org/10.5197/j.2044-0588.2018.038.009

    Article  Google Scholar 

  444. Pathi KM, Rink P, Budhagatapalli N et al (2020) Engineering Smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Front Plant Sci 11:543895. https://doi.org/10.3389/fpls.2020.543895

    Article  PubMed  PubMed Central  Google Scholar 

  445. Patzak J, Henychová A, Krofta K, Svoboda P, Malíˇrová I (2021) The influence of Hop Latent Viroid (HLVd) infection on gene expression and secondary metabolite contents in Hop (Humulus lupulus L.) Glandular Trichomes. Plants 10:2297. https://doi.org/10.3390/plants10112297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Pazarlar S, Gümüs M, Öztekin GB (2013) The effects of tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.). Not Bot Horti Agrobot Cluj-Napoca 41:427–433. https://doi.org/10.15835/nbha4129008

    Article  Google Scholar 

  447. Pearce D, Bridge P, Hawksworth D (2001) Species concept in Sarocladium, the causal agent of sheath rot in Rice and Bamboo blight. https://doi.org/10.1007/978-94-017-2157-8_20

  448. Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ 40:3941–3961. https://doi.org/10.1016/j.atmosenv.2006.02.029

    Article  ADS  CAS  Google Scholar 

  449. Pedigo LP, Rice ME (2006) Entomology and pest management. 5th ed. Pearson Prentice Hall. Columbus, OH

  450. Pegg GF, Brady BL (2002) Verticillium Wilts. CABI Publishing, Wallingford, UK

    Google Scholar 

  451. Peil A, Bus V, Geider K et al (2009) Improvement of fire blight resistance in apple and pear. Int J Plant Breeding 3:1–27

    Google Scholar 

  452. Perelló AE, Sisterna MN (2006) Leaf blight of wheat caused by Alternaria triticina in Argentina. Plant Pathol 55:303–303

    Google Scholar 

  453. Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2:101–108. https://doi.org/10.1046/j.1364-3703.2001.00055.x

    Article  CAS  PubMed  Google Scholar 

  454. Perilla-Henao LM, Casteel CL (2016) Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants. Front Plant Sci 7:1163. https://doi.org/10.3389/fpls.2016.01163

    Article  PubMed  PubMed Central  Google Scholar 

  455. Pillai SD, Widmer KW, Dowd SE, Ricke SC (1996) Occurrence of airborne bacteria and pathogen indicators during land application of sewage sludge. Appl Environ Microbiol 62:296–299. https://doi.org/10.1128/aem.62.1.296-299.1996

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  456. Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V (2014) Improving crop disease resistance: Lessons from research on Arabidopsis and tomato. Front Plant Sci 5:671. https://doi.org/10.3389/fpls.2014.00671

    Article  PubMed  PubMed Central  Google Scholar 

  457. Pitt TL, Barer MR (2012) Classification, identification and typing of micro-organisms. Med Microbiol Eighteenth Ed 24–38. https://doi.org/10.1016/B978-0-7020-4089-4.00018-4

  458. Pöhlker C, Wiedemann KT, Sinha B et al (2012) Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science (80-) 337:1075–1078. https://doi.org/10.1126/science.1223264

    Article  ADS  CAS  Google Scholar 

  459. Pokhrel B (2020) Review on post-harvest handling to reduce loss of fruits and vegetables. Int J Hortic Food Sci Table 2:48–52

    Google Scholar 

  460. Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ Health Perspect 116:292–296. https://doi.org/10.1289/ehp.10684

    Article  PubMed  Google Scholar 

  461. Posada JA, Redrow J, Celik I (2010) A mathematical model for predicting the viability of airborne viruses. J Virol Methods 164:88–95. https://doi.org/10.1016/j.jviromet.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  462. Pöschl U, Martin ST, Sinha B et al (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513–1516. https://doi.org/10.1126/science.1191056

    Article  ADS  CAS  PubMed  Google Scholar 

  463. Pósfai M, Li J, Anderson JR, Buseck PR (2003) Aerosol bacteria over the Southern Ocean during ACE-1. Atmos Res 66:231–240. https://doi.org/10.1016/S0169-8095(03)00039-5

    Article  CAS  Google Scholar 

  464. Prank M, Kenaley SC, Bergstrom GC et al (2019) Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ Res Lett 14:124053. https://doi.org/10.1088/1748-9326/ab57de

    Article  ADS  CAS  Google Scholar 

  465. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Prenni AJ, Tobo Y, Garcia E et al (2013) The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys Res Lett 40:227–231. https://doi.org/10.1029/2012GL053953

    Article  ADS  CAS  Google Scholar 

  467. Pringle A, Patek SN, Fischer M, Stolze J, Money NP (2005) The captured launch of a ballistospore. Mycologia 97:866–871. https://doi.org/10.3852/mycologia.97.4.866

    Article  PubMed  Google Scholar 

  468. Printz H (1921) Subaerial algae from south africa. Det Kongelige Norske Videnskabers Selskabs Skrifter

  469. Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia (Bologna) 21:1–19. https://doi.org/10.1007/s10453-004-5872-7

    Article  Google Scholar 

  470. Pummer BG, Budke C, Augustin-Bauditz S et al (2015) Ice nucleation by water-soluble macromolecules. Atmos Chem Phys 15:4077–4091. https://doi.org/10.5194/acp-15-4077-2015

    Article  ADS  CAS  Google Scholar 

  471. Purayannur S, Cano LM, Bowman MJ et al (2021) The effector repertoire of the hop downy mildew pathogen Pseudoperonospora humuli. Front Genet 11:910. https://doi.org/10.3389/fgene.2020.00910

    Article  CAS  Google Scholar 

  472. Purcell AH (1982) Insect vector relationships with prokaryotic plant pathogens. Annu Rev Phytopathol 20:397–417. https://doi.org/10.1146/annurev.py.20.090182.002145

    Article  Google Scholar 

  473. Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151. https://doi.org/10.1146/annurev.phyto.34.1.131

    Article  CAS  PubMed  Google Scholar 

  474. Qiu W, Feechan A, Dry I (2015) Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hortic Res 2:15020. https://doi.org/10.1038/hortres.2015.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  475. Rajput MA, Rajput NA, Syed RN et al (2021) Sugarcane smut: Current knowledge and the way forward for management. J Fungi 7:1095. https://doi.org/10.3390/jof7121095

    Article  CAS  Google Scholar 

  476. Randles JW, Rodriguez MJ, Imperial JS (1988) Cadang-cadang disease of coconut palm. Microbiol Sci 5:18–22

    CAS  PubMed  Google Scholar 

  477. Redkar A, Matei A, Doehlemann G (2017) Insights into host cell modulation and induction of new cells by the corn smut Ustilago maydis. Front Plant Sci 8:899. https://doi.org/10.3389/fpls.2017.00899

    Article  PubMed  PubMed Central  Google Scholar 

  478. Reisser W (2002) Algae living on trees. In: Seckbach J (ed) Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, The Netherlands, pp 387–395

    Google Scholar 

  479. Rhodes J (2019) Rapid Worldwide Emergence of Pathogenic Fungi. Cell Host Microbe 26:12–14. https://doi.org/10.1016/j.chom.2019.06.009

    Article  CAS  PubMed  Google Scholar 

  480. Rigling D, Prospero S (2017) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19:7–20

    PubMed  PubMed Central  Google Scholar 

  481. Della RG, Danti R, Williams N et al (2019) Molecular analyses indicate that both native and exotic pathogen populations serve as sources of novel outbreaks of Cypress Canker Disease. Biol Invasions 21:2919–2932. https://doi.org/10.1007/s10530-019-02022-9

    Article  Google Scholar 

  482. Rogerson A, Detwiler A (1999) Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmos Res 51:35–44. https://doi.org/10.1016/S0169-8095(98)00109-4

    Article  Google Scholar 

  483. Romay G, Pitrat M, Lecoq H et al (2019) Resistance against melon chlorotic mosaic virus and tomato leaf curl New Delhi virus in melon. Plant Dis 103:2913–2919. https://doi.org/10.1094/PDIS-02-19-0298-RE

    Article  CAS  PubMed  Google Scholar 

  484. Romon M, Soustre-Gacougnolle I, Schmitt C et al (2013) RNA silencing is resistant to low-temperature in grapevine. PLoS One 8:e82652. https://doi.org/10.1371/journal.pone.0082652

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  485. Roumi V, Gazel M, Caglayan K (2017) First report of Apple dimple fruit viroid in apple trees in Iran. New Dis Rep 35:3. https://doi.org/10.5197/j.2044-0588.2017.035.003

    Article  Google Scholar 

  486. Rowe RC, Riedel RM, Martin MJ (1985) Synergistic interactions between Verticillium dahliae and Pratylenchus penetrans in potato early dying disease. Phytoapthology 75:412–418

    Google Scholar 

  487. Rowe RC, Davis JR, Powelson ML, Rouse DI (1987) Potato early dying: Causal agents and management strategies. Plant Dis 71:482–489

    Google Scholar 

  488. Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Frontiers in Plant Science 11:1092. https://doi.org/10.3389/fpls.2020.01092

    Article  PubMed  PubMed Central  Google Scholar 

  489. Rutherford RS, McFarlane SA, Van Antwerpen T, McFarlane K (2003) Use of varieties to minimise losses from sugarcane diseases in South Africa. Proc S Afr Sug Technol Ass 180–188

  490. Sache I (2000) Short-distance dispersal of wheat rust spores by wind and rain. Agronomie 20:757–767

    Google Scholar 

  491. Salgado-Salazar C, Shiskoff N, Daughtrey M et al (2018) Downy mildew: A serious disease threat to rose health worldwide. Plant Dis 102:1873–1882. https://doi.org/10.1094/PDIS-12-17-1968-FE

    Article  PubMed  Google Scholar 

  492. Salinier J, Lefebvre V, Besombes D et al (2022) The INRAE centre for vegetable germplasm: geographically and phenotypically diverse collections and their use in genetics and plant breeding. Plants 11:347. https://doi.org/10.3390/plants11030347

    Article  PubMed  PubMed Central  Google Scholar 

  493. Salmeron JM, Oldroyd GED, Rommens CMT et al (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133. https://doi.org/10.1016/S0092-8674(00)80083-5

    Article  CAS  PubMed  Google Scholar 

  494. Sanchez-Martín J, Rubiales D, Prats E (2011) Resistance to powdery mildew (Blumeria graminis f.sp. avenae) in oat seedlings and adult plants. Plant Pathol 60:846–856

    Google Scholar 

  495. Sarwar A, Latif Z, Zhang S et al (2018) Biological control of potato common scab with rare Isatropolone C compound produced by plant growth promoting streptomyces A1RT. Front Microbiol 9:1126. https://doi.org/10.3389/fmicb.2018.01126

    Article  PubMed  PubMed Central  Google Scholar 

  496. Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC (1983) The international Meloidogyne project-its goals and accomplishments. Annual Review of Phytopathology 21:271–288. https://doi.org/10.1146/annurev.py.21.090183.001415

    Article  Google Scholar 

  497. Sastry KS (2013) Seed-borne plant virus diseases. Springer Science & Business Media 67–73

  498. Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  499. Sawyer B, Elenbogen G, Rao KC et al (1993) Bacterial aerosol emission rates from municipal wastewater aeration tanks. Appl Environ Microbiol 59:3183–3186. https://doi.org/10.1128/aem.59.10.3183-3186.1993

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  500. Saxena A, Raghuwanshi R, Gupta VK, Singh HB (2016) Chilli anthracnose: the epidemiology and management. Front Microbiol 7:1527. https://doi.org/10.3389/fmicb.2016.01527

    Article  PubMed  PubMed Central  Google Scholar 

  501. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488. https://doi.org/10.1038/nrmicro1159

    Article  CAS  PubMed  Google Scholar 

  502. Schroeder JI, Allen GJ, Hugouvieux V et al (2001) Guard cell signal transduction. Annu Rev Plant Biol 52:627–658. https://doi.org/10.1146/annurev.arplant.52.1.627

    Article  CAS  Google Scholar 

  503. Schubert TS, Rizvi SA, Sun X, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida—again. Plant Disease 85:340–356. https://doi.org/10.1094/PDIS.2001.85.4.340

    Article  PubMed  Google Scholar 

  504. Scofield SR, Tobias CM, Rathjen JP et al (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. 274:2063–2065

  505. Scortichini M (2002) Bacterial canker and decline of European hazelnut. Plant Dis 86:704–709. https://doi.org/10.1094/PDIS.2002.86.7.704

    Article  PubMed  Google Scholar 

  506. Scortichini M, Marcelletti S, Ferrante P et al (2012) Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Mol Plant Pathol 13:631–640. https://doi.org/10.1111/j.1364-3703.2012.00788.x

    Article  PubMed  PubMed Central  Google Scholar 

  507. Seigner L, Liebrecht M, Keckel L et al (2020) Real-time RT-PCR detection of Citrus bark cracking viroid (CBCVd) in hops including an mRNA-based internal positive control. J Plant Dis Prot 127:763–767. https://doi.org/10.1007/s41348-020-00317-x

    Article  Google Scholar 

  508. Seo JK, Kim MK, Kwak HR et al (2018) Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516:1–20. https://doi.org/10.1016/j.virol.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  509. Serra-Soriano M, Navarro JA, Genoves A, Pallás V (2015) Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 124:11–24. https://doi.org/10.1016/j.jprot.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  510. Serra P, Bertolini E, Martínez MC et al (2017) Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: Implications for detection. Sci Rep 7:4285. https://doi.org/10.1038/srep42825

    Article  CAS  Google Scholar 

  511. Sesartic A, Dallafior TN (2011) Global fungal spore emissions, review and synthesis of literature data. Biogeosciences 8:1181–1192. https://doi.org/10.5194/bg-8-1181-2011

    Article  ADS  Google Scholar 

  512. Shaffer BT, Lighthart B (1997) Survey of the culturable airborne bacteria at four diverse locations in oregon: urban, rural, forest and coastal. Pap Knowl Towar a Media Hist Doc 34:167–177

    CAS  Google Scholar 

  513. Shapiro LR, Paulson JN, Arnold BJ et al (2018) An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. mBio 9:e01307-18. https://doi.org/10.1128/mBio.01307-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  514. Sharma NK, Rai AK, Singh S, Brown RM (2007) Airborne algae: Their present status and relevance. J Phycol 43:615–627. https://doi.org/10.1111/j.1529-8817.2007.00373.x

    Article  Google Scholar 

  515. Sharma U, Watpade S, Gupta B et al (2020) Economic losses due to infection by apple scar skin viroid in Himachal Pradesh, India. Virusdisease 31:490–496. https://doi.org/10.1007/s13337-020-00625-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Shivaji S, Chaturvedi P, Suresh K et al (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56:1465–1473. https://doi.org/10.1099/ijs.0.64029-0

    Article  CAS  PubMed  Google Scholar 

  517. Sigari G, Panatto D, Lai P et al (2006) Virological investigation on aerosol from waste depuration plants. J Prev Med Hyg 47:4–7

    CAS  PubMed  Google Scholar 

  518. Silva H, Anjo SI, Manadas B et al (2021) Comparative Analysis of Bursaphelenchus xylophilus Secretome Under Pinus pinaster and P. pinea Stimuli. Front Plant Sci 12:668064. https://doi.org/10.3389/fpls.2021.668064

    Article  PubMed  PubMed Central  Google Scholar 

  519. Singh P, Mazumdar P, Harikrishna J, Babu S (2019) Sheath blight of rice: a review and identification of priorities for future research. Planta 250. https://doi.org/10.1007/s00425-019-03246-8

  520. Singh RP (2014) The discovery and eradication of potato spindle tuber viroid in Canada. VirusDisease 25:415–424. https://doi.org/10.1007/s13337-014-0225-9

    Article  PubMed  PubMed Central  Google Scholar 

  521. Singh RP, Huerta-Espino J, Bhavani S et al (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186. https://doi.org/10.1007/s10681-010-0322-9

    Article  Google Scholar 

  522. Sivapalan A, Hj Hamdan F, Junaidy MAHM (2007) Patch canker of Durio zibethinus caused by Phytophthora palmivora in Brunei Darussalam. Plant Dis 81. https://doi.org/10.1094/PDIS.1997.81.1.113C

  523. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150. https://doi.org/10.1016/j.tibtech.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  524. Skelsey P, Cooke DEL, Lynott JS, Lees AK (2016) Crop connectivity under climate change: future environmental and geographic risks of potato late blight in Scotland. Glob Chang Biol 22:3724–3738. https://doi.org/10.1111/gcb.13368

    Article  ADS  PubMed  Google Scholar 

  525. Smant G, Helder J, Goverse A (2018) Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. Plant J 93:686–702. https://doi.org/10.1111/tpj.13811

    Article  CAS  PubMed  Google Scholar 

  526. Smets W, Moretti S, Denys S, Lebeer S (2016) Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos Environ 139:214–221. https://doi.org/10.1016/j.atmosenv.2016.05.038

    Article  ADS  CAS  Google Scholar 

  527. Smith DJ, Timonen HJ, Jaffe DA, Griffin DW, Birmele MN, Perry KD, Ward PD, Roberts MS (2013) Intercontinental dispersal of bacteria and archaea by transpacific winds. Applied and Environmental Microbiology 79:1134–1139. https://doi.org/10.1128/AEM.03029-12

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  528. Smith IM, Dunez J, Lelliot RA et al (1988) European handbook of plant diseases. Blackewell Scientific publications, Oxford etc., 583 S

  529. Smith M, Matavulj P, Mimić G et al (2022) Why should we care about high temporal resolution monitoring of bioaerosols in ambient air? Sci Total Environ 826:154231. https://doi.org/10.1016/j.scitotenv.2022.154231

    Article  ADS  CAS  PubMed  Google Scholar 

  530. Snetselaar K, McCann M (2017) Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia 109:140–152. https://doi.org/10.1080/00275514.2016.1274597

    Article  PubMed  Google Scholar 

  531. Sobczak M, Avrova A, Jupowicz J et al (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant-Microbe Interact 18:158–168. https://doi.org/10.1094/MPMI-18-0158

    Article  CAS  PubMed  Google Scholar 

  532. Solmaz I, Sari N, Dogimont C, Pitrat M (2016) Evaluation of Turkish melon accessions for resistance to Fusarium wilt, downy mildew, powdery mildew, Cucumber mosaic virus and Zucchini yellow mosaic virus. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014) 1127:133–140. https://doi.org/10.17660/ActaHortic.2016.1127.22

  533. Solomon SD, Qin D, Manning M et al (2007) Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge Univ Press 4

  534. Song WY, Kang MH, Kim HM (1999) Current status of bacterial brown stripe of rice caused by Acidovorax avenae subsp. avenae. Plant Dis Agric 5:69–76

    Google Scholar 

  535. Soto T, Lozano M, Vicente-Soler J et al (2009) Microbiological survey of the aerial contamination in urban areas of the city of Murcia, Spain. An Biol 31(2009):7–13

    Google Scholar 

  536. Spieker RL (1996) In vitro-generated ‘inverse’chimeric Coleus blumei viroids evolve in vivo into infectious RNA replicons. J Gen Virol 77:2839–2846

    CAS  PubMed  Google Scholar 

  537. Spielman LJ (1985) A monograph of Valsa on hardwoods in North America. Can J Bot 63:1355–1378. https://doi.org/10.1139/b85-190

    Article  Google Scholar 

  538. Srinivasan R, Riley D, Diffie S et al (2012) Whitefly population dynamics and evaluation of whitefly-transmitted tomato yellow leaf curl virus (TYLCV)-resistant tomato genotypes as whitefly and TYLCV reservoirs. J Econ Entomol 105:1447–1456. https://doi.org/10.1603/EC11402

    Article  CAS  PubMed  Google Scholar 

  539. Stanley R, Linskins H (1974) Pollen: Biology, Chemistry and Management. Springer-Verlag, Berlin

  540. Stewart I, Falconer IR (2008) Cyanobacteria and cyanobacterial toxins. In: Walsh PJ, Smith SL, Fleming LE, Solo-gabriele HM, Gerwick WH (eds) Oceans and human health: risks and remedies from the seas. Academic Press, Burlington, MA, pp 271–296

    Google Scholar 

  541. Stocker TF, Qin D, Plattner G-K et al (2013) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, University and New York, NY, USA

  542. Stout JE (2001) Dust and environment in the southern high plains of North America. J Arid Environ 47:425–441. https://doi.org/10.1006/jare.2000.0732

    Article  Google Scholar 

  543. Strauch D, Ballarini G (1994) Hygienic aspects of the production and agricultural use of animal wastes. J Vet Med Ser B 41:176–228. https://doi.org/10.1111/j.1439-0450.1994.tb00222.x

    Article  CAS  Google Scholar 

  544. Su H, Van Bruggen AHC, Subbarao KV (2000) Spore release of Bremia lactucae on lettuce is affected by timing of light initiation and decrease in relative humidity. Phytopathology 90:67–71. https://doi.org/10.1094/PHYTO.2000.90.1.67

    Article  CAS  PubMed  Google Scholar 

  545. Sukno SA, García VM, Shaw BD, Thon MR (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 74:823–832. https://doi.org/10.1128/AEM.01165-07

    Article  ADS  CAS  PubMed  Google Scholar 

  546. Sulong Y, Zakaria AJ, Mohamed S et al (2019) Survey on pest and disease of corn (Zea Mays Linn) grown at BRIS soil area. J Agrobiotechnol 10:2180–1983

  547. Suriani PB, Junaid M, Muis A (2021) The presence of bacterial stalk rot disease on corn in Indonesia: A review. IOP Conf Ser Earth Environ Sci 911:012058. https://doi.org/10.1088/1755-1315/911/1/012058

    Article  Google Scholar 

  548. Sutton PN, Henry MJ, Hall JL (1999) Glucose, and not sucrose, is transported from wheat to wheat powdery mildew. Planta 208:426–430. https://doi.org/10.1007/s004250050578

    Article  CAS  Google Scholar 

  549. Sweigard JA, Carroll AM, Farrall L et al (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant-Microbe Interact 11:404–412. https://doi.org/10.1094/MPMI.1998.11.5.404

    Article  CAS  PubMed  Google Scholar 

  550. Szittya G, Silhavy D, Molnár A et al (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640. https://doi.org/10.1093/emboj/cdg74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  551. Taha H, Shivanand P, Khoo DH et al (2020) Identification of culturable petroleum-degrading bacteria and fungi from petroleum-contaminated sites in Brunei Darussalam. J Environ Sci Heal - Part A Toxic/Hazard Subst Environ Eng 55:1542–1547. https://doi.org/10.1080/10934529.2020.1826238

    Article  CAS  Google Scholar 

  552. Taha H, Shivanand P, Shahminan NIN et al (2020b) Isolation and identification of culturable bacteria and fungi from mixed dipterocarp and mangrove forests of Brunei Darussalam. Proc Natl Acad Sci India Sect B - Biol Sci 90:523–530.https://doi.org/10.1007/s40011-019-01119-4

  553. Taha H, Shivanand P, Zainudin MAA, & Hadanan NA (2021) Identification of culturable marine fungi and bacteria from coastal region in Brunei Darussalam: Identification of culturable marine microbes. Biodiversitas Journal of Biological Diversity 22:3. https://doi.org/10.13057/biodiv/d220332

  554. Takahata Y (2001) Changes of xylem pressure potential in Quercus serrata saplings inoculated with Raffaelea sp. (in Japanese). Abstracts of the 112th Annual Meeting of the Japanese Forestry Society 112:284.

  555. Takatsu A, Fukuda S, Hahn SK, Caveness FE (1990) Integrated pest management for tropical root and tuber crops. In: Hahn, S.K. and Caveness, F.E. (eds) Proceedings of the Workshop on the Global Status and of Prospects for IPM of Root and Tuber Crops, Ibadan, Nigeria, 25–30 October 1987. IITA, Ibadan, Nigeria, pp 127–131

  556. Talbot NJ (2007) Fungal genomics goes industrial. Nat Biotechnol 25:542–543. https://doi.org/10.1038/nbt0507-542

    Article  CAS  PubMed  Google Scholar 

  557. Tan TK, Teo TS, Lee BW et al (1992) Variations in tropical airspora in Singapore. Mycol Res 96:221–224. https://doi.org/10.1016/S0953-7562(09)80969-6

    Article  Google Scholar 

  558. Tang JW (2009) The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface 6:S737–S746. https://doi.org/10.1098/rsif.2009.0227.focus

    Article  PubMed  PubMed Central  Google Scholar 

  559. Tang X, Frederick RD, Zhou J et al (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science (80-) 274:2060–2063

    ADS  CAS  Google Scholar 

  560. Tangkanchanapas P, Haegeman A, Höfte M, De Jonghe K (2021) Reassessment of the Columnea latent viroid (CLVd) taxonomic classification. Microorganisms 9:1117. https://doi.org/10.3390/microorganisms9061117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  561. Tangkanchanapas P, Reanwarakorn K, Juenak H, De Jonghe K (2017) First report of Grapevine yellow speckle viroid-2 infecting grapevine (Vitis vinifera) in Thailand. New Dis Rep 36:6. https://doi.org/10.5197/j.2044-0588.2017.036.006

    Article  Google Scholar 

  562. Täubel M, Rintala H, Pitkäranta M et al (2009) The occupant as a source of house dust bacteria. J Allergy Clin Immunol 124:834–840. https://doi.org/10.1016/j.jaci.2009.07.045

    Article  PubMed  Google Scholar 

  563. Taylor SE, Brown JD (1988) Illusion and well-being: A social psychological perspective on mental health. Psychol Bull 103:193–210. https://doi.org/10.1037/0033-2909.103.2.193

    Article  CAS  PubMed  Google Scholar 

  564. Tesson SVM, Skjøth A, Šantl-temkiv T (2016) Airborne microalgae: Insights, opportunities, and challenges. Appl Environ Microbiol 82:1978–1991. https://doi.org/10.1128/AEM.03333-15.Editor

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  565. Than PP, Prihastuti H, Phoulivong S, Taylor PW, Hyde KD (2008) Chilli anthracnose disease caused by Colletotrichum species. J of Zhejiang University Science B 9:764–778. https://doi.org/10.1631/jzus.B0860007

    Article  Google Scholar 

  566. Thomason IJ, Rich JR, O’Melia FC (1976) Pathology and histopathology of Pratylenchus scribneri infecting snap bean and lima bean. J Nematol 8:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  567. Thompson WAR (1981) editor. Black’s medical dictionary, 33 ed. Adam and Charles Black

  568. Thummes K, Schäfer J, Kämpfer P, Jäckel U (2007) Thermophilic methanogenic Archaea in compost material: Occurrence, persistence and possible mechanisms for their distribution to other environments. Syst Appl Microbiol 30:634–643. https://doi.org/10.1016/j.syapm.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  569. Tokunaga H, Baba T, Ishitani M et al (2018) Correction to: Sustainable Management of Invasive Cassava Pests in Vietnam, Cambodia, and Thailand: Application of Cutting-edge Science and Technology in Developing Countries. Crop Production under stressful conditions. Springer, Singapore, pp E1–E1

    Google Scholar 

  570. Tong Y, Lighthart B (1999) Diurnal distribution of total and culturable atmospheric bacteria at a rural site. Aerosol Sci Technol 30:246–254. https://doi.org/10.1080/027868299304822

    Article  ADS  CAS  Google Scholar 

  571. Toniutti L, Breitler JC, Etienne H et al (2017) Influence of environmental conditions and genetic background of Arabica coffee (C. Arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Front Plant Sci 8:2025. https://doi.org/10.3389/fpls.2017.02025

    Article  PubMed  PubMed Central  Google Scholar 

  572. Toropova EY, Kazakova OA, Piskarev VV (2020) Septoria blotch epidemic process on spring wheat varieties. Vavilovskii Zh Genetiki Selektsii 24:139–148. https://doi.org/10.18699/VJ20.609

    Article  Google Scholar 

  573. Toth IK, Kenneth SB, Maria CH, Paul RJB (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    CAS  PubMed  Google Scholar 

  574. Trail F (2007) Fungal cannons: Explosive spore discharge in the Ascomycota. FEMS Microbiol Lett 276:12–18. https://doi.org/10.1111/j.1574-6968.2007.00900.x

    Article  CAS  PubMed  Google Scholar 

  575. Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9:269–280. https://doi.org/10.1111/j.1364-3703.2008.00467.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  576. Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annu Rev phytopathol 39:53–77. https://doi.org/10.1146/annurev.phyto.39.1.53

    Article  CAS  PubMed  Google Scholar 

  577. Tsushima T, Sano T (2015) First report of Coleus blumei viroid 5 infection in vegetatively propagated clonal coleus cv.'Aurora black cherry'in Japan. New Dis Rep 32(7). https://doi.org/10.5197/j.2044-0588.2015.032.007

  578. Tsushima T, Sano T (2018) A point-mutation of Coleus blumei viroid 1 switches the potential to transmit through seed. J Gen Virol 99:393–401. https://doi.org/10.1099/jgv.0.001013

    Article  CAS  PubMed  Google Scholar 

  579. Tytgat T, De Meutter J, Gheysen G, Coomans A (2000) Sedentary endoparasitic nematodes as a model for other plant parasitic nematodes. Nematology 2:113–121. https://doi.org/10.1163/156854100508827

    Article  Google Scholar 

  580. USDA (2013) USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 7 October 2022

  581. Uke A, Tokunaga H, Utsumi Y et al (2021) Cassava mosaic disease and its management in Southeast Asia. Plant Mol Biol 109:301–311. https://doi.org/10.1007/s11103-021-01168-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  582. USDA (2015) The plantss database (http://plants.usda.gov, May 2011). National Plant Data Team, Greensboro. Accessed 7 October 2022

  583. van Esse HP, Reuber TL, van der Does D (2020) Genetic modification to improve disease resistance in crops. New Phytol 225:70–86. https://doi.org/10.1111/nph.15967

    Article  PubMed  Google Scholar 

  584. Van Megen H, Van Den Elsen S, Holterman M et al (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950. https://doi.org/10.1163/156854109X456862

    Article  CAS  Google Scholar 

  585. Vaneault-Fourrey C, Barooah M, Egan M et al (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science (80-) 312:580–583. https://doi.org/10.1126/science.1124550

    Article  ADS  CAS  Google Scholar 

  586. Varma A, Malathi VG (2003) Emerging geminivirus problems: A serious threat to crop production. Ann Appl Biol 142:145–164. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x

    Article  CAS  Google Scholar 

  587. Váry Z, Mullins E, Mcelwain JC, Doohan FM (2015) The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob Chang Biol 21:2661–2669. https://doi.org/10.1111/gcb.12899

    Article  ADS  PubMed  Google Scholar 

  588. Velásquez AC, Castroverde CDM, He SY (2018) Plant-pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634. https://doi.org/10.1016/j.cub.2018.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  589. Verbeek M, Dullemans AM, van Bekkum PJ, van der Vlugt RAA (2013) Evidence for Lettuce big-vein associated virus as the causal agent of a syndrome of necrotic rings and spots in lettuce. Plant Pathol 62:444–451. https://doi.org/10.1111/j.1365-3059.2012.02645.x

    Article  Google Scholar 

  590. Verhoeven JT, Roenhorst JW, Hooftman M et al (2015) A pospiviroid from symptomless portulaca plants closely related to iresine viroid 1. Virus Res 205:22–26. https://doi.org/10.1016/j.virusres.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  591. Verhoeven JTJ, Botermans M, Meekes ETM, Roenhorst JW (2012) Tomato apical stunt viroid in the Netherlands: Most prevalent pospiviroid in ornamentals and first outbreak in tomatoes. Eur J Plant Pathol 133:803–810. https://doi.org/10.1007/s10658-012-0005-6

    Article  Google Scholar 

  592. Verhoeven JTJ, Jansen CCC, Willemen TM et al (2004) Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. Eur J Plant Pathol 110:823–831. https://doi.org/10.1007/s10658-004-2493-5

    Article  CAS  Google Scholar 

  593. Veron F (2015) Ocean spray. Annu Rev Fluid Mech 47:507–538. https://doi.org/10.1146/annurevfluid-010814-014651

    Article  ADS  MathSciNet  Google Scholar 

  594. Villeneuve F, Latour F, Théry T et al (2014) The control of soil-borne vascular diseases: Limits of genetic resistance of cultivars and rootstocks for controlling Fusarium oxysporum F. Sp. Melonis (Melon) and Verticillium Sp. (Eggplant). Acta Hortic. 57–65

  595. Viswanathan R, Balamuralikrishnan M (2005) Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech 7:61–65. https://doi.org/10.1007/BF02942419

    Article  CAS  Google Scholar 

  596. von Blohn N, Mitra SK, Diehl K, Borrmann S (2005) The ice nucleating ability of pollen: Part III: New laboratory studies in immersion and contact freezing modes including more pollen types. Atmos Res 78:182–189

    Google Scholar 

  597. Waals JE, Korsten L, Aveling T (2001) A review of early blight of potato. Afr Plant Prot 7:91–102

    Google Scholar 

  598. Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2003) Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol Lett 218:161–165. https://doi.org/10.1016/S0378-1097(02)01138-2

    Article  CAS  PubMed  Google Scholar 

  599. Wang T, Jia ZH, Zhang JY et al (2020) Identification and analysis of nbs-lrr genes in actinidia chinensis genome. Plants 9:1350. https://doi.org/10.3390/plants9101350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  600. Wang Y, Wu J, Qiu Y et al (2019) Global transcriptomic analysis reveals insights into the response of ‘etrog’ citron (Citrus medica L.) to Citrus Exocortis viroid infection. Viruses 11. https://doi.org/10.3390/v11050453

  601. Wang Z, Chen B, Zhang T et al (2021) Rice stripe mosaic disease: Characteristics and control strategies. Front Microbiol 12:715223. https://doi.org/10.3389/fmicb.2021.715223

    Article  PubMed  PubMed Central  Google Scholar 

  602. Wellings CR (2011) Global status of stripe rust: A review of historical and current threats. Euphytica 179:129–141. https://doi.org/10.1007/s10681-011-0360-y

    Article  Google Scholar 

  603. Whitham S, Dinesh-kumar SP, Choi D et al (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115. https://doi.org/10.1016/0092-8674(95)90399-2

    Article  CAS  PubMed  Google Scholar 

  604. Whittaker RH, Likens GE (1973) Primary production: The biosphere and man. Hum Ecol 1:357–369. https://doi.org/10.1007/BF01536732

    Article  Google Scholar 

  605. Wietholter N, Graessner B, Mierau M, Mort AJ, Moerschbacher BM (2003) Differences in the methyl ester distribution of homogalacturonans from near-isogenic wheat lines resistant and susceptible to the wheat stem rust fungus. Mol Plant Microbe Interact 16:945–952

    PubMed  Google Scholar 

  606. Will T, Furch ACU, Zimmermann MR (2013) How phloem-feeding insects face the challenge of phloem-located defenses. Front Plant Sci 4:336. https://doi.org/10.3389/fpls.2013.00336

    Article  PubMed  PubMed Central  Google Scholar 

  607. Williamson-Benavides BA, Dhingra A (2021) Understanding root rot disease in agricultural crops. Horticulturae 7:33. https://doi.org/10.3390/horticulturae7020033

    Article  Google Scholar 

  608. Wilson TW, Ladino LA, Alpert PA et al (2015) A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234–238. https://doi.org/10.1038/nature14986

    Article  ADS  CAS  PubMed  Google Scholar 

  609. Wingfield MJ, Hammerbacher A, Ganley RJ et al (2008) Pitch canker caused by Fusarium circinatum - A growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334. https://doi.org/10.1071/AP08036

    Article  Google Scholar 

  610. Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc B Biol Sci 365:3645–3653. https://doi.org/10.1098/rstb.2010.0283

    Article  Google Scholar 

  611. Woo C, An C, Xu S, Yamamoto N (2018) Taxonomic diversity of fungi deposited from the atmosphere. ISME J 12:2051–2060. https://doi.org/10.1038/s41396-018-0160-7

    Article  PubMed  PubMed Central  Google Scholar 

  612. Wu L, Zu X, Wang S, Chen Y (2012) Sugarcane mosaic virus e Long history but still a threat to industry. Crop Prot 42:74–78. https://doi.org/10.1016/j.cropro.2012.07.005

    Article  Google Scholar 

  613. Wunderle J, Leclerque A, Schaffrath U, Slusarenko A, Koch E (2012) Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. Eur J Plant Pathol 133:865–875. https://doi.org/10.1007/s10658-012-0010-9

    Article  CAS  Google Scholar 

  614. Wydra K, Msikita W (1998) An overview of the present situation of cassava diseases in West Africa. In: Akoroda MO, Ekanayake IJ (eds) Root Crops for Poverty Alleviation. Proceedings of the Sixth Triennial Symposium of the International Society for Tropical Root Crops (ISTRC), Lilongwe, Malawi, 22–28 October 1995. ISTRC (International Society for Tropical Root Crops), IITA (International Institute of Tropical Agriculture) and Government of Malawi, pp 163–166

  615. Xiang N, Lawrence KS, Donald PA (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. J Phytopathol 166:449–458. https://doi.org/10.1111/jph.12712

    Article  Google Scholar 

  616. Xie X, Li Y, Sun H, Liu L (2009) Exhaled droplets due to talking and coughing. J R Soc Interface 6:703–714. https://doi.org/10.1098/rsif.2009.0388.focus

    Article  Google Scholar 

  617. Xu D, Adkar‐Purushothama CR, Lemoyne P et al (2021) First report of Grapevine Yellow Speckle Viroid 1 infecting grapevine (Vitis vinifera) in Canada. Plant Dis 12. https://doi.org/10.1094/PDIS-04-21-0863-PDN

  618. Xu J, Jiang J, Dong X et al (2012) Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by molecular marker-assisted backcross (MABC) selection scheme. African J Biotechnol 11:8225–8233. https://doi.org/10.5897/ajb12.341

    Article  CAS  Google Scholar 

  619. Xu L, Wang JW, Zhu DZ et al (2017) First report of hop stunt viroid from sweet cherry with dapple fruit symptoms in China. Plant Dis 101:394

    CAS  Google Scholar 

  620. Xu X-M, Pettitt T (2004) Overwintering of rose downy mildew (Peronospora sparsa). In: Spencer-Phillips P, Jeger M (eds) Advances in Downy Mildew Research, vol 2. Kluwer Academic Publishers. Dordrecht, TheNetherlands, pp 99–106

    Google Scholar 

  621. Xue AG, Cober E, Morrison MJ et al (2007) Effect of seed treatments on emergence, yield, and root rot severity of soybean under Rhizoctonia solani inoculated field conditions in Ontario. Can J Plant Sci 87:167–173

    CAS  Google Scholar 

  622. Yadav RKP, Halley JM, Karamanoli K et al (2004) Bacterial populations on the leaves of Mediterranean plants: Quantitative features and testing of distribution models. Environ Exp Bot 52:63–77. https://doi.org/10.1016/j.envexpbot.2004.01.004

    Article  Google Scholar 

  623. Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196. https://doi.org/10.1007/s00248-004-0171-y

    Article  ADS  CAS  PubMed  Google Scholar 

  624. Yakop F, Taha H, Shivanand P (2019) Isolation of fungi from various habitats and their possible bioremediation. Curr Sci 116:733–740. https://doi.org/10.18520/cs/v116/i5/733-740

    Article  CAS  Google Scholar 

  625. Yan H, Li Y, Zhang Y et al (2021) Deciphering of microbial diversity and antibiotic resistome of bioaerosols in swine confinement buildings. Sci Total Environ 781:147056. https://doi.org/10.1016/j.scitotenv.2021.147056

    Article  ADS  CAS  Google Scholar 

  626. Yan X, Talbot NJ (2016) Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol 34:147–153. https://doi.org/10.1016/j.mib.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  627. Yang W, Elankumaran S, Marr LC (2011) Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J R Soc Interface 8:1176–1184. https://doi.org/10.1098/rsif.2010.0686

    Article  PubMed  PubMed Central  Google Scholar 

  628. Yasuda F, Kobayashi T, Watanabe H, Izawa H (2003) Addition of Pestalotiopsis spp. to leaf spot pathogens of Japanese persimmon. J Gen Plant Pathol 69:29–32. https://doi.org/10.1007/s10327-002-0011-1

    Article  Google Scholar 

  629. Yousif MT, Kheyr-Pour A, Gronenborn B et al (2007) Sources of resistance to watermelon Chlorotic Stunt Virus in Melon. 126:422–427.https://doi.org/10.1111/j.1439-0523.2007.01366.x

  630. Zhai Y, Li X, Wang T et al (2018) A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ Int 113:74–90. https://doi.org/10.1016/j.envint.2018.01.007

    Article  PubMed  Google Scholar 

  631. Zhang H, Mao R, Wang Y et al (2019) Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Sci 288:110160. https://doi.org/10.1016/j.plantsci.2019.05.023

    Article  CAS  PubMed  Google Scholar 

  632. Zhao J, Li L, Liu Q et al (2019) A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J Exp Bot 70:5943–5958. https://doi.org/10.1093/asj/sjy179/5059000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  633. Zhao P, Sun X, Li P et al (2019) Infection characteristics of rice stripe mosaic virus in the body of the vector leafhoppers. Front Microbiol 9:3258. https://doi.org/10.3389/fmicb.2018.03258

    Article  PubMed  PubMed Central  Google Scholar 

  634. Zhdanov VM, Gaudamovich SY (1982) Special Virology: Handbook. Meditsina, Moscow

    Google Scholar 

  635. Zheng A, Lin R, Zhang D et al (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424. https://doi.org/10.1038/ncomms2427

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Universiti Brunei Darussalam. Grant No. UBD/RSCH/1.4/FICBF(b)/2021/038 ‘Disease prediction in rice through metagenomics and computational modelling’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Shivanand.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Acacio Aparecido Navarrete

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohaimin, A.Z., Krishnamoorthy, S. & Shivanand, P. A critical review on bioaerosols—dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 55, 587–628 (2024). https://doi.org/10.1007/s42770-023-01179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01179-9

Keywords

Navigation