Skip to main content
Log in

Lepidoptera vectors of Pestalotiopsis fungal disease: first record in oil palm plantations from Colombia

  • Research Paper
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Pestalotiopsis is a disease that causes damage to the leaves of Elaeis guineensis Jacquin and defoliation in commercial plantations. Lepidoptera larvae are the main insects that spread the disease. The aim of this paper is to report for the first time the insects found in oil palm plantations in Colombia. Lepidoptera larvae were collected from cultures in the presence of Pestalotiopsis and were identified to species level. Severity and duration of the symptoms of Pestalotiopsis were evaluated from the damage caused by the insects of each species. Eighteen species of the families Dalceridae (one), Elachistidae (four), Limacodidae (eight), Megalopygidae (two), Nymphalidae (one), Psychidae (one) and Saturniidae (one) confirmed assistance and disease transmission. Increased severity of Pestalotiopsis damage was induced by Acharia hyperoche, Acraga ochracea, Durrantia arcanella, Euclea diversa, Euprosterna elaeasa and Stenoma impressella. The development of Pestalotiopsis on the leaves of E. guineensis and its symptoms were observed between 16.8 and 72.9 days. The damage caused by these insects on the leaves of E. guineensis was the main entrance of the virulent fungal spores. The results of this study contribute to the knowledge of Lepidoptera that attend and spread the Pestalotiopsis fungus on leaves in oil palm plantations. To our knowledge, no previous records of this disease on the plant are found in Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen C. B., Dransfield J., Deickmann V., Barfod A. S., Pintaud J.-C. and Baker W. J. (2006) A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA. Botanical Journal of the Linnean Society 151, 15–38.

    Article  Google Scholar 

  • Bjorholm S. W., Svenning J.-C., Skov F. and Balslev H. (2005) Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14, 423–429.

    Article  Google Scholar 

  • Bostock R. M. (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiological and Molecular Plant Pathology 55, 99–109.

    Article  Google Scholar 

  • Chung G. R., Sim S. C., Hon K. M. and Ramli K. (1995) Monitoring and surveillance system for integrated pest management of leaf eating caterpillars in oil palm. The Planter 71, 253–263.

    Google Scholar 

  • Corley R. H. V. (1983) Photosynthesis and age of oil palm leaves. Photosynthetica 17, 97–100.

    Google Scholar 

  • Darus A. and Basri M. W. (2000) Intensive IPM for management of oil palm pests. Oil Palm Bulletin 41, 1–14.

    Google Scholar 

  • Das R., Chutia M., Das K. and Jha D. K. (2010) Factors affecting sporulation of Pestalotiopsis disseminata causing grey blight disease of Persea bombycina Kost., the primary food plant of muga silkworm. Crop Protection 29, 963–968.

    Article  Google Scholar 

  • Demi R. and Dettner K. (2002) Morphology and classification of larval scoli of Saturniinae and Hemileucinae (Lepidoptera: Saturniidae). Journal of Zoological Systematics and Evolutionary Research 40, 82–91.

    Article  Google Scholar 

  • Epstein M. E. (1996) Revision and phylogeny of the limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithsonian Contributions to Zoology 582, 1–102.

    Article  Google Scholar 

  • Escalante M., Damas D., Marquez D., Gelvez W., Chacon H., Díaz A. and Moreno B. (2010) Diagnostico y evaluation de Pestalotiopsis e insectos inductores, en plantaciones de palma aceitera al sur del lago de Maracaibo, Venezuela. Bioagro 22, 211–216.

    Google Scholar 

  • Folgarait P. J., Marquis R. J., Ingvarsson P., Braker H. E. and Arguedas M. (1995) Patterns of attack by insect herbivores and a fungus on saplings in a tropical tree plantation. Environmental Entomology 24, 1487–1494.

    Article  Google Scholar 

  • Freitas A. V. L. and Brown K. (2004) Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology 53, 363–383.

    Article  Google Scholar 

  • Gehlot P., Bohra N. K. and Purohit D. K. (2008) Endophytic mycoflora of inner bark of Prosopis cineraria — a key stone tree species of Indian desert. American-Eurasian Journal of Botany 1, 01–04.

    Google Scholar 

  • Genty P. H., Desmier De Chenon D. and Morin J. R. (1978) Las plagas de la palma aceitera en América Latina. Oléagineux 33, 326–420.

    Google Scholar 

  • Genty P., Garzon M. A. and Garcia R. (1983) Dégats et controle du complexe Leptopharsa-Pestalotiopsis chez le palmier a huile. Oléagineux 38, 291–299.

    Google Scholar 

  • Genty P., Lopez G. and Mariau D. (1975) Degats de Pestalotiopsis induits par des attaques de Gargaphia en Colombie. Oléagineux 30, 199–204.

    Google Scholar 

  • Gitau C. W., Gurr G. M., Dewhurst C. E., Fletcher M. J. and Mitchell A. (2009) Insect pests and insect-vectored diseases of palms. Australian Journal of Entomology 48, 328–342.

    Article  Google Scholar 

  • Hatcher P. E., Moore J., Taylor J. E., Tinney G. W. and Paul N. D. (2004) Phytohormones and plant-herbivore-pathogen interactions: integrating the molecular with the ecological. Ecology 85, 59–69.

    Article  Google Scholar 

  • Henson I. E. (1990) Photosynthesis and source-sink relationships in oil palm (Elaeis guineensis Jacq.). Transactions of the Malaysian Society of Plant Physiology 1, 165–171.

    Google Scholar 

  • Henson I. E. (1991) Limitations to gas exchange, growth and yield of young oil palm by soil water supply and atmospheric humidity. Transactions of the Malaysian Society of Plant Physiology 2, 39–45.

    Google Scholar 

  • Howard F. W., Moore D., Giblin-Davis R. M. and Abad R. G. (2001) Insects on Palms. Cabi Publishing, Wallingford. 400 pp.

    Book  Google Scholar 

  • Hunter M. D. (2000) Mixed signals and cross-talk: interactions between plants, insect herbivores and plant pathogens. Agricultural and Forest Entomology 2, 155–160.

    Article  Google Scholar 

  • Hyde K. D. (1996) Fungi from palms. XXV. Pestalosphaeria elaeidis. Mycotaxon 57, 353–357.

    Google Scholar 

  • Hyde K. D. and Fröhlich J. (1995) Mycosphaerella palmicola associated with leaf spots of Cocos nucifera in Australia, Irian Jaya and Papua New Guinea. Mycological Research 99, 704–706.

    Article  Google Scholar 

  • Jeewon R., Liew E. C. Y. and Hyde K. D. (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Diversity 17, 39–55.

    Google Scholar 

  • Jiménez O. D. and Reyes A. (1977) Estudio de una necrosis foliar que afecta varias plantaciones de palma de aceite (Elaeis guineensis Jacq.) en Colombia. Fitopatología Colombiana 6, 15–32.

    Google Scholar 

  • Jollands P. (1983) Laboratory investigations on fungicides and biological agents to control three diseases of rubber and oil palms and their potential applications. Tropical Pest Management 29, 33–38.

    Article  CAS  Google Scholar 

  • Kaila L. (2004) Phylogeny of the superfamily Gelechioi-dea (Lepidoptera: Ditrysia): an exemplar approach. Cladistics 20, 303–340.

    Article  Google Scholar 

  • Maharachchikumbura Sajeewa S. N., Guo L.-D., Chukeatirote E., Bahkali A. H. and Hyde K. D. (2011) Pestalotiopsis - morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50, 167–187.

    Article  Google Scholar 

  • Mariau D., Desmier de Chenon R. and Sudharto P. S. (1991) Oil palm insect pests and their enemies in South East Asia. Oléagineux 46, 400–476.

    Google Scholar 

  • Martinez L. C., Hurtado R. E., Araque L. and Rincon V. (2009) Avances de la campana regional para el manejo de la information de insectos defoliadores en la zona central. Palmas 30, 51–61.

    Google Scholar 

  • Rostás M. and Hilker M. (2002) Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agricultural and Forest Entomology 4, 223–231.

    Article  Google Scholar 

  • SAS (2002) The SAS System for Windows, Release 9.0. SAS Institute, Cary NC.

    Google Scholar 

  • Stout M. J., Thaler J. S. and Thomma B. P. (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annual Review of Entomology 51, 663–689.

    Article  CAS  Google Scholar 

  • Stover R. H. (1971) A proposed international scale for estimating intensity of Banana leaf spot (Mycosphaerella musicola Leach). Tropical Agriculture, Trinidad and Tobago 48, 185–196.

    Google Scholar 

  • Tukey J. W. (1949) Comparing individual means in the analysis of variance. Biometrics 5, 99–114.

    Article  CAS  Google Scholar 

  • Turner P. D. (1981) Oil Palm Diseases and Disorders. Oxford University Press, Kuala Lumpur. 298 pp.

    Google Scholar 

  • Zeddam J.-L., Cruzado J. A., Rodriguez J. L., Ravallec M. and Subilete E. C. (2003) A cypovirus from the South American oil-palm pest Norape argyrrhorea and its potential as a microbial control agent. BioControl 48, 101–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, L.C., Plata-Rueda, A. Lepidoptera vectors of Pestalotiopsis fungal disease: first record in oil palm plantations from Colombia. Int J Trop Insect Sci 33, 239–246 (2013). https://doi.org/10.1017/S1742758413000283

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758413000283

Key words

Navigation