Skip to main content
Log in

Consortia of Conifers and Fungi in the Paleocene of the Amur Region, Russia

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The types of damage to Cupressaceae and Pinaceae conifers from the Arkhara-Boguchan, Belaya Gora, and Progress localities (Amur Region, Russia; Paleocene) are analyzed. Most of the damage types were caused by various microscopic fungi of the Ascomycota. Fungal remains are represented by hyphae, chains of conidia, different fruiting bodies, and dispersed spores of three types. The problem of differentiation of morphologically similar damage caused by arthropods and micromycetes is discussed. The abundance of diverse micromycetes on various organs of Paleocene conifers is consistent with previously obtained data on the existence of these plants in a temperate humid climate with a hot summer and without a dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Abdollahzadeh, J., Groenewald, J.Z., Coetzee, M.P.A., et al., Evolution of lifestyles in Capnodiales, Stud. Mycol., 2020, vol. 95, pp. 381–414.

    Google Scholar 

  2. Ahanger, F.A., Dar, G.H., Beig, M.A., and Sofi T.A., First report of needle blight on Blue pine (Pinus wallichiana) and Aleppo pine (P. halepensis), caused by Lophodermium macci, from Asia, Plant Pathol. J., 2011, vol. 10, no. 4, pp. 181–186.

    Google Scholar 

  3. Akhmetiev, M.A., Kezina, T.V., Kodrul, T.M., and Manchester, S.R., Stratigraphy and a flora of the Cretaceous–Paleogene boundary beds of the southeastern part of the Zeya–Bureya sedimentary basin, in Pamyati chl.-korr. AN SSSR V.A. Vakhrameeva (k 90-letiyu so dnya rozhdeniya) (In Memoriam of Corresponding Member of the Academy of Sciences of the USSR V.A. Vakhrameev, to the 90th Anniversary), Moscow: GEOS, 2002, pp. 275–315.

  4. Alvin, K.L. and Muir, M.D., An epiphyllous fungus from the Lower Cretaceous, Biol. J. Linn. Soc., 1970, vol. 2, pp. 55–59.

    Google Scholar 

  5. Aveskamp, M.M., de Gruyter, J., Woudenberg, J.H.C. et al., Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera, Stud. Mycol., 2010, vol. 65, pp. 1–60.

    Google Scholar 

  6. Barr, M.E., Herpotrichia and its segregates, Mycotaxon, 1984, vol. 20, pp. 1–38.

    Google Scholar 

  7. Barr, M., Revisionary studies on the Dothioraceae, Harv. Pap. Bot., 2001, vol. 6, no. 1, pp. 25–34.

    Google Scholar 

  8. Beimforde, C., Feldberg, K., Nylinder, S., et al., Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data, Mol. Phylogenet. Evol., 2014, Sep;78:386-98. https://doi.org/10.1016/j.ympev.2014.04.024

    Article  Google Scholar 

  9. Bensch, K., Braun, U., Groenewald, J.Z., and Crous, P.W., The genus Cladosporium, Stud. Mycol., 2012, vol. 72, no. 1, pp. 1–401.

    Google Scholar 

  10. Bianchinotti, M.V., Two new lignicolous species of Nitschkia from Argentina, Mycologia, 2004, vol. 96, no. 4. pp. 911–916.

    Google Scholar 

  11. Biradar, N.V. and Mahabale, T.S., On the occurrence of an imperfect fungus Tetracoccosporium eocenum n. sp. obtained from a fossil wood belonging to the Intertrappean Series, M.P., India, Palaeobotanist, 1972, vol. 21, no. 2, pp. 223–226.

    Google Scholar 

  12. Boehm, E.W.A., Mugambi, G., Miller, A.N. et al., A phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae with keys to world species, Stud. Mycol., 2009, vol. 64, pp. 49–83.

    Google Scholar 

  13. Bosma, H.F., Van Konijnenburg-Van Cittert, J.H.A., Van der Ham, R.W.J.M. et al., Conifers from the Santonian of Limburg, The Netherlands, Cret. Res., 2009, vol. 30, no. 2, pp. 483–495.

    Google Scholar 

  14. Bosso, L., Luchi, N., Maresi, G. et al., Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning, Forest Ecol. Manag., 2017, vol. 400, pp. 655–664.

    Google Scholar 

  15. Bronson, A.W., Klymiuk, A.A., Stockey, R.A., and Tomescu, A.M.F., A perithecial Sordariomycete (Ascomycota, Diaporthales) from the Lower Cretaceous of Vancouver Island, British Columbia, Canada, Int. J. Plant Sci., 2013, vol. 174, no. 3, pp. 278–292.

    Google Scholar 

  16. Busskamp, J., Langer, G.J., and Langer, E.J., Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany, Mycol. Prog., 2020, vol. 19, pp. 985–999.

    Google Scholar 

  17. Butin, H. and Peredo, H.L., Hongos Parásitos en Coníferas de América del Sur con Especial Referencia a Chile, Berlin–Stuttgart: Gebrüder Borntraeger, 1986.

    Google Scholar 

  18. Cannon, P.F. Studies on fungi with isthmoid ascospores: the genus Vialaea, with the description of the new family Vialaeaceae, Mycol. Res., 1995, vol. 99, pp. 367–373.

    Google Scholar 

  19. Carroll, G.C. and Carroll, F.E. Studies on the incidence of coniferous needle endophytes in the Pacific Northwest, Canad. J.Bot., 1978, vol. 56, pp. 3034–3043.

    Google Scholar 

  20. Carroll, G.C. and Munk, A., Studies on lignicolous Sordariaceae, Mycologia, 1964, vol. 56, pp. 77–98.

    Google Scholar 

  21. Chakrabarti, S., Medda, P.K., and Kanturski, M., Conifer-feeding aphids (Insecta: Hemiptera: Aphididae) of India, Bhutan and Nepal with descriptions of three new species of the genus Cinara, Eur. Zool. J., 2020, vol. 87, pp. 659–687.

    Google Scholar 

  22. Chen, C. and Appleby, J., Biology of the cypress twig gall midge, Taxodiomyia cupressiananassa (Diptera: Cecidomyiidae), in central Illinois, Ann. Entomol. Soc. Am., 1984, vol. 77, pp. 203–207.

    Google Scholar 

  23. Conran, J.G., Bannister, J.M., Reichgelt, T., and Lee, D.E., Epiphyllous fungi and leaf physiognomy suggest an ever-wet humid mesothermal (subtropical) climate in the late Eocene of southern New Zealand, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016, vol. 452, pp. 1–10.

    Google Scholar 

  24. Crous, P.W., Braun, U., and Groenewald, J.Z., Mycosphaerella is polyphyletic, Stud. Mycol., 2007a, vol. 58, pp. 1–32.

    Google Scholar 

  25. Crous, P.W., Braun, U., Schubert, K., and Groenewald, J.Z., Eds., The genus Cladosporium and similar dematiaceous hyphomycetes, Stud. Mycol., 2007b, vol. 58, pp. 1–253.

    Google Scholar 

  26. Crous, P.W., Quaedvlieg, W., Hansen, K. et al., Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications, IMA Fungus, 2014, vol. 5, no. 2, pp. 173–193.

    Google Scholar 

  27. Crous, P.W., Schoch, C.L., Hyde, K.D., et al., Phylogenetic lineages in the Capnodiales, Stud. Mycol., 2009, vol. 64, pp. 17–47.

    Google Scholar 

  28. Dilcher, D.L., Epiphyllous fungi from Eocene deposits in western Tennessee, USA, Palaeontogr., Abt. B, 1965, vol. 116, pp. 1–54.

    Google Scholar 

  29. Ding, S.T., Sun, B.N., Wu, J.Y., and Li, X.C., Miocene Smilax leaves and associated epiphyllous fungi from Zhejiang, East China and their paleoecological implications, Rev. Palaeobot. Palynol., 2011, vol. 165, pp. 209–223.

    Google Scholar 

  30. Du, B.-X., Yan, D.-F., Sun, B.-N., et al., Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, S.E. China and their palaeoecological implications, Rev. Palaeobot. Palynol., 2012, vol. 182, pp. 32–43.

    Google Scholar 

  31. Dugan, F.M., Schubert, K., and Braun, U., Check-list of Cladosporium names, Schlechtendalia, 2004, vol. 11, pp. 1–103.

    Google Scholar 

  32. Edwards, V.N., An Eocene microthyriaceous fungus from Mull, Scotland, Trans. Br. Mycol. Soc., 1922, vol. 8, pp. 66–72.

    Google Scholar 

  33. Ellis, J.P., The genus Stomiopeltis in Britain, Trans. Br. Mycol. Soc., 1977, vol. 68, no. 2, pp. 157–159.

    Google Scholar 

  34. Farr, M.L., A new species of Stomiopeltis from Brazil, Mycologia, 1971, vol. 63, no. 3, pp. 652– 657.

    Google Scholar 

  35. Fedotova, Z.A. and Averenskij, A.I., A synopsis of gall midges associated with conifers, with description of a new species of the genus Kaltenbachiola Hedicke (Diptera, Cecidomyiidae: Lasiopterinae) from Yakutia, damaging cones of the Siberian spruce (Picea obovata), Entomol. Rev., 2016, vol. 96, no. 6, pp. 753–774.

    Google Scholar 

  36. Flora i dinozavry na granitse mela i paleogena Zeysko-Bureinskogo basseina (Flora and Dinosaurs across the Cretaceous– Paleogene Boundary in the Zeya–Bureya Basin), Vladivostok: Dalnauka, 2001.

  37. Funk, A., Foliar fungi of western trees. Victoria, BC: Ministry of State for Forestry, Pacific Forest Research Centre, 1985, no. BC-X-265.

  38. Gagné, R.J., Four new genera of Nearctic Cecidomyiidae (Diptera) for species previously incorrectly placed, Zootaxa, 2013, vol. 3701, no. 2, pp. 148–158.

    Google Scholar 

  39. Gagné, R. and Hibbard, K.A., New species of Cecidomyia (Diptera: Cecidomyiidae) feeding on resin of baldcypress, Florida Entomol., 2008, vol. 91, pp. 431–435.

    Google Scholar 

  40. Ganley, R.J., Brunsfeld, S.J., and Newcombe, G., A community of unknown, endophytic fungi in western white pine, Proc. Nat. Acad. Sci. U.S.A., 2004, vol. 101, no. 27, pp. 10107–10112.

    Google Scholar 

  41. Gao, X.-M., Lin, Y.-R., Huang, H.-Y., and Hou, C.-L., A new species of Lophodermium associated with the needle cast of Cathay silver fir, Mycol. Progr., 2012, vol. 12, no. 1, pp. 141– 149.

    Google Scholar 

  42. Givulescu, R., Zwei Microthyriaceen aus dem Neogen Rumaniens, Z. F. Pilzkunde, 1971, vol. 37, pp. 199–202.

    Google Scholar 

  43. Gleason, M.L., Batzer, J.C., Sun, G., et al., A new view of sooty blotch and flyspeck, Plant Dis., 2011, vol. 95, pp. 368–383.

    Google Scholar 

  44. Gurov, A.V. and. Grodnitskii, D.L., For the Aphid fauna in the territory of Yenisei River basin. Communication 1. Aphids on coniferous plants, Sib. Lesn. Zh., 2016, no. 1, pp. 55–63.

  45. Hartman, J.R., Pirone, T.P., and Sall, M.A., Pirone’s Tree Maintenance, 7th ed., Oxford: Oxford Univ. Press, 2000.

    Google Scholar 

  46. Herman, A.B., Akhmetiev, M.A., Kodrul, T.M. et al., Flora development in Northeastern Asia and Northern Alaska during the Cretaceous-Paleogene transitional epoch, Stratigr. Geol. Correl., 2009, vol. 17, no. 1, pp. 79–97.

    Google Scholar 

  47. Heuchert, B., Braun, U., and Schubert, K., Morphotaxonomic revision of fungicolous Cladosporium species (Hyphomycetes), Schlechtendalia, 2005, vol. 13, pp. 1−78.

    Google Scholar 

  48. Ho, W.H. and Hyde, K.D., Pterosporidium gen. nov. to accommodate two species of Anthostomella from mangrove leaves, Canad. J. Bot., 1996, vol. 74, no. 11, pp. 1826– 1829.

    Google Scholar 

  49. Hofmann, T.A., Plant parasitic Asterinaceae and Microthyriaceae from the Neotropics (Panama), PhD Thesis, Frankfurt am Main: JW Goethe-University, 2010.

  50. Hongsanan, S., Chomnunti, P., Crous, P.W. et al., Introducing Chaetothyriothecium, a new genus of Microthyriales, Phytotaxa, 2014, vol. 161, pp. 157−164.

    Google Scholar 

  51. Hongsanan, S., Sánchez-Ramírez, S., Crous, P.W. et al., The evolution of fungal epiphytes, Mycosphere, 2016, vol. 7, no. 11, pp. 1690–1712.

    Google Scholar 

  52. Hongsanan, S., Tian, Q., Peršoh, D. et al., Meliolales, Fungal Diversity, 2015, vol. 74, pp. 1–51.

  53. Hosagoudar, V.B., Abraham, T., and Goos, R., Meliolaceae of Kerala, India-II, Mycotaxon, 1998a, vol. 66, pp. 103–108.

  54. Hosagoudar, V.B., Abraham, T., and Goos, R., Meliolaceae of Kerala, India-III, Mycotaxon, 1998b, vol. 66, pp. 109–113.

    Google Scholar 

  55. Hosagoudar, V.B., Abraham, T., and Goos, R., Meliolaceae of Kerala, India-IV Mycotaxon, 1998c, vol. 66, pp. 115–119.

    Google Scholar 

  56. Hou, C.-L., Li, L. and Piepenbring, M., Lophodermium pini-mugonis sp. nov. on needles of Pinus mugo from the Alps based on morphological and molecular data, Mycol. Progr., 2009, vol. 8, no. 1, pp. 29–33.

    Google Scholar 

  57. Huang, H.Y., Wu, Y.J., and Lan, X., Lophodermium sp. on Cathaya argyrophylla, For. Pest Dis., 2008, vol. 27, pp. 1–5.

    Google Scholar 

  58. Hyde, K.D., Jones, E.B.G., Liu, J.K. et al., Families of Dothideomycetes, Fungal Diversity, 2013, vol. 63, pp. 1–313.

    Google Scholar 

  59. Jayasiri, S.C., Hyde, K.D., Jones, E.B.G. et al., Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits, Mycosphere, 2019, vol. 10, pp. 1–186.

    Google Scholar 

  60. Jensen, J.D., Peridial anatomy and pyrenomycete taxonomy, Mycologia, 1985, vol. 77, pp. 688– 701.

    Google Scholar 

  61. Jia, Q., Qu, J., Mu, H. et al., Foliar endophytic fungi: diversity in species and functions in forest ecosystems, Symbiosis, 2020. https://doi.org/10.1007/s13199-019-00663-x

  62. Johnson, E.M. and Sutton, T.B., Response of two fungi in the apple sooty blotch complex to temperature and relative humidity, Phytopathology, 2000, vol. 90, pp. 362–367.

    Google Scholar 

  63. Kalgutkar, R.M. and Jansonius, J., Synopsis of Fossil Fungal Spores, Mycelia and Fructifications, Dallas, TX: American Association of Stratigraphic Palynologists Foundation, 2000.

    Google Scholar 

  64. Kamaeva, A.M., Stratigrafiya i flora pogranichnyh otlozhenij mela i paleogena Zejsko-Bureinskoj vpadiny (Stratigraphy and Flora of the Cretaceous-Paleogene Transition of the Seya-Bureya Depression). Khabarovsk: Dal’nevost. Otd., Ross. Akad. Nauk, 1990.

  65. Kamata, N., Outbreaks of forest defoliating insects in Japan, 1950–2000, Bull. Entomol. Res., 2002, vol. 92, pp. 109–117.

    Google Scholar 

  66. Kaur, T., Fungal Endophyte-Host Plant Interactions: Role in Sustainable Agriculture, in Sustainable Crop Production, Intechopen, 2020. https://doi.org/10.5772/intechopen.92367

  67. Kendrick, W.B., Hyphomycetes of conifer leaf litter: Hormodendrum staurophorum sp. nov., Can. J. Bot., 1961, vol. 39, no. 4, pp. 833–835.

    Google Scholar 

  68. Kettunen, E., Grabenhorst, H., and Gröhn, C., The enigmatic hyphomycete Torula sensu Caspary revisited, Rev. Palaeobot. Palynol., 2015, vol. 219, pp. 183–193.

    Google Scholar 

  69. Khan, M.A., Bera, M., and Bera, S., A new meliolaceos foliicolous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya, Rev. Palaeobot. Palynol., 2019, vol. 268, pp. 55–64.

    Google Scholar 

  70. Khiralla, A., Spina, R., Yagi, S. et al., Endophytic fungi: occurrence, classification, function and natural products, in Endophytic Fungi: Diversity, Characterization and Biocontrol, Hughes, E., Ed., Hauppauge, NY: Nova Science Publishers, 2016.

    Google Scholar 

  71. Kirichenko, N.I., Baranchikov, Y.N., and Vidal, S., Performance of the potentially invasive Siberian moth Dendrolimus superans sibiricus on coniferous species in Europe, Agricult. Forest Entomol., 2009, vol. 11, no. 3, pp. 247–254.

    Google Scholar 

  72. Kirk, P.M. and Spooner, B.M., An account of the fungi of Arran, Gigha and Kintyre, Kew Bull., 1984, vol. 38, no. 4, pp. 503.

    Google Scholar 

  73. Knapp, D.G., Kovács, G.M., Zajta, E. et al., Dark septate endophytic pleosporalean genera from semiarid areas, Pers: Mol. Phylogeny Evol. Fungi, 2015, vol. 35, no. 1, pp. 87–100.

    Google Scholar 

  74. Knittel, U., Suzuki, S., Akhmetiev, M.A., et al., 66 ± 1 Ma single zircon U-Pb date confirms the location of the non-marine K-Pg boundary in the Amur/Heilongjiang River area (Russia, China), N. Jb. Geol. Paläont. Abh., 2013, vol. 270, no. 1, pp. 1–11.

    Google Scholar 

  75. Kodrul, T., Gordenko, N., Sokolova, A., et al., A new Oligocene species of Cunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China, Rev. Palaeobot. Palynol., 2018, vol. 258, pp. 234–247.

    Google Scholar 

  76. Kogel, K.-H., Franken, P., and Hückelhoven, R., Endophyte or parasite – what decides? Curr. Opinion Plant Biol., 2006, vol. 9, no. 4, pp. 358–363.

    Google Scholar 

  77. Köppen, W., Das geographische System der Klimate, in Handbuch der Klimatologie, Köppen, W. and Geiger, R., Eds., Berlin: Gebrüder Bornträger, 1936, pp. 1–44.

    Google Scholar 

  78. Koukol, O., Kolařík, M., Kolářová, Z., and Baldrian, P., Diversity of foliar endophytes in wind-fallen Picea abies trees, Fungal Divers., 2012, vol. 54, no. 1, pp. 69–77.

    Google Scholar 

  79. Krassilov, V.A., Tsagayanskaya flora Amurskoi oblasti (Tsagayan Flora of the Amur Region). Moscow: Nauka, 1976.

  80. Labandeira, C.C., Wilf, P., Johnson, K.R., and Marsh, F., Guide to Insect (and Other) Damage Types on Compressed Plant Fossils, Version 3.0, Washington, D.C.: Smithsonian Institution, 2007.

  81. Lantz, H., Johnston, P.R., Park, D., and Minter, D.W., Molecular phylogeny reveals a core clade of Rhytismatales, Mycologia, 2011, vol. 103, no. 1, pp. 57–74.

    Google Scholar 

  82. Last, F.T. and Deighton, F.C., The non-parasitic microflora on the surfaces of living leaves, Trans. Br. Mycol. Soc., 1965, vol. 48, pp. 83–99.

    Google Scholar 

  83. Ma, F.-J., Sun, B.-N., Wang, Q.-J. et al., A new species of Meliolinites associated with Buxus leaves from the Oligocene of Guangxi, southern China, Mycologia, 2015, vol. 107, no. 3, pp. 505–511.

    Google Scholar 

  84. Markevich, V.S., Bugdaeva, E.V., and Ashraf, A.R., Results of study of Arkhara–Boguchan coal field, Proc. 3rd Symposium on the Cretaceous Biota and K/T Boundary in Heilongjiang River Area, Sun, G., Sun, Y.-W., Akhmetiev, M.A., and Ashraf, A.R., Eds., Changchun: Jilin Univ., 2004, pp. 17–21.

  85. Maslova, N.P, Sokolova, A.B., Vasilenko, D.V., et al., Endophytic micromycetes on the leaves of the genus Taxodium Richard (Cupressaceae) from the Lower Paleocene of the Amur Region, Paleontol. J., 2018, vol. 52, no 12, pp. 1473–1479.

    Google Scholar 

  86. Maslova, N.P, Sokolova, A.B., Kodrul, T.M. et al., Diverse epiphyllous fungi on Cunninghamia leaves from the Oligocene of South China and their paleoecological and paleoclimatic implications, J. Syst. Evol., 2021a, vol. 59, no. 5, pp. 964–984.

    Google Scholar 

  87. Maslova, N.P, Tobias, A.V., and Kodrul, T.M., Recent studies of co-evolutionary relationships of fossil plants and fungi: success, problems, prospects, Paleontol. J., 2021b, vol. 55, no. 1, pp. 1–17.

    Google Scholar 

  88. Maslova, N.P., Vassilenko, D.V., and Kodrul, T.M., Phytopathology in fossil plants, Paleontol. J., 2016, vol. 50, no. 2, pp. 202–208.

    Google Scholar 

  89. Mibey, R.K. and Hawksworth, D.L., Meliolaceae and Asterinaceae of the Shimba Hills, Kenya, Mycol. Pap., 1997, vol. 174, pp. 103–108.

    Google Scholar 

  90. Minter, D.W., Leptostroma on pine needles, Can. J. Bot., 1980, vol. 58, no. 8, pp. 906–917.

    Google Scholar 

  91. Moiseeva, M.G., Kodrul, T.M., and Herman, A.B., Early Paleogene Boguchan flora of the Amur Region (Russian Far East): Composition, age and palaeoclimatic implications, Rev. Palaeobot. Palynol., 2018, vol. 253, pp. 15–36.

    Google Scholar 

  92. Mugambi, G.K. and Huhndorf, S.M., Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota), Stud. Mycol., 2009, vol. 64, pp. 103–121.

    Google Scholar 

  93. Munk, A., The system of the pyrenomycetes: A contribution to a natural classification of the group Sphaeriales sensu Lindau, Dan. Bot. Arkiv, 1953, vol. 15, no. 2, pp. 1–163.

    Google Scholar 

  94. Perera, R.H., Hyde, K.D., Maharachchikumbura, S.S.N. et al., Fungi on wild seeds and fruits, Mycosphere, 2020, vol.11, no. 1, pp. 2108–2480.

    Google Scholar 

  95. Peel, M.C., Finlayson, B.L., and McMahon, T.A., Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 2007, vol. 11, pp. 1633–1644.

    Google Scholar 

  96. Phadtare, N.R., Palaeoecologic significance of some fungi from the Miocene of Tanakpur (U. P.) India, Rev. Palaeobot. Palynol., 1989, vol. 59, nos. 1–4, pp. 127–131.

    Google Scholar 

  97. Phillips, A.J.L., Alves, A., Abdollahzadeh, J., et al., The Botryosphaeriaceae: genera and species known from culture, Stud. Mycol., 2013, vol. 76, pp. 51–167.

    Google Scholar 

  98. Phipps, C.J. and Rember, W.C., Epiphyllous fungi from the Miocene of Clarkia, Idaho: reproductive structures, Rev. Palaeobot. Palynol., 2004, vol. 129, nos. 1–2, pp. 67–79.

    Google Scholar 

  99. Piepenbring, M., Hofmann, T.A., Kirschner, R. et al., Diversity patterns of Neotropical plant parasitic microfungi, Ecotropica, 2011, vol. 17, no. 1, pp. 27–40.

    Google Scholar 

  100. Prihatini, I., Glen, M., Wardlaw, T.J. et al., Needle fungi in young Tasmanian Pinus radiata plantations in relation to elevation and rainfall, N. Z. J. Forest. Sci., 2015, vol. 45, no. 1, pp. 1–10.

    Google Scholar 

  101. Quijada, L., Johnston, P.R., Cooper, J.A., and Pfister, D.H., Overview of Phacidiales, including Aotearoamyces gen. nov. on Nothofagus, IMA Fungus, 2018, vol. 9, no. 2, pp. 371–382.

    Google Scholar 

  102. Reynolds, D.R., and Gilbert, G.S. Epifoliar fungi from Queensland, Australia, Austral. Syst. Bot., 2005 vol. 18, pp. 265–289.

    Google Scholar 

  103. Rothwell, G.W., Ohana, T., Stockeystrobus gen. nov. (Cupressaceae), and the evolutionary diversification of sequoioid conifer seed cones, Botany, 2016, vol. 94, pp. 847–861.

    Google Scholar 

  104. Saikkonen, K., Faeth, S.H., Helander, M., and Sullivan, T.J., Fungal endophytes: A continuum of interactions with host plants, Ann. Rev. Ecol. Syst., 1998, vol. 29, pp. 319–343.

    Google Scholar 

  105. Saunders, M., Glenn, A.E., and Kohn, L.M., Exploring the evolutionary ecology of fungal endophytes in agricultural systems: Using functional traits to reveal mechanisms in community processes, Evol. Appl., 2010, vol. 3, pp. 525–537.

    Google Scholar 

  106. Saxena, R.K. and Tripathi, S.K.M., Indian fossil fungi, Palaeobotanist, 2011, vol. 60, pp. 1–208.

    Google Scholar 

  107. Selkirk, D.R., Tertiary fossil fungi from Kiandra, New South Wales, Proc. Linn. Soc. NSW, 1975, vol. 100, pp. 70–94.

    Google Scholar 

  108. Selvanathan, S., Indrakumar, I., Johnpaul, M., Biodiversity of the endophytic fungi isolated from Calotropis gigantean (L) R. BR, Rec. Res. Sci. Technol., 2011, vol. 3, no. 4, pp. 94–100.

    Google Scholar 

  109. Sherwood-Pike, M. and Gray, J., Fossil leaf-inhabiting fungi from northern Idaho and their ecological significance, Mycologia, 1988, vol. 80, no. 1, pp. 14–22.

    Google Scholar 

  110. Shi, G., Zhou, Z., and Xie, Z., A new Cephalotaxus and associated epiphyllous fungi from the Oligocene of Guangxi, South China, Rev. Palaeobot. Palynol., 2010, vol. 161, no. 3–4, pp. 179– 195.

    Google Scholar 

  111. Slippers, B., Crous, P.W., Jami, F. et al., Diversity in the Botryosphaeriales: Looking back, looking forward, Fungal Biol., 2017, vol. 121, no. 4, pp. 307–321.

    Google Scholar 

  112. Sohn, J., Kim, N., and Choi, S., Morphological and functional diversity of foliar damage on Quercus mongolica Fisch. ex Ledeb. (Fagaceae) by herbivorous insects and pathogenic fungi, J. Asia-Pac. Biodiversity, 2017, vol. 10, no. 4, pp. 489–508.

    Google Scholar 

  113. Sokolova, A., Gordenko, N., and Zavialova N., The most ancient member of the Sequoioideae—the new genus Krassilovidendron Sokolova, Gordenko et Zavialova (Cupressaceae s.l.) from the Albian–Cenomanian of Western Siberia (Russia), Cret. Res., 2017, vol. 77, pp. 1–27.

    Google Scholar 

  114. Strobel, G., Singh, S.K., Riyaz-Ul-Hassan, S., et al., An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential, FEMS Microbiol. Let., 2011, vol. 320, no. 2, pp. 87–94.

    Google Scholar 

  115. Suzuki, Y., On the structure and affinities of two new conifers and a new fungus from the Upper Cretaceous of Hokkaido (Yezo), Shokubutsugaku Zasshi, 1910, vol. 24, no. 284, pp. 181–196.

    Google Scholar 

  116. Tanney, J.B. and Seifert, K.A., Phacidiaceae endophytes of Picea rubens in Eastern Canada, Botany, 2018, vol. 96, no. 9, pp. 555–588.

    Google Scholar 

  117. Taylor, T.N., Krings, M., and Taylor, E.L., Fossil fungi. London: Academic, 2015.

  118. Thomas, J., Alex, T.E., and Thomas, R.J., Meliola marthomaensis sp. nov. an addition to Meliolaceae from Western Ghat region in Kerala State, India, Univ., J. Plant Sci., 2013, vol. 1, no. 3, pp. 100–103.

  119. Tripathi, S.K.M., Fungi from Palaeoenvironments: Their Role in Environmental Interpretations, in Fungi from Different Environments, Misra, J.K. and Deshmukh, S.K., Eds., Progr. Mycol. Res. Ser., Enfield: Science, 2009, pp. 1–27.

  120. Vasilenko, D.V., Sokolova, A.B., and Kodrul, T.M., A new form of damage on leaves of the genus Taxodium Richard from the Lower Paleocene deposits of the Amur region, in Modern Paleontology: Classical and Newest Methods, Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2015, p. 11.

    Google Scholar 

  121. Vasilyeva, L.N., Hysteriaceous fungi in the Russian Far East IV. Glyphium, Lophium and Mytilinidion, Mikol. Fitopatol., 2001, vol. 35, pp. 15–18.

    Google Scholar 

  122. Wang, Z., Sun, B., Sun, F. et al., Identification of two new species of Meliolinites associated with Lauraceae leaves from the middle Miocene of Fujian, China, Mycologia, 2017, vol. 109, no. 4, pp. 676–689.

    Google Scholar 

  123. Washburn, G. and Van Bael, S.A., Fungal diversity in galls of baldcypress trees, Fungal Ecol., 2017, vol. 29, pp. 85–89.

    Google Scholar 

  124. Watson, E.S., McClurkin, D.C., and Huneycutt, M.B., Fungal succession on loblolly pine and upland hardwood foliage and litter in North Mississippi, Ecology, 1974, vol. 55, no. 5, pp. 1128–1134.

    Google Scholar 

  125. Wells, A.K. and Hill, R.S., Epiphyllous microorganisms as palaeoclimate estimators: The developmental sequence of fungal “germlings‟ on their living host, Austral. Syst. Bot., 1993, vol. 6, pp. 377–386.

    Google Scholar 

  126. Whitney, H.S., Reid, J., and Pirozynski, K.A., Some new fungi associated with needle blight of conifers, Can. J. Bot., 1975, vol. 53, no. 24, pp. 3051–3063.

    Google Scholar 

  127. Wiseman, M.S., Kim, Y.K., Dugan, F.M. et al., A new postharvest fruit rot in apple and pear caused by Phacidium lacerum, Plant Dis., 2016, vol. 100, no. 1, pp. 32–39.

    Google Scholar 

  128. Worobiec, G. and Worobiec, E., Epiphyllous fungi from the Oligocene shallow-marine deposits of the Krabbedalen Formation, Kap Brewster, central East Greenland, Acta Palaeobot., 2013, vol. 53, pp. 165–179.

    Google Scholar 

  129. Worobiec, G. and Worobiec, E., Epiphyllous fungi from Miocene deposits of the Bełchatów Lignite Mine (Central Poland), Mycosphere, 2017, vol. 8, pp. 1003–1013.

    Google Scholar 

  130. Wu, H.X., Schoch, C.L., Boonmee, S. et al., A reappraisal of Microthyriaceae, Fungal Divers., 2011, vol. 51, pp. 189–248.

    Google Scholar 

  131. Wu, X.-K., Zavialova, N.E., Kodrul, T.M. et al., Northern Hemisphere megafossil of Dacrycarpus (Podocarpaceae) from Miocene of South China and its evolutionary and palaeoecological implication, J. Syst. Evol., 2021, vol. 59, no. 2, pp. 352–374.

    Google Scholar 

  132. Xu, S.-L., Kodrul, T.M., Maslova, N.P., et al., First occurrence of Nyssa endocarps and associated fungi in the Oligocene of South China: palaeogeographical and palaeoecological significance, Pap. Palaeontol., 2022, vol. 8, part 1, e1408.

  133. Zhang, N., Castlebury, L.A., Miller, A.N., et al., An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny, Mycologia, 2006, vol. 98, no. 6, pp. 1076–1087.

    Google Scholar 

  134. Zhang, Y., Crous, P.W., Schoch, C.L., and Hyde, K.D., Pleosporales, Fungal Diversity, 2011, vol. 53, no. 1, pp. 1–221.

    Google Scholar 

  135. Zhang, Y., Schoch, C.L., Fournier, J. et al., Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation, Stud. Mycol., 2009, vol. 64, pp. 85–102.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Ludovic Le Renard (University of British Columbia, Canada) for valuable discussion of the results and to D.V. Vasilenko (Paleontological Institute, Russian Academy of Sciences) for kindly providing samples nos. 5142/1, 5142/2, and 4988/21 for analysis and helpful comments.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-04-00046) and the State program (no. 0135-2019-0045, Geological Institute, Russian Academy of Science, for TK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Maslova, A. B. Sokolova, T. M. Kodrul or A. V. Tobias.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N.P., Sokolova, A.B., Kodrul, T.M. et al. Consortia of Conifers and Fungi in the Paleocene of the Amur Region, Russia. Paleontol. J. 55, 1525–1553 (2021). https://doi.org/10.1134/S003103012112008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003103012112008X

Keywords:

Navigation