Skip to main content
Log in

Salinity Induced Leaf Anatomical Responses and Chemical Composition in Tetragonia decumbens Mill.: an Underutilized Edible Halophyte in South Africa

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Tetragonia decumbens Mill. has recently been reported to withstand the adverse effect of salinity. However, its leaf anatomical responses are poorly understood since previous studies were focused on basic physiological and biochemical parameters. This study was designed to examine leaf micromorphological traits and internal leaf elemental compartmentalization using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) to elucidate relative salinity tolerance mechanisms. Salt concentrations were applied to six treatments by increasing the concentrations of NaCl in a nutrient solution. The control treatment (0 mM) was irrigated solely by the nutritional solution, whereas other treatments contained graded NaCl concentrations (50, 100, 150, 200, and 250 mM). Micromorphological examination of the adaxial layer of the epidermis revealed distinctive glandular peltate trichomes among treatments. In control plants, the trichomes were flaccid and not easily detectable which resulted in low trichome density. While plants treated with salinity had uprooted trichomes which were modified to dish-like structures as salinity increases, with a more pronounce visibility at the highest salinity treatment (250 mM). On the contrary, increasing salinity reduced the stomatal density as well as stomatal opening with a more pronounced effect at 250 mM. Furthermore, the EDX revealed the presence of important elements such as potassium (K), calcium (Ca), magnesium (Mg), sodium (Na) and chlorine (Cl) which are responsible for salt tolerance in many species. Na increased with increasing saline treatment up to 100 mM then declined drastically. The lowest Na was detected in control plants which were comparable to plants irrigated with 150, 200 and 250 mM respectively. Likewise, the lowest chlorine content was detected in control plants while it increased in saline treated plants up to 150 mM and declined in plants irrigated with 200 and 250 mM respectively. When assessing K quantification, saline treatment drastically reduced K content with increasing saline irrigation. Contrariwise, the Mg content increased with saline irrigation up to 100 mM and was not detected in plants irrigated with 200 and 250 mM respectively. Interestingly, Ca was only detected in plants irrigated with 150, 200 and 250 mM respectively. These findings validate that T. decumbens can tolerate salinity by modulating anatomical features such as trichomes, control of stomatal aperture and effectively managing ion toxicity with increasing salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. de la Fuente, J.L., Zunzunegui, M., and Barradas, M.C.D., Physiological responses to water stress and stress memory in Argania spinosa, Plant Stress, 2023, vol. 7, p. 100133. https://doi.org/10.1016/J.STRESS.2023.100133

    Article  Google Scholar 

  2. Salami, S.O., Adegbaju, O.D., Idris, O.A., Jimoh, M.O., Olatunji, T.L., Omonona, S., Orimoloye, I.R., Adetunji, A.E., Olusola, A., Maboeta, M.S., and Laubscher, C.P., South African wild fruits and vegetables under a changing climate: The implications on health and economy, S. Afr. J. Bot., 2022, vol. 145, p. 13. https://doi.org/10.1016/J.SAJB.2021.08.038

    Article  Google Scholar 

  3. Atzori, G., Nissim, W., Macchiavelli, T., Vita, F., Azzarello, E., Pandolfi, C., Masi, E., and Mancuso, S., Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context, Agric. Water Manag., 2020, vol. 240, p. 106261. https://doi.org/10.1016/J.AGWAT.2020.106261

    Article  Google Scholar 

  4. Khatri, K. and Rathore, M.S., Salt and osmotic stress-induced changes in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut, Plant Stress, 2022, vol. 3, p. 100063. https://doi.org/10.1016/J.STRESS.2022.100063

    Article  CAS  Google Scholar 

  5. Zuluaga, M.Y.A., Monterisi, S., Rouphael, Y., Colla, G., Lucini, L., Cesco, S., and Pii, Y., Different vegetal protein hydrolysates distinctively alleviate salinity stress in vegetable crops: A case study on tomato and lettuce, Front. Plant Sci., 2023, vol. 14, p. 485. https://doi.org/10.3389/FPLS.2023.1077140/BIBTEX

    Article  Google Scholar 

  6. Pérez-Romero, J.A., Barcia-Piedras, J.-M., Redondo-Gómez, S., and Mateos-Naranjo, E., Sarcocornia fruticosa recovery capacity after exposure to co-existed water and salinity stress, Plant Stress, 2023, vol. 8, p. 100162. https://doi.org/10.1016/J.STRESS.2023.100162

    Article  Google Scholar 

  7. Grigore, M.N. and Vicente, O., Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change, Plants, 2023, vol. 12, p. 221. https://doi.org/10.3390/PLANTS12020221

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sogoni, A., The effect of salinity and substrates on the growth parameters and antioxidant potential of Tetragonia decumbens (Dune spinach) for horticultural applications, 2020, p. 50.

  9. Nkcukankcuka, M., Jimoh, M.O., Griesel, G., and Laubscher, C.P., Growth characteristics, chlorophyll content and nutrients uptake in Tetragonia decumbens Mill. cultivated under different fertigation regimes in hydroponics, Crop Pasture Sci., 2021, vol. 73, p. 67. https://doi.org/10.1071/CP20511

    Article  CAS  Google Scholar 

  10. Sogoni, A., Jimoh, M.O., Laubscher, C.P., and Kambizi, L., Effect of rooting media and IBA treatment on rooting response of South African dune spinach (Tetragonia decumbens): an underutilized edible halophyte, Acta Hortic., 2022, p. 319.

  11. Sogoni, A., Jimoh, M.O., Kambizi, L., and Laubscher, C.P., The impact of salt stress on plant growth, mineral composition, and antioxidant activity in Tetragonia decumbensmill.: An underutilized edible halophyte in South Africa, Horticulturae, 2021, vol. 7, p. 140. https://doi.org/10.3390/horticulturae7060140

    Article  Google Scholar 

  12. Peng, C., Chang, L., Yang, Q., Tong, Z., Wang, D., Tan, Y., Sun, Y., Yi, X., Ding, G., Xiao, J., Zhang, Y., and Wang, X., Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuviumportulacastrum under differential salt conditions, J. Plant Physiol., 2019, vol. 232, p. 141. https://doi.org/10.1016/J.JPLPH.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  13. Hussain, T., Asrar, H., Zhang, W., and Liu, X., The combination of salt and drought benefits selective ion absorption and nutrient use efficiency of halophyte Panicum antidotale, Front. Plant Sci., 2023, vol. 14, p. 1091292. https://doi.org/10.3389/FPLS.2023.1091292/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dassanayake, M. and Larkin, J.C., Making plants break a sweat: The structure, function, and evolution of plant salt glands, Front. Plant Sci., 2017, vol. 8, p. 238793. https://doi.org/10.3389/FPLS.2017.00406/BIBTEX

    Article  Google Scholar 

  15. Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., and Cushman, J.C., Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum, J. Exp. Bot., 2007, vol. 8, p. 1957. https://doi.org/10.1093/JXB/ERM057

    Article  Google Scholar 

  16. Shabala, S., Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops, Ann. Bot., 2013, vol. 112, p. 1209. https://doi.org/10.1093/AOB/MCT205

    Article  PubMed  PubMed Central  Google Scholar 

  17. Parida, A.K., Veerabathini, S.K., Kumari, A., and Agarwal, P.K., Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition, Front. Plant Sci., 2016, vol. 7, p. 184129. https://doi.org/10.3389/FPLS.2016.00351/BIBTEX

    Article  Google Scholar 

  18. Naz, N., Fatima, S., Hameed, M., Naseer, M., Batool, R., Ashraf, M., Ahmad, F., Ahmad, M.S.A., Zahoor, A., and Ahmad, K.S., Adaptations for salinity tolerance in Sporobolus ioclados (Nees ex Trin.) Nees from saline desert, Flora, 2016, vol. 223, p. 46. https://doi.org/10.1016/J.FLORA.2016.04.013

    Article  Google Scholar 

  19. Naz, N., Fatima, S., Hameed, M., Ashraf, M., Naseer, M., Ahmad, F., and Zahoor, A., Structural and functional aspects of salt tolerance in differently adapted ecotypes of Aeluropus lagopoides from saline desert habitats, Int. J. Agric. Biol., 2018, vol. 20, p. 41.

    CAS  Google Scholar 

  20. Naz, N., Fatima, S., Hameed, M., Ahmad, F., Ahmad, M.S.A., Ashraf, M., Shahid, H., Iqbal, U., Kaleem, M., Shah, S.M.R., and Ahmad, I., Modulation in Plant Micro-structures Through Soil Physicochemical Properties Determines Survival of Salsolai mbricata Forssk. in Hypersaline Environments, J. Soil Sci. Plant Nutr., 2022, vol. 22, p. 861. https://doi.org/10.1007/S42729-021-00697-5/FIGURES/10

    Article  CAS  Google Scholar 

  21. Jimoh, M.O., Afolayan, A.J., and Lewu, F.B., Micromorphological assessment of leaves of Amaranthus caudatus L. cultivated on formulated soil types, Appl. Ecol. Environ. Res., 2019, vol. 17, p. 13593.

    Google Scholar 

  22. Liu, Y., Ma, Y., Aray, H., and Lan, H., Morphogenesis and cell wall composition of trichomes and their function in response to salt in halophyte Salsola ferganica, BMC Plant Biol., 2022, vol. 22, p. 1. https://doi.org/10.1186/S12870-022-03933-X/FIGURES/9

    Article  CAS  Google Scholar 

  23. Zhao, B., Zhou, Y., Jiao, X., Wang, X., Wang, B., and Yuan, F., Bracelet salt glands of the recretohalophyte Limonium bicolor: Distribution, morphology, and induction, J. Integr. Plant Biol., 2022, vol. 65, p. 950. https://doi.org/10.1111/JIPB.13417/SUPPINFO

    Article  Google Scholar 

  24. Chavarria, M.R., Wherley, B., Jessup, R., and Chandra, A., Leaf anatomical responses and chemical composition of warm-season turfgrasses to increasing salinity, Curr. Plant Biol., 2020, vol. 22, p. 100147. https://doi.org/10.1016/J.CPB.2020.100147

    Article  Google Scholar 

  25. Kuster, V.C., da Silva, L.C., and Meira, R.M.S.A., Anatomical and histochemical evidence of leaf salt glands in Jacquinia armillaris Jacq. (Primulaceae), Flora, 2020, vol. 262, p. 151493. https://doi.org/10.1016/J.FLORA.2019.151493

    Article  Google Scholar 

  26. Tarchoune, I., Sgherri, C., Harrathi, J., Ellili, A., Ouerghi, Z., and Ben Nasri-Ayachi, M., Salt effects on trichome density in Ocimum basilicum L. leaves, Agrochimica, 2015, vol. 59, p. 173. https://doi.org/10.12871/0021857201526

    Article  CAS  Google Scholar 

  27. Lungoci, C., Motrescu, I., Filipov, F., Jitareanu, C.D., Teliban, G.C., Ghitau, C.S., Puiu, I., and Robu, T., The Impact of Salinity Stress on Antioxidant Response and Bioactive Compounds of Nepeta cataria L., Agronomy, 2022, vol. 12, p. 562. https://doi.org/10.3390/AGRONOMY12030562

    Article  CAS  Google Scholar 

  28. Rasouli, F., Kiani-Pouya, A., Tahir, A., Shabala, L., Chen, Z., and Shabala, S., A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions, Environ. Exp. Bot., 2021, vol. 181, p. 104300. https://doi.org/10.1016/J.ENVEXPBOT.2020.104300

    Article  CAS  Google Scholar 

  29. Lawson, T. and Vialet-Chabrand, S., Speedy stomata, photosynthesis and plant water use efficiency, New Phytol., 2019, vol. 221, p. 93. https://doi.org/10.1111/NPH.15330

    Article  PubMed  Google Scholar 

  30. Kübarsepp, L., Laanisto, L., Niinemets, Ü.,Talts, E., and Tosens, T., Are stomata in ferns and allies sluggish? Stomatal responses to CO2, humidity and light and their scaling with size and density, New Phytol., 2020, vol. 225, p. 183. https://doi.org/10.1111/NPH.16159

    Article  PubMed  Google Scholar 

  31. Loconsole, D., Murillo-Amador, B., Cristiano, G., and De Lucia, B., Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization, Sustainability, 2019, vol. 11, p. 6076. https://doi.org/10.3390/su11216076

    Article  CAS  Google Scholar 

  32. Pompelli, M.F., Ferreira, P.P.B., Chaves, A.R.M., Figueiredo, R.C.Q.Q., Martins, A.O., Jarma-Orozco, A., Bhatt, A., Batista-Silva, W., Endres, L., and Araújo, W.L., Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas, Plant Physiol. Biochem., 2021, vol. 168, p. 116. https://doi.org/10.1016/J.PLAPHY.2021.09.039

    Article  CAS  PubMed  Google Scholar 

  33. Rahman, M.M., Mostofa, M.G., Keya, S.S., Siddiqui, M.N., Ansary, M.M.U., Das, A.K., Rahman, M.A., and Tran, L.S.P., Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants, Int. J. Mol. Sci., 2021, vol. 22, p. 10733. https://doi.org/10.3390/IJMS221910733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tränkner, M., Tavakol, E., and Jákli, B., Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection, Physiol. Plant., 2018, vol. 163, p. 414. https://doi.org/10.1111/PPL.12747

    Article  Google Scholar 

  35. Bezerra-Neto, E., Coelho, J.B.M., Jarma-Orozco, A., Rodríguez-Páez, L.A., and Pompelli, M.F., Modulation of photosynthesis under salinity and the role of mineral nutrients in Jatropha curcas L., J. Agron. Crop Sci., 2022, vol. 208, p. 314. https://doi.org/10.1111/JAC.12583

    Article  CAS  Google Scholar 

  36. Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H., Plants’ Response Mechanisms to Salinity Stress, Plants, 2023, vol. 12, p. 2253. https://doi.org/10.3390/PLANTS12122253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian, X., He, M., Wang, Z., Zhang, J., Song, Y., He, Z., and Dong, Y., Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress, Plant Growth Regul., 2015, vol. 77, p. 343. https://doi.org/10.1007/S10725-015-0069-3/TABLES/5

    Article  CAS  Google Scholar 

  38. Thor, K., Calcium—nutrient and messenger, Front. Plant Sci., 2019, vol. 10, p. 449564. https://doi.org/10.3389/FPLS.2019.00440/BIBTEX

    Article  Google Scholar 

  39. Song, X., Su, Y., Zheng, J., Zhang, Z., Liang, Z., and Tang, Z., Study on the Effects of Salt Tolerance Type, Soil Salinity and Soil Characteristics on the Element Composition of Chenopodiaceae Halophytes, Plants, 2022, vol. 11, p. 1288. https://doi.org/10.3390/PLANTS11101288/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ellouzi, H., Ben Hamed, K., Cela, J., Munné-Bosch, S., and Abdelly, C., Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte), Physiol. Plant., 2011, vol. 142, p. 128. https://doi.org/10.1111/J.1399-3054.2011.01450.X

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors appreciate the Research Directorate, Consolidated Research Fund (CRF), and the National Research Foundation (NRF) of South Africa (Grant no: 140847) for their grateful funding and for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.O.J. and C.P.L.; methodology, A.S., M.O.J., L.K. and C.P.L.; software, M.O.J. and A.S.; validation, M.O.J., M.K., L.K. and C.P.L.; formal analysis, A.S. and M.O.J.; investigation, A.S. and M.O.J.; resources, C.P.L., M.K. and L.K.; data curation, A.S. and M.O.J.; writing-original draft preparation, A.S.; writing, review and editing, A.S., M.O.J., M.K., L.K. and C.P.L.; supervision, A.S., M.O.J. and C.P.L.; project administration, C.P.L. and L.K.; funding acquisition, C.P.L. and L.K. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to C. P. Laubscher.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.This study was approved by the Office of the Chairperson, Research Ethics Committee, Faculty of Applied Sciences, Cape Peninsula University of Technology. Reference no: 213032120/09/2022.

CONFLICT OF INTEREST

Authors wish to declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sogoni, A., Jimoh, M.O., Keyster, M. et al. Salinity Induced Leaf Anatomical Responses and Chemical Composition in Tetragonia decumbens Mill.: an Underutilized Edible Halophyte in South Africa. Russ J Plant Physiol 70, 148 (2023). https://doi.org/10.1134/S1021443723601775

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601775

Keywords:

Navigation