Skip to main content

Brassicaceae in Agriculture

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

This chapter reviews the agricultural role of the Brassicaceae (Cruciferae) or mustard family. The family includes many economically important edible and industrial oilseed, vegetable, condiment, and fodder crop, such as. It also includes the molecular plant model, such as Arabidopsis thaliana. Current crops are reviewed and new and underutilized crucifer crop species discussed. Proposed new uses for these crops, such as biofuel platforms or green manure covers or biofumigants, are also briefly reviewed. The family also contains a rich source of agronomic and economic traits in its highly diverse wild germplasm. Traits discussed in this chapter include morphological and chemical traits; physiological traits such as C3–C4 photosynthesis, cytoplasmic male sterility, apomixis, and regeneration or transformation ability; and tolerances to various stresses such as salt, heavy metals, cold, drought, herbicides, diseases, insect, and nematode pests. These traits are of potential value in crop improvement programs and many wild crucifers now serve as model species in their study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerbirk N, Warwick SI, Hansen PR et al (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69:2937–2949

    PubMed  Google Scholar 

  • Agnihotri A, Shivanni KR, Lakshmikumaran MS et al (1991) Micropropagation and DNA analysis of wide hybrids of cultivated Brassica. Proc GCIRC 8th Rapeseed Congr Abst.: p 151

    Google Scholar 

  • Aguinagalde I, Gómez-Campo C (1984) The phylogenetic significance of flavonoids in Crambe (Cruciferae). Bot J Linn Soc 89:277–288

    Google Scholar 

  • Ahuja I, Malik CP, Raheja RK et al (1998) Physiological and biochemical changes in fruit development of Brassica oxyrrhina and Brassica tournefortii. Phytomorphology 48:399–404

    Google Scholar 

  • Ali H, Ali Z, Ali H, Mehmood S, Ali W (2007) In vitro regeneration of Brassica napus L. cultivars (Star, Cyclone and Westar) from hypocotyls and cotyledonary leaves. Pak J Bot 39:1251–1256

    Google Scholar 

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Google Scholar 

  • Al-Shehbaz IA (1985) The genera of Brassiceae (Cruciferae: Brassicaceae) in the southeastern United States. J Arnold Arbor 66:279–351

    Google Scholar 

  • Al-Shehbaz IA (1986) The genera of Lepideae (Cruciferae: Brassicaceae) in the southeastern United States. J Arnold Arbor 67:265–311

    Google Scholar 

  • Al-Shehbaz IA, Al-Shammary KI (1987) Distribution and chemotaxonomic significance of glucosinolates in certain middle-eastern Cruciferae. Biochem Syst Ecol 15:559–569

    Google Scholar 

  • Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv Pap Bot 12:429–433

    Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Google Scholar 

  • Aminidehaghi M, Rezaeinodehi A, Khangholi S (2006) Allelopathic potential of Alliaria petiolata and Lepidium perfoliatum, two weeds of the Cruciferae family. J Plant Dis Prot Special Issue 20:455–462

    Google Scholar 

  • Anderson MD, Peng C, Weiss MJ (1992) Crambe, Crambe abyssinica Hochst, as a flea beetle resistant crop (Coleoptera: Chrysomelidae). J Econ Entomol 85:594–600

    Google Scholar 

  • Angelini LG, Moscheni E, Colonna G et al (1997) Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind Crops Prod 6:313–323

    Google Scholar 

  • Angelini L, Lazzeri L, Galletti S et al (1998) Antigerminative activity of three glucosinolate-derived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–780

    Google Scholar 

  • Apel P, Hillmer S, Pfeffer M et al (1996) Carbon metabolism type of Diplotaxis tenuifolia (L.) DC. (Brassicaceae). Photosynthetica 32:237–243

    Google Scholar 

  • Apel P, Horstmann C, Pfeffer M (1997) The Moricandia syndrome in species of the Brassicaceae – evolutionary aspects. Photosynthetica 33:205–215

    CAS  Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259

    CAS  Google Scholar 

  • Ashraf M, Noor R (1993) Growth and pattern of ion uptake in Eruca sativa Mill. under salt stress. Ange Bot 67:17–21

    CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Google Scholar 

  • Atibalentja N, Eastburn DM (1998) Verticillium dahliae resistance in horseradish germplasm from the university of illinois collection. Plant Dis 82:176–180

    Google Scholar 

  • Badenes-Perez FR, Shelton AM, Nault BA (2005) Using yellow rocket as a trap crop for diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 98:884–890

    PubMed  Google Scholar 

  • Bailey CD, Koch MA, Mayer M et al (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    CAS  PubMed  Google Scholar 

  • Bang SW, Mizuno Y, Kaneko Y et al (2003) Production of intergeneric hybrids between the C3–C4 intermediate species Diplotaxis tenuifolia (L.) DC. and Raphanus sativus L. Breed Sci 53:231–236

    Google Scholar 

  • Banga SS, Banga SK, Bhaskar PB et al (2003a) Alloplasmic line of Brassica napus L. with Erucastrum canariense cytoplasm is male sterile. Proc GCIRC 11th Int Rapeseed Congr 1:pp 324–325

    Google Scholar 

  • Banga SS, Deol JS, Banga SK (2003b) Alloplasmic male-sterile Brassica juncea with Enarthrocarpus lyratus cytoplasm and the introgression of gene(s) for fertility restoration from cytoplasm donor species. Theor Appl Genet 106:1390–1395

    PubMed  Google Scholar 

  • Bansal VK, Tewari JP, Tewari I et al (1997) Genus Eruca: a potential source of white rust resistance in cultivated brassicas. Plant Genet Resour Newsl 109:25–26

    Google Scholar 

  • Bauwe H (1983) Comparative phylogenetic age of C3–C4 intermediate species of Moricandia determined by isoelectric focusing and amino acid composition of small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Photosynthetica 17:442–449

    Google Scholar 

  • Belimov AA, Safronova VI, Demchinskaya SV et al (2007) Intraspecific variability of cadmium tolerance in hydroponically grown Indian mustard (Brassica juncea (L.) Czern.) seedlings. Acta Physiol Plant 29:473–478

    Google Scholar 

  • Bellostas N, Sorensen JC, Sorensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-Triangle for their fumigation potential. J Sci Food Agric 87:1586–1594

    Google Scholar 

  • Ben-Ghnaya A, Charles G, Branchard M (2008) Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars of Brassica napus L. Plant Cell Tissue Organ Cult 92:25–30

    Google Scholar 

  • Bennett RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52:428–438

    CAS  PubMed  Google Scholar 

  • Bennett RN, Carvalho R, Mellon FA et al (2007) Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. J Agric Food Chem 55:67–74

    PubMed  Google Scholar 

  • Bhat SR, Prakash S, Kirti PB et al (2005) A unique introgression from Moricandia arvensis confers male fertility upon two different cytoplasmic male-sterile lines of Brassica juncea. Plant Breed 124:117–120

    Google Scholar 

  • Boaz M, Plitmann U, Heyn CC (1990) The ecogeographic distribution of breeding systems in the Cruciferae (Brassicaceae) of Israel. Isr J Bot 39:31–42

    Google Scholar 

  • Bodnaryk RP (1997) Will low-glucosinolate cultivars of the mustards Brassica juncea and Sinapis alba be vulnerable to insect pests? Can J Plant Sci 77:283–287

    Google Scholar 

  • Bodnaryk RP, Lamb RJ (1991) Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Can J Plant Sci 71:13–20

    Google Scholar 

  • Bouchereau A, Hamelin J, Lamour I et al (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied genera. Phytochemistry 30:1873–1881

    Google Scholar 

  • Bowers WS, Sener B, Evans PH et al (1997) Activity of Turkish medicinal plants against mosquitoes Aedes aegypti and Anopheles gambiae. Insect Sci Appl 16:339–342

    Google Scholar 

  • Boyd RS, Barbour MG (1986) Relative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beaches. Am J Bot 73:236–241

    Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265

    CAS  Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300

    CAS  Google Scholar 

  • Branca F (1995) Studies on some wild Brassicaceae species utilizable as vegetables in the Mediterranean areas. Plant Genet Resour Newsl 104:6–9

    Google Scholar 

  • Branca F, Iapichino G (1997) Some wild and cultivated Brassicaceae exploited in Sicily as vegetables. Plant Genet Resour Newsl 110:22–28

    Google Scholar 

  • Brown GG (1999) Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J Hered 90:351–356

    Google Scholar 

  • Brun H, Tribodet M (1995) Pathogenicity of Leptosphaeria maculans isolates on one ecotype of Arabidopsis thaliana. Cruciferae Newsl Eucarpia 17:74–75

    Google Scholar 

  • Brun H, Pleiss J, Renard M (1987) Resistance of some crucifers to Alternaria brassicae (Berk.) Sacc. Proc GCIRC 7th Int Rapeseed Congr:pp 1222–1227

    Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72:309–315

    CAS  Google Scholar 

  • Buente R, Mueller J, Friedt W (1997) Genetic variation and response to selection for resistance to root-knot nematodes in oil radish (Raphanus sativus ssp. oleiferus). Plant Breed 116:263–266

    Google Scholar 

  • Carcamo H, Olfert O, Dosdall L et al (2007) Resistance to cabbage seedpod weevil among selected Brassicaceae germplasm. Can Entomol 139:658–669

    Google Scholar 

  • Carlson KD, Tookey HL (1983) Crambe meal as a protein source for feeds. J Am Oil Chem Soc 60:1979–1985

    CAS  Google Scholar 

  • Chander H, Bakhetia DRC (1998) Evaluation of some cruciferous genotypes at seedling stage for resistance to mustard aphid, Lipaphis erysimi (Kalt.) under screen house and field conditions. J Insect Sci 11:19–25

    Google Scholar 

  • Chen CY, Séguin-Swartz G (1997) A comparative study of the response of wild crucifers to the blackleg fungus, Phoma lingam. Can J Plant Pathol 19:107

    Google Scholar 

  • Chen CY, Séguin-Swartz G (1999) Reaction of wild crucifers to Leptosphaeria maculans, the causal agent of blackleg of crucifers. Can J Plant Pathol 21:361–367

    Google Scholar 

  • Chen H, Wang H, Li Z (2007) Intertribal crosses between Brassica species and Capsella bursa-pastoris for the improvement of oil quality and resistance to Sclerotinia sclerotiorum of Brassica crops. Proc GCIRC 12th Int Rapeseed Congr 1:pp 411–413

    Google Scholar 

  • Christoffers MJ, Nandula VK, Howatt KA et al (2006) Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci 54:191–197

    Google Scholar 

  • Chrungu B, Verma N, Mohanty A et al (1999) Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theor Appl Genet 98:608–613

    Google Scholar 

  • Cipollini D, Gruner B (2007) Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J Chem Ecol 33:85–94

    PubMed  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G et al (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    PubMed  Google Scholar 

  • Cole RA (1994) Isolation of a chitin-binding lectin with insecticidal activity in chemically-defined synthetic diets from two wild brassica species with resistance to cabbage aphid Brevicoryne brassicae. Entomol Exp Appl 72:181–187

    Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:121–133

    Google Scholar 

  • Compton DL, Laszlo JA, Isbell TA (2004) Cinnamoyl esters of lesquerella and castor oil: novel sunscreen active ingredients. J Am Oil Chem Soc 81:945–951

    Google Scholar 

  • Conn KL, Tewari JP (1986) Hypersensitive reaction induced by Alternaria brassicae in Eruca sativa, an oil yielding crucifer. Can J Plant Pathol 8:348

    Google Scholar 

  • Conn KL, Tewari JP, Dahiya JS (1988) Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci 56:21–25

    Google Scholar 

  • Craig W, Wiegand A, O’Neill CM et al (1997) Somatic embryogenesis and plant regeneration from stem explants of Moricandia arvensis. Plant Cell Rep 17:27–31

    Google Scholar 

  • Crute IA, Gray AR, Crisp P et al (1980) Variation in Plasmodiophora brassicae and resistance to clubroot disease in Brassicas and allied crops. Plant Breed 50:91–104

    Google Scholar 

  • Cui W, Eskin NAM, Biliaderis CG (1993) Chemical and physical properties of yellow mustard (Sinapis alba L.) mucilage. Food Chem 46:169–176

    CAS  Google Scholar 

  • Curto G, Dallavalle E, Lazzeri L (2005) Life cycle duration of Meloidogyne incognita and host status of Brassicaceae and Capparaceae selected for glucosinolate content. Nematology 7:203–212

    CAS  Google Scholar 

  • Dal-Corso G, Borgato L, Furini A (2005) In vitro plant regeneration of the heavy metal tolerant and hyperaccumulator Arabidopsis halleri (Brassicaceae). Plant Cell Tissue Organ Cult 82:267–270

    CAS  Google Scholar 

  • Daun J, Barthet V, Scarth R (2003) Erucic acid levels in Sinapis arvensis L from different parts of the world. Proc GCIRC 11th Int Rapeseed Congr 1:pp 290–292

    Google Scholar 

  • Davis AR, Pylatuik JD, Paradis JC et al (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318

    PubMed  Google Scholar 

  • Daxenbichler ME, Spencer GF, Carlson DG et al (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638

    Google Scholar 

  • Deol JS, Ahuja I, Banga SS (1999) Physiological investigations of male sterility caused by Enarthrocarpus lyratus cytoplasm in Brassicas. Crop Improv 26:156–162

    Google Scholar 

  • Deol JS, Shivanna KR, Prakash S et al (2003) Enarthrocarpus lyratus-based cytoplasmic male sterility and fertility restorer system in Brassica rapa. Plant Breed 122:438–440

    Google Scholar 

  • Dhawan AK, Jain A, Inderjeet SJ (2000) An efficient plant regeneration protocol from seedling explants of Brassica juncea RH-781, a freeze tolerant cultivar. Cruciferae Newsl Eucarpia 22:21–22

    Google Scholar 

  • Dierig DA, Tomasi PM, Ray DT (2001) Inheritance of male sterility in Lesquerella fendleri. J Am Soc Hortic Sci 126:738–743

    Google Scholar 

  • Dierig DA, Tomasi PM, Salywon AM et al (2004) Improvement in hydroxy fatty acid seed oil content and other traits from interspecific hybrids of three Lesquerella species: Lesquerella fendleri, L. pallida, and L. lindheimeri. Euphytica 139:199–206

    Google Scholar 

  • Dutta I, Saha P, Das S (2008) Efficient Agrobacterium-mediated genetic transformation of oilseed mustard [Brassica juncea (L.) Czern.] using leaf piece explants. In Vitro Cell Dev Biol Plant 44:401–411

    Google Scholar 

  • Eapen S (2007) Genetic transformation in Brassica juncea (L.) Czern & Coss using wild types and shooter mutants of Agrobacterium tumefaciens and the regeneration response. Plant Cell Biotechnol Mol Biol 8:205–208

    Google Scholar 

  • Ecker R, Yaniv Z, Zur M et al (1992) Embryonic heterosis in the linolenic acid content of Matthiola incana seed oil. Euphytica 59:93–96

    Google Scholar 

  • El-Khatib AA, Abd-Elaah GA (1998) Allelopathic potential of Zilla spinosa on growth of associate flowering plants and some rhizosphere fungi. Biol Plant 41:461–467

    Google Scholar 

  • El-Menshawi B, Karawya M, Wassel G et al (1980) Glucosinolates in the genus Zilla (Brassiceae). J Nat Prod 43:534–536

    Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne brassicae) in six brassica accessions in New Zealand. N Z J Crop Hort Sci 23:25–29

    Google Scholar 

  • Ellis PR, Pink DAC, Barber NE et al (1999) Identification of high levels of resistance to cabbage root fly, Delia radicum, in wild Brassica species. Euphytica 110:207–214

    Google Scholar 

  • Erickson DB, Bassin P (1990) Rapeseed and Crambe: alternative crops with potential industrial uses. Bull Kans Agric Exp Stn 656:1–33

    Google Scholar 

  • Facciola S (1990) Cornucopia – a source book of edible plants, p 677. Kampong Publications, Vista, CA

    Google Scholar 

  • Fagbenro OA (2004) Soybean meal replacement by roquette (Eruca sativa Miller) seed meal as protein feedstuff in diets for African catfish, Clarias gariepinus (Burchell 1822), fingerlings. Aquac Res 35:917–923

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates among plants. Phytochemistry 56:5–51

    PubMed  Google Scholar 

  • Farnham M, Davis E, Morgan J et al (2008) Neglected landraces of collard (Brassica oleracea L. var. viridis) from the Carolinas (USA). Genet Resour Crop Evol 55:797–801

    Google Scholar 

  • Francis A, Warwick SI (2008) The biology of Canadian weeds. 3. Lepidium draba L, L. chalepense L, L. appelianum Al-Shehbaz (updated). Can J Plant Sci 88:379–401

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Google Scholar 

  • Gao HL, Li Y, Song YP, Gao SY, Wang JJ (2008) In vitro culture and regeneration system of non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). Xibei Zhiwu Xuebao 28:963–968

    Google Scholar 

  • Gavloski JE, Ekuere U, Keddie A et al (2000) Identification and evaluation of flea beetle (Phyllotreta cruciferae) resistance within Brassicaceae. Can J Plant Sci 80:881–887

    Google Scholar 

  • Gehringer A, Friedt W, Lühs W et al (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49:1555–1563

    PubMed  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R et al (2007) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97

    Google Scholar 

  • German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae (Cruciferae). Harv Pap Bot 13:165–170

    Google Scholar 

  • Goffman FD, Thies W, Velasco L (1999) Chemotaxonomic value of tocopherols in Brassicaceae. Phytochemistry 50:793–798

    Google Scholar 

  • Gokavi SS, Malleshi NG, Guo M (2004) Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods Hum Nutr 59:105–111

    CAS  PubMed  Google Scholar 

  • Gómez-Campo C (1980) Morphology and morphotaxonomy of the tribe Brassiceae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies, pp 3–31. Japan Science Societies Press, Tokyo

    Google Scholar 

  • Gómez-Campo C (1999) Taxonomy. In: Gómez-Campo C (ed) The biology of Brassica coenospecies, pp 3–32. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Gómez-Campo C, Tortosa ME, Tewari I et al (1999) Epicuticular wax columns in cultivated Brassica species and in their close wild relatives. Ann Bot 83:515–519

    Google Scholar 

  • Gong Q, Li P, Ma S et al (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    PubMed  Google Scholar 

  • Greenhalgh JG, Mitchell ND (1976) The involvement of flavour volatiles in the resistance of downy mildew of wild and cultivated forms of Brassica oleracea. New Phytol 77:391–398

    Google Scholar 

  • Griffith M, Timonin M, Wong ACE et al (2007) Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant Cell Environ 30:529–538

    CAS  PubMed  Google Scholar 

  • Guan CY, Li FQ, Li X et al (2004) Resistance of rocketsalad (Eruca sativa Mill.) to stem rot (Sclerotinia sclerotiorum). Sci Agric Sinica 37:1138–1143

    Google Scholar 

  • Guan R, Jiang S, Xin R et al (2007a) Studies on rapeseed germplasm enhancement by use of cruciferous weed Descurainia sophia. Proc GCIRC 12th Int Rapeseed Congr 1: pp 261–265

    Google Scholar 

  • Guan R, Jiang S, Xin R et al (2007b) Studies on rapeseed germplasm enhancement by use of cruciferous weed Rorippa indica. Proc GCIRC 12th Int Rapeseed Congr 1: pp 329–332

    Google Scholar 

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W, Han L, Cong L (2008) Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens L. via Agrobacterium-mediated transformation. Mol Biotechnol 40:77–86

    CAS  PubMed  Google Scholar 

  • Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86:1047–1058

    Google Scholar 

  • Gugel RK, Séguin-Swartz G (1997) Introgression of blackleg resistance from Sinapis alba into Brassica napus. Brassica 97, Int Soc Hortic Sci Symp Brassicas/10th Crucifer Genetics Workshop, 23–27 Sept 1997, Rennes, France, Abst.: p 222

    Google Scholar 

  • Gugel RK, Séguin-Swartz G, Warwick SI (1997) Transfer of blackleg resistance from Erucastrum gallicum to Brassica rapa. Can J Plant Pathol 19:109

    Google Scholar 

  • Gulati SC, Varma NS, Mani N et al (1991) Resistance to white rust (Albugo candida) in Indian mustard. Proc GCIRC 8th Int Rapeseed Congr:pp 256–261

    Google Scholar 

  • Haddadi P, Moieni A, Gh K, Abdollahi MR (2008) Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. Int J Plant Prod 2:153–162

    Google Scholar 

  • Hanson BD, Park KW, Mallory-Smith CA et al (2004) Resistance of Camelina microcarpa to acetolactate synthase inhibiting herbicides. Weed Res 44:187–194

    Google Scholar 

  • Harberd DJ (1972) A contribution to the cytotaxonomy of Brassica (Cruciferae) and its allies. Bot J Linn Soc 65:1–23

    Google Scholar 

  • Heap IM, Morrison IN (1992) Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Weed Sci Soc Am Abst 32:55

    Google Scholar 

  • Heap IM (2009) International survey of herbicide-resistant weeds. (http://www.weedscience.com)

  • Hebard A (1998) Camelina sativa – a pleasurable experience or another false hope? Lipid Technol 10:81–83

    CAS  Google Scholar 

  • Henderson AE, Hallett RH, Soroka J (2004) Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J Insect Behav 17:17–39

    Google Scholar 

  • Hennion F, Frenot Y, Martin-Tanguy J (2006) High flexibility in growth and polyamine composition of the crucifer Pringlea antiscorbutica in relation to environmental conditions. Physiol Plant 127:212–224

    Google Scholar 

  • Hinata K, Konno N (1979) Studies on a male sterile strain having the Brassica campestris nucleus and the Diplotaxis muralis cytoplasm I. On the breeding procedure and some characteristics of the male sterile strain. Jpn J Breed 29:305–311

    Google Scholar 

  • Horn PJ, Vaughn JG (1983) Seed glucosinolates of fourteen wild Brassica species. Phytochemistry 22:465–470

    Google Scholar 

  • Horovitz A, Galil J (1972) Gynodioecism in east Mediterranean Hirschfeldia incana, Cruciferae. Bot Gaz 133:127–131

    Google Scholar 

  • Hu Q, Andersen SB, Hansen LN (1999) Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell Tissue Organ Cult 59:189–196

    Google Scholar 

  • Huang BQ, Luo P, Li YW (1999) Domestication and cultivation of Orychophragmus violaceus as a new oil crop in China. Cruciferae Newsl Eucarpia 21:13–14

    Google Scholar 

  • Hussiney HA, El-Missiry MM, Ismail SI (1998) Flavonoids of Diplotaxis harra (Forssk.) Boiss. and Diplotaxis acris (Forssk.) Boiss. Egypt J Pharmacol Sci 38:131–136

    Google Scholar 

  • Ignatov A, Kuginuki Y, Hida K (1999) Disease reaction to Xanthomonas campestris pv. campestris races 1, 4 and 5 in weedy and cultivated Brassica rapa L. Cruciferae Newsl Eucarpia 21:123–124

    Google Scholar 

  • Inan G, Zhang Q, Li P et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    CAS  PubMed  Google Scholar 

  • Janeja HS, Banga SK, Bhaskar PB et al (2003) Alloplasmic male sterile Brassica napus with Enarthrocarpus lyratus cytoplasm: introgression and molecular mapping of an E. lyratus chromosome segment carrying a fertility restoring gene. Genome 46:792–797

    PubMed  Google Scholar 

  • Jin RG, Liu YB, Tabashnik BE et al (1999) Tissue culture and Agrobacterium-mediated transformation of watercress. Plant Cell Tissue Organ Cult 58:171–176

    Google Scholar 

  • Jugulam M, McLean MD, Hall JC (2005) Inheritance of picloram and 2, 4-D resistance in wild mustard (Brassica kaber). Weed Sci 53:417–423

    Google Scholar 

  • Jyoti JL, Shelton AM, Earle ED (2001) Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot (Diptera: Anthomyiidae). J Econ Entomol 94:942–949

    PubMed  Google Scholar 

  • Kanada I, Kato M (1997) Effect of Brassica oxyrrhina cytoplasm on Raphanus sativus. Breed Sci 47:57–65

    Google Scholar 

  • Kirti PB, Baldev A, Gaikwad K et al (1997) Introgression of a gene restoring fertility to CMS (Trachystoma) Brassica juncea and the genetics of restoration. Plant Breed 116:259–262

    Google Scholar 

  • Kirti PB, Prakash S, Gaikwad K et al (1998) Chloroplast substitution overcomes leaf chlorosis in a Moricandia arvensis – based cytoplasmic male sterile Brassica juncea. Theor Appl Genet 97:1179–1182

    Google Scholar 

  • Klewer A, Scheunemann R, Sacristán MD (2003) Incorporation of blackspot resistance from different origins into oilseed rape. Proc GCIRC 11th Int Rapeseed Congr 1:pp 65–67.

    Google Scholar 

  • Klimaszewska K, Keller WA (1988) Regeneration and characterization of somatic hybrids between Brassica napus and Diplotaxis harra. Plant Sci 58:211–222

    Google Scholar 

  • Kmec P, Weiss MJ, Milbrath LR et al (1998) Growth analysis of crambe. Crop Sci 38:108–112

    Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species – Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767

    Google Scholar 

  • Kolte SJ, Bordoloi DK, Awasthi RP (1991) The search for resistance to major diseases of rapeseed and mustard in India. Proc GCIRC 8th Int Rapeseed Congr:pp 219–225

    Google Scholar 

  • Kotova VV, Cozari EG, Kononkov PF et al (1999) Use of antagonistic plants against plant-parasite nematodes. Sel’skokhozyaistvennaya Biol 0(3):24–32

    Google Scholar 

  • Kruckeberg AR, Reeves RD (1995) Nickel accumulation by serpentine species of Streptanthus (Brassicaceae): field and greenhouse studies. Madroño 42:458–469

    Google Scholar 

  • Kumar PR, Tsunoda S (1980) Variation in oil content of fatty acid composition among seeds from the Cruciferae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies, pp 235–252. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Kushad MM, Guidera M, Bratsch AD (1999) Distribution of horseradish peroxidase activity in horseradish plants. HortScience 34:127–129

    Google Scholar 

  • Lal MN, Singh SS, Singh VP (1997) Screening of Brassica germplasms for resistance against mustard aphid, Lipaphis erysimi (Kalt.). J Entomol Res 21:371–375

    Google Scholar 

  • Lamb RJ (1980) Hairs protect pods of mustard (Brassica hirta “Gisilba”) from flea beetle feeding damage. Can J Plant Sci 60:1439–1440

    Google Scholar 

  • Lange W, Toxopeus H, Lubberts JH et al (1989) The development of raparadish Brassicoraphanus 2n = 38, a new crop in agriculture. Euphytica 40:1–14

    Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using Brassica green manures. Crop Prot 26:1067–1077

    Google Scholar 

  • Laroche A, Geng XM, Singh J (1992) Differentiation of freezing tolerance and vernalization responses in Cruciferae exposed to a low temperature. Plant Cell Environ 15:439–445

    Google Scholar 

  • Leadlay EA, Heywood VH (1990) The biology and systematics of the genus Coincya Porta & Rigo ex Rouy (Cruciferae). Bot J Linn Soc 102:313–398

    Google Scholar 

  • Lefol C, Séguin-Swartz G, Morrall RAA (1997) Effect of petal age on infection by Sclerotinia sclerotiorum in Erucastrum gallicum. Brassica 97, Int Soc Hortic Sci Symp Brassicas/10th Crucifer Genetics Workshop, 23–27 Sept. 1997, Rennes, France, Abst.:p 188

    Google Scholar 

  • Lehtila K, Strauss SY (1999) Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum. Ecology 80:116–124

    Google Scholar 

  • Lelivelt CL, Krens FA (1992) Transfer of resistance to the beet cyst nematode Heterodera schachtii Schm. into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theor Appl Genet 83:887–894

    Google Scholar 

  • Lelivelt CLC, Leunissen EHM, Frederiks HJ et al (1993) Transfer of resistance of the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Genet 85:688–696

    Google Scholar 

  • Leonard EC (1998) Camelina oil: α-linolenic source. Inform 9:830–838

    Google Scholar 

  • Li G, Ammermann U, Quiros CF (2001) Glucosinolate contents in maca (Lepidium peruvianum Chacon) seeds, sprouts, mature plants and several derived commercial products. Econ Bot 55:255–262

    Google Scholar 

  • Li H, Barbetti MJ, Sivasithamparam K (2005) Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crops Res 91:185–198

    Google Scholar 

  • Li HQ, Xu J, Chen L, Li MR (2007) Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Plant Cell Rep 26:1785–1789

    PubMed  Google Scholar 

  • Li XF, Yang Y, Wang YP (1995) Preliminary assessment of two new cruciferous oil plant germplasms distributed in China. Chin J Bot 7:156–163

    Google Scholar 

  • Liu Q, Rimmer SR (1991) Inheritance of resistance in Brassica napus to an Ethiopian isolate of Albugo candida from Brassica carinata. Can J Plant Pathol 13:197–201

    Google Scholar 

  • Long ML, Xing GM, Okubo H et al (1992) Cross compatibility between Brassicoraphanus (Brassica oleracea X Raphanus sativus) and cruciferous crops, and rescuing the hybrid embryos through ovary and embryo culture. J Fac Agric Kyushu Univ 37:29–39

    Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    CAS  PubMed  Google Scholar 

  • Lu J, Liu S, Shelton AM (2004) Laboratory evaluations of a wild crucifer Barbarea vulgaris as a management tool for the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Bull Entomol Res 94:509–516

    PubMed  Google Scholar 

  • Luo P, Lan ZQ, Li ZY (1994) Orychophragmus violaceus, a potential edible-oil crop. Plant Breed 113:83–85

    Google Scholar 

  • Luo P, Huang BQ, Lan ZQ et al (1998a) A study on the vegetable resource Orychophragmus violaceus. Sichuan Daxue Xuebao Ziran Kexueban 35:638–641

    Google Scholar 

  • Luo P, Huang BQ, Yin JM et al (1998b) A new forage genetic resource Orychophragmus violaceus (L.) O.E.Schulz. Genet Res Crop Evol 45:491–494

    Google Scholar 

  • Luo P, Lan ZQ, Gao HB et al (1999) Descurainia sophia – a neglected cruciferous plant resource. Cruciferae Newsl Eucarpia 21:15–16

    Google Scholar 

  • Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259:175–198

    Google Scholar 

  • Malik M, Vyas PO, Rangaswamy NS et al (1999) Development of two new cytoplasmic male-sterile lines in Brassica juncea through wide hybridization. Plant Breed 118:75–78

    Google Scholar 

  • Maltais B, Bouchard CJ (1978) Une moutarde des oiseaux (Brassica rapa L.) resistante a l‘atrazine. Phytoprotection 59:117–119

    Google Scholar 

  • Mamula D, Juretic N, Horvath J (1997) Susceptibility of host plants to belladonna mottle and turnip yellow mosaic tymoviruses: multiplication and distribution. Acta Phytopathol Entomol Hungarica 32:289–298

    Google Scholar 

  • Mandal P, Sikdar SR (2003) Plant regeneration from mesophyll protoplasts of Rorippa indica (L.) Hiern, a wild crucifer. Curr Sci 85:1451–1454

    Google Scholar 

  • Marthe F, Richter K, Schrader O et al (2004) Cabbage (Brassica oleracea) with new resistance to black rot (Xanthomonas campestris pv. campestris) from black mustard (Brassica nigra). Brassica 2004, 4th ISHS Symposium Brassicas/Proc 14th Crucifer Genet Workshop, p 175.

    Google Scholar 

  • Marvin HJP, Mastebroek HD, Becu DMS et al (2000) Investigation into the prospects of five novel oilseed crops within Europe. Outlook Agric 29:47–53

    Google Scholar 

  • Mastebroek HD, Marvin HJP (2000) Breeding prospects of Lunaria annua L. Ind Crops Prod 11:139–143

    Google Scholar 

  • Mathews S, Singhal RS, Kulkarni PR (1993) Some physicochemical characteristics of Lepidium sativum (haliv) seeds. Nahrung 37:69–71

    CAS  Google Scholar 

  • Matsuzawa Y, Mekiyanon S, Kaneko Y et al (1999) Male sterility in alloplasmic Brassica rapa L. carrying Eruca sativa cytoplasm. Plant Breed 118:82–84

    Google Scholar 

  • Matthäus B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crops Prod 12:9–18

    Google Scholar 

  • McCarthy BC, Hanson SL (1998) An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73

    Google Scholar 

  • McVetty PBE, Austin RB, Morgan CL (1989) A comparison of the growth, photosynthesis, stomatal conductance and water use efficiency of Moricandia and Brassica species. Ann Bot 64:87–94

    Google Scholar 

  • Megdiche W, Ben Amor N, Bebez A et al (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    Google Scholar 

  • Mensuali-Sodi A, Brea M, Panizza M et al (1994) In vitro-regenration of shoots in Matthiola incana L. from seedling explants of different age. Gartenbauwissenschaft 59:77–80

    Google Scholar 

  • Mishra RS, Abdin MZ, Uprety DC (1999) Interactive effects of elevated CO2 and moisture stress on the photosynthesis, water relation and growth of Brassica species. J Agron Crop Sci 182:223–229

    Google Scholar 

  • Mitchell JP, Thomsen CD, Graves WL et al (1999) Cover crops for saline soils. J Agron Crop Sci 183:167–178

    Google Scholar 

  • Mithen RF, Herron C (1991) Transfer of disease resistance to oilseed rape from wild Brassica species. Proc GCIRC 8th Int Rapeseed Congr:pp 244–249

    Google Scholar 

  • Mithen RF, Magrath R (1992) Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica spp. Plant Breed 108:60–68

    Google Scholar 

  • Mithen RF, Lewis BG, Heaney RK et al (1987a) Glucosinolates of wild and cultivated Brassica species. Phytochemistry 26:1969–1973

    Google Scholar 

  • Mithen RF, Lewis BG, Heaney RK et al (1987b) Resistance of leaves of Brassica species to Leptosphaeria maculans. Trans Br Mycol Soc 88:525–531

    Google Scholar 

  • Mithila J, Hall JC (2007) Production of an auxinic herbicide-resistant micro spore-derived doubled haploid wild mustard (Sinapis arvensis L.) plant. Crop Prot 26:357–362

    Google Scholar 

  • Mohapatra T, Kirti PB, Kumar VD et al (1998) Random chloroplast segregation and mitochondrial genome recombination in somatic hybrid plants of Diplotaxis catholica + Brassica juncea. Plant Cell Rep 17:814–818

    Google Scholar 

  • Mohiuddin S, Qureshi RA, Qureshi SA et al (1990) Studies on the repellent activity of some indigenous plant oils against Tribolium castaneum (Herbst.). Pak J Sci Ind Res 33:326–328

    Google Scholar 

  • Morinaga S, Nagano AJ, Miyazaki S et al (2008) Ecogenomics of cleistogamous and chasmogamous flowering: genome wide gene expression patterns from cross-species microarray analysis in Cardamine kokaiensis (Brassicaceae). J Ecol 96:1086–1097

    Google Scholar 

  • Mulder JH, Mastebroek HD (1996) Variation for agronomic characteristics in Crambe hispanica, a wild relative of Crambe abyssinica. Euphytica 89:267–278

    Google Scholar 

  • Munir M, Rashid H, Rauf M, Chaudhry Z, Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyl of Brassica napus by using different media combinations. Pakistan J Bot 40:309–315

    Google Scholar 

  • Munshi MK, Roy PK, Kabir MH, Ahmed G (2007) In vitro regeneration of cabbage (Brassica oleracea L. var. capitata) through hypocotyl and cotyledon culture. Plant Tissue Cult Biotechnol 17:131–136

    Google Scholar 

  • Murayama K, Yahara T, Terachi T (2004) Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.). Mol Ecol 13:2459–2464

    PubMed  Google Scholar 

  • Naumova TN, van der Laak J, Osadtchiy J et al (2001) Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). Sex Plant Reprod 14:195–200

    Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshina Univ 6:39–78

    Google Scholar 

  • Onyilagha J, Bala A, Hallett R et al (2003) Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem Syst Ecol 31:1309–1322

    Google Scholar 

  • Özeker E, Esiyok D (1999) Identification of phenolic compounds in seeds of different rocket species (Eruca sativa and Diplotaxis tenuifolia) and land cress (Lepidium sativum). Cruciferae Newsl Eucarpia 21:21–22

    Google Scholar 

  • Pachagounder P, Lamb RJ, Bodnaryk RP (1998) Resistance to the flea beetle Phyllotreta cruciferae (Coleoptera: Chrysomelidae) in false flax, Camelina sativa (Brassicaceae). Can Entomol 130:235–240

    Google Scholar 

  • Pahwa RS, Banga SK, Gogna KPS et al (2004) Tournefortii male sterility system in Brassica napus. Identification, expression and genetic characterization of male fertility restorers. Plant Breed 123:444–448

    Google Scholar 

  • Palmer CE, Warwick SI, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytoremediation 3:245–287

    Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    PubMed  Google Scholar 

  • Paunescu A (2008) Histological investigation of the secondary somatic embryogenesis of Alyssum borzaeanum (Brassicaceae). Phytol Balc 14:111–117

    Google Scholar 

  • Pathania A, Bhat SR, Kumar VD et al (2003) Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. Theor Appl Genet 107:455–461

    PubMed  Google Scholar 

  • Pattison AB, Versteeg C, Akiew S et al (2006) Resistance of Brassicaceae plants to root-knot nematode (Meloidogyne spp.) in northern Australia. Int J Pest Manag 52:53–62

    Google Scholar 

  • Pedras MSC, Chumala PB, Suchy M (2003a) Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry 64:949–956

    PubMed  Google Scholar 

  • Pedras MSC, Montaut S, Zaharia IL et al (2003b) Transformation of the host-selective toxin destruxin B by wild crucifers: probing a detoxification pathway. Phytochemistry 64:957–963

    CAS  PubMed  Google Scholar 

  • Peisker M, Heinemann I, Pfeffer M (1998) A study on the relationship between leaf conductance, CO2 concentration and carboxylation rate in various species. Photosynth Res 56:35–43

    Google Scholar 

  • Peláez F, Collado J, Arenal F et al (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761

    Google Scholar 

  • Peterson CJ, Cosse A, Coats JR (2000) Insecticidal components in the meal of Crambe abyssinica. J Agric Urban Entomol 17:27–36

    Google Scholar 

  • Plessers AG, McGregor WG, Carson RB et al (1962) Species trials with oilseed plants II. Camelina. Can J Plant Sci 42:452–459

    Google Scholar 

  • Ploschuk EL, Windauer L, Ravetta DA (2001) Potential value of traits associated with perennial habit in the development of new oil-seed crops for arid lands. A comparison of Lesquerella fendleri and L. mendocina subjected to water stress. J Arid Environ 47:373–386

    Google Scholar 

  • Pradhan AK, Mukopadhyay A, Pental D (1991) Identification of the putative cytoplasmic donor of a cms system in Brassica juncea. Plant Breed 106:204–208

    Google Scholar 

  • Prakash S, Bhat SR (2007) Contribution of wild crucifers in Brassica improvement: past accomplishment and future perspectives. Proc GCIRC 12th Int Rapeseed Congr 1:pp 213–215

    Google Scholar 

  • Prakash S, Chopra VL (1988a) Introgression of resistance to pod shatter in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101:167–168

    Google Scholar 

  • Prakash S, Chopra VL (1988b) Synthesis of alloplasmic Brassica campestris and induction of cytoplasmic male sterility. Plant Breed 101:253–255

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1–57

    Google Scholar 

  • Prakash S, Kirti PB, Bhat SR et al (1998) A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet 97:488–492

    Google Scholar 

  • Prakash S, Ahuja I, Upreti HC et al (2001) Expression of male sterility in alloplasmic Brassica juncea with Erucastrum canariense cytoplasm and the development of a fertility restoration system. Plant Breed 120:479–482

    Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol http://www/ejbiotechnology.info/content/vol6/issue 3/index.html

  • Prem D, Gupta K, Sarkar G, Agnihotri A (2008) Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tissue Organ Cult 93:269–282

    Google Scholar 

  • Przedpelska E, Wierzbicka M (2007) Arabidopsis arenosa (Brassicaceae) from lead-zinc waste heap in southern Poland – a plant with high tolerance to heavy metals. Plant Soil 299: 43–53

    Google Scholar 

  • Putnam DH, Budin JT, Field LA et al (1993) Camelina: a promising low-input oilseed. In: Janick J, Simon JE (eds) New crops: exploration, research, and commercialization, pp 314–322. Wiley, New York, NY

    Google Scholar 

  • Ramachandran S, Buntin GD, All JN et al (1998) Diamondback moth (Lepidoptera: Plutellidae) resistance of Brassica napus and B. oleracea lines with differing leaf characteristics. J Econ Entomol 91:987–992

    Google Scholar 

  • Ramsey AD, Ellis PR (1994) Resistance in wild brassicas to the cabbage whitefly, Aleyrodes proletella. ISHS Symposium on Brassicas, 9th Crucifer Genetics Workshop, Lisbon, Portugal, Abst.: p 32

    Google Scholar 

  • Rana JS, Khokhar KS, Singh H (1995) Relative susceptibility of Brassica species to mustard aphid, Lipaphis erysimi (Kalt.). J Insect Sci 8:96–97

    Google Scholar 

  • Rao GU, Shivanna KR (1996) Development of a new alloplasmic CMS Brassica napus in the cytoplasmic background of Diplotaxis siifolia. Cruciferae Newsl Eucarpia 18:68–69

    Google Scholar 

  • Rao GU, Batra-Sarup V, Prakash S et al (1994) Development of new cytoplasmic male-sterility system in Brassica juncea through wide hybridization. Plant Breed 112:171–174

    Google Scholar 

  • Rashid H, Toriyama K, Hinata K (1996) Transgenic plant production from leaf disc of Moricandia arvensis using Agrobacterium tumefaciens. Plant Cell Rep 15:799–803

    Google Scholar 

  • Ravetta DA, Soriano A (1998) Alternatives for the development of new industrial crops for Patagonia. Ecol Austral 8:297–307

    Google Scholar 

  • Razmjoo K, Toriyama K, Ishii R et al (1996) Photosynthetic properties of hybrids between Diplotaxis muralis DC, a C3 species, and Moricandia arvensis (L.) DC, a C3–C4 intermediate species in Brassicaceae. Genes Genet Syst 71:189–192

    Google Scholar 

  • Rehn F, Arbeiter A, Siemens J (2004) The gene RPB1 confers resistance of Arabidopsis thaliana to the obligate biotrophic parasite Plasmodiophora brassicae. Brassica 2004, 4th ISHS Symposium Brassicas/14th Crucifer Genet Workshop, Abst.: p 137

    Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: Lures, treats and traps. Entomol Exp Appl 104:35–42

    Google Scholar 

  • Rimmer SR, van den Berg CJG (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14:56–66

    Google Scholar 

  • Riungu TC, McVetty PBE (2000) Diplotaxis muralis (mur) cytoplasmic male sterility system maintainer occurrence and frequency in summer rape. Can J Plant Sci 80:587–589

    Google Scholar 

  • Riungu TC, McVetty PBE (2003a) Development and evaluation of Diplotaxis muralis (mur) cytoplasmic male sterility system in summer rape. Can J Plant Sci 83:261–269

    Google Scholar 

  • Riungu TC, McVetty PBE (2003b) Inheritance of maintenance and restoration of the Diplotaxis muralis (mur) cytoplasmic male sterility system in summer rape. Can J Plant Sci 83: 515–518

    Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard (Alliaria petiolata (Beib.) Cavara and Grande)) extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152

    Google Scholar 

  • Rodman JE (1974) Systematics and evolution of the genus Cakile (Cruciferae). Contrib Gray Herb 205:3–146

    Google Scholar 

  • Rodman JE (1976) Differentiation and migration of Cakile (Cruciferae): seed glucosinolate evidence. Syst Bot 1:137–148

    Google Scholar 

  • Roy BA (1995) The breeding systems of six species of Arabis (Brassicaceae). Am J Bot 82:869–877

    Google Scholar 

  • Roy BA, Rieseberg LH (1989) Evidence for apomixis in Arabis. J Hered 80:506–508

    Google Scholar 

  • Ruwandi A, Gillott C (1998) Resistance of Brassica, especially B. juncea (L.) Czern, genotypes to the diamondback moth, Plutella xylostella (L.). Crop Prot 17:85–94

    Google Scholar 

  • Rylott EL, Metzlaff K, Rawsthorne S (1998) Developmental and environmental effects on the expression of the C3–C4 intermediate phenotype in Moricandia arvensis. Plant Physiol 118:1277–1284

    PubMed  Google Scholar 

  • Salisbury PA (1987) Blackleg resistance in weedy crucifers. Cruciferae Newsl Eucarpia 12:90

    Google Scholar 

  • Salisbury PA (1989) Potential utilization of wild crucifer germplasm in oilseed Brassica breeding. Proc. 7th Austral Rapeseed Agron Breeders Workshop, pp 51–53

    Google Scholar 

  • Salywon AM, Dierig DA, Rebman JP et al (2005) Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm. Am J Bot 92:53–62

    Google Scholar 

  • Sánchez-Yélamo MD (1994) A chemosystematic survey of flavonoids in the Brassicinae: Diplotaxis. Bot J Linn Soc 115:9–18

    Google Scholar 

  • Sánchez-Yélamo MD (2001) Study of flavonoid patterns in some species of Erucastrum (Brassicinae). Cruciferae Newsl Eucarpia 23:5–6

    Google Scholar 

  • Sánchez-Yélamo MD (2004) Taxonomic relationships among Erucastrum and Brassica species based on flavonoid compounds. Cruciferae Newsl Eucarpia 25:13–14

    Google Scholar 

  • Schranz ME, Dobes C, Koch MA et al (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Google Scholar 

  • Schranz ME, Kantama L, de-Jong H et al (2006a) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438

    PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006b) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    PubMed  Google Scholar 

  • Schuster A, Friedt W (1998) Glucosinolate content and composition as parameters of quality of Camelina seed. Ind Crops Prod 7:297–302

    CAS  Google Scholar 

  • Séguin-Swartz G, Warwick SI, Scarth R (1997) Cruciferae: compendium of trait genetics. Agric Agri-Food Res Branch Tech Bull No. 1997-3E and pdf file; http://www.brassica.info)

  • Sharma G, Kumar VD, Haque A et al (2002) Brassica coenospecies: a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 125:411–417

    Google Scholar 

  • Sharma N, Cram D, Huebert T et al (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171–184

    PubMed  Google Scholar 

  • Sharma TR, Singh BM (1992) Transfer of resistance to Alternaria brassicae in Brassica juncea through interspecific hybridization among Brassica. J Genet Breed 46:373–378

    Google Scholar 

  • Shukla VKS, Dutta PC, Artz WE (2002) Camelina oil and its unusual cholesterol content. J Am Oil Chem Soc 79:965–969

    CAS  Google Scholar 

  • Siemens J (2002) Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech J Genet Plant Breed 38:155–157

    Google Scholar 

  • Siemens J, Köhn C, Sacristán MD (1995) Plant regeneration from root explants of Matthiola incana (L.) R.Br. and transformation attempts. Cruciferae Newsl Eucarpia 17:42–43

    Google Scholar 

  • Sikdar SR, Chatterjee G, Das S et al (1987) Regeneration of plants from mesophyll protoplasts of the wild crucifer Eruca sativa Lam. Plant Cell Rep 8:722–725

    Google Scholar 

  • Sikdar SR, Sengupta S, Das S et al (1990) Plant regeneration from mesophyll protoplasts of Diplotaxis muralis, a wild crucifer. Plant Cell Rep 6:486–489

    Google Scholar 

  • Singh MP, Kolte SJ (1999) Differential reactions of various crucifer host species against isolates of Peronospora parasitica. J Mycol Plant Pathol 29:118–121

    Google Scholar 

  • Singh R, Ellis PR, Pink DAC et al (1994) An investigation of the resistance to cabbage aphid in brassica species. Ann Appl Biol 125:457–465

    Google Scholar 

  • Singh SP, Sachan GC (1997) Effect of different temperatures and host plants on the developmental behaviour of mustard sawfly, Athalia proxima. Indian J Ent 59:34–40

    Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicaceae. Transgenic Res 12:115–122

    PubMed  Google Scholar 

  • Smisek A, Doucet C, Jones M et al (1998) Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci 46:200–204

    Google Scholar 

  • Sodhi YS, Chandra A, Verma JK et al (2006) A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea. Theor Appl Genet 114:93–99

    PubMed  Google Scholar 

  • Song K, Osborn TC (1992) Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1101

    Google Scholar 

  • Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506

    Google Scholar 

  • Sonntag K, Gramenz J (2004) In vitro regeneration system in Crambe via protoplast culture. Cruciferae Newsl Eucarpia 25:101–102

    Google Scholar 

  • Sonntag K, Rudloff E (2001) Preliminary studies on genetic transformation of Crambe abyssinica. Cruciferae Newsl Eucarpia 23:33–34

    Google Scholar 

  • Soroka J, Gugel R, Elliott R et al (2003) Resistance of crucifer species to insect pests. Proc GCIRC 11th Int Rapeseed Congr 3:pp 1031–1033

    Google Scholar 

  • Specht CE, Diederichsen A (2001) Cruciferae. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops vol 3, pp 1413–1481. Springer, Berlin

    Google Scholar 

  • Stobbs LW, Stirling A (1990) Susceptibility of Ontario weed species to turnip mosaic virus. Can J Plant Pathol 12:255–262

    Google Scholar 

  • Stoner K (1990) Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environ Entomol 19:730–739

    Google Scholar 

  • Sun WC, Pan QY, An XH et al (1991) Brassica and Brassica-related oilseed crops in Gansu, China. Proc GCIRC 8th Int Rapeseed Congr:pp 1130–1135

    Google Scholar 

  • Sun WC, Yang Q, Zhang J et al (1999) Assessment on drought tolerance of Eruca sativa genotypes from northwestern China. Proc GCIRC 10th Int Rapeseed Congr, Contribution #628 on CD ROM; also available at http://www.regional.org.au/au/gcirc

  • Taji T, Seki M, Satou M et al (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis -related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  Google Scholar 

  • Taskin KM, Turgut K, Scott RJ (2004) Apomictic development in Arabis gunnisoniana. Isr J Plant Sci 52:155–160

    Google Scholar 

  • Tatsuzawa F, Saito N, Shinoda K et al (2006) Acylated cyanidin 3-sambubioside-5-glucosides in three garden plants of the Cruciferae. Phytochemistry 67:1287–1295

    PubMed  Google Scholar 

  • Tattersall A, Millam S (1999) Establishment and in vitro regeneration studies of the potential oil crop species Camelina sativa. Plant Cell Tissue Organ Cult 55:147–149

    Google Scholar 

  • Tewari JP (1991) Current understanding of resistance to Alternaria brassiceae in Cruciferae. Proc GCIRC 8th Int Rapeseed Congr:pp 471–476

    Google Scholar 

  • Tewari JP, Bansal VK, Tewari I et al (1996) Reactions of some wild and cultivated accessions of Eruca against Leptosphaeria maculans. Cruciferae Newsl Eucarpia 18:130–131

    Google Scholar 

  • Thierfelder A, Hackenberg E, Nichterlein K et al (1991) Development of nematode-resistant rapeseed genotypes via interspecific hybridization. Proc GCIRC 8th Int Rapeseed Congr: pp 269–273

    Google Scholar 

  • Thompson KF (1963) Resistance to the cabbage aphid (Brevicoryne brassicae) in brassica plants. Nature 198:209

    Google Scholar 

  • Tian ZH, Meng JL (1998) Plant regeneration from cultured protoplasts of Moricandia nitens. Plant Cell Tissue Organ Cult 55:217–221

    Google Scholar 

  • Turk MA, Tawaha AM (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot 22:673–677

    Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ueno O, Bang SW, Wada Y et al (2003) Structural and biochemical dissection of photorespiration in hybrids differing in genome constitution between Diplotaxis tenuifolia (C3–C4) and radish (C3). Plant Physiol 132:1550–1559

    PubMed  Google Scholar 

  • Ulmer BJ, Dosdall LM (2006) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil. Entomol Exp Appl 12: 203–213

    Google Scholar 

  • Uprety DC, Shyam-Prakash P, Abrol YP et al (1995) Variability for photosynthesis in Brassica and allied genera. Indian J Plant Physiol 38:207–213

    Google Scholar 

  • Vaughn SF, Berhow MA (2005) Glucosinolate hydrololysis products from various plant sources: pH effects, isolation and purification. Ind Crops Prod 21:193–202

    CAS  Google Scholar 

  • Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 47:231–238

    Google Scholar 

  • Velasco L, Goffman F, Becker HC (1998) Variability for the fatty acid composition of the seed oil in a germplam collection of the genus Brassica. Genet Resour Crop Evol 45:371–382

    Google Scholar 

  • Veldhuis LJ, Hall LM, O‘Donovan JT et al (2000) Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J Agric Food Chem 48:2986–2990

    PubMed  Google Scholar 

  • Verma SS, Chiinnusarny V, Bansal KC (2008) A simplified floral dip method for transformation of Brassica napus and B. carinata. J Plant Biochem Biotechnol 17:197–200

    Google Scholar 

  • Vinterhalter B, Savic J, Platisa J, Raspor M, Ninkovic S, Mitic N, Vinterhalter D (2008) Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst. & Kit. Plant Cell Tissue Organ Cult 94:299–303

    Google Scholar 

  • Vioque J, Pastor J, Vioque E (1990) Analysis of the fatty acids and sterols of the oils of four Brassica species. Lagascalia 16:95–103

    Google Scholar 

  • Walker RL, Walker KC, Booth EJ (2003) Adaptation potential of the novel oilseed crop, Honesty (Lunaria annua L.), to the Scottish climate. Ind Crops Prod 18:7–15

    Google Scholar 

  • Wan Z, Fu T, Tu J et al (2007) Genetic classification of a newly identified cytoplasmic male sterility hau CMS system in Brassica napus L. Proc. Proc GCIRC 12th Int Rapeseed Congr 1: pp 18–24

    Google Scholar 

  • Wang J, Li Y, Liang C (2008a) Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea. Transgenic Res 17:417–424

    PubMed  Google Scholar 

  • Wang W, Wang C, Huang BL, Huang B (2008b) Agrobacterium tumefaciens-mediated transformation of Lesquerella fendleri L., a potential new oil crop with rich lesquerolic acid. Plant Cell Tissue Organ Cult 92:165–171

    Google Scholar 

  • Wang YP, Lan LF, Li XF et al (1999) A preliminary assessment of some wild cruciferous oil plant(s) in the western Sichuan of China and their utilization. Cruciferae Newsl Eucarpia 21:29–30

    Google Scholar 

  • Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Pl Syst Evol 259:237–248

    Google Scholar 

  • Warwick SI, Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferae, tribe Brassiceae). Can J Bot 71:906–918

    Google Scholar 

  • Warwick SI, Gugel R (2003) Genetic variation in the Crambe abyssinicaC. hispanicaC. glabrata complex. Genet Resour Crop Evol 50:291–305

    Google Scholar 

  • Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL intron sequences. Can J Bot 83:467–483

    Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae. 3rd Ed. Agric Agri-food Res Branch Publ, Ottawa,ON, Canada. Contribution No. 991475 and pdf files at http://www.brassica.info

  • Warwick SI, Simard MJ, Légère A et al (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L, Raphanus raphanistrum L, Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor Appl Genet 107:528–539

    PubMed  Google Scholar 

  • Warwick SI, Sauder C, Beckie HJ (2005) Resistance in Canadian biotypes of wild mustard (Sinapis arvensis L.) to acetolactate synthase (ALS)-inhibiting herbicides. Weed Sci 53:631–639

    Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006a) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Google Scholar 

  • Warwick SI, Gugel R, McDonald T et al (2006b) Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada. Genet Resour Crop Evol 53:297–312

    Google Scholar 

  • Warwick SI, Gugel RK, Gómez-Campo C et al (2007a) Genetic variation in the Eruca vesicaria (L.) Cav. Plant Genet Resour Charact Util 5:142–153

    Google Scholar 

  • Warwick SI, Sauder C, Al-Shehbaz IA et al (2007b) Phylogenetic relationships in the Brassicaceae tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae based on nuclear ribosomal ITS DNA sequences. Ann Mo Bot Gard 94:56–78

    Google Scholar 

  • Warwick SI, James T, Falk KC (2008a) AFLP-based molecular characterization of Brassica rapa and diversity in Canadian spring turnip rape cultivars. Plant Genet Resour Charact Util 6: 11–21

    Google Scholar 

  • Warwick SI, Légère A, Simard MJ et al (2008b) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    PubMed  Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA (2008c) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Can J Bot 86:315–336

    CAS  Google Scholar 

  • Wechter WP, Farnham MW, Smith JP et al (2007) Identification of resistance to peppery leaf spot among Brassica juncea and Brassica rapa plant introductions. HortScience 42:1140–1143

    Google Scholar 

  • Westman AL, Dickson MH (1998) Disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris in Brassica nigra and other weedy crucifers. Cruciferae Newsl Eucarpia 20:87–88

    Google Scholar 

  • Westman AL, Kresovich S, Dickson MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106:253–259

    Google Scholar 

  • Williams PH, Pound GS (1963) Nature and inheritance of resistance to Albugo candida in radish. Phytopathology 53:1150–1154

    Google Scholar 

  • Winter H, Gaertig S, Diestel A et al (1999) Blackleg resistance of different origin transferred into Brassica napus. Proc GCIRC 10th Int Rapeseed Congr., Contribution #593 on CD ROM; also available at http://www.regional.org.au/au/gcirc

  • Winter H, Snowdon RJ, Bellin U et al (2002) Blackleg resistance gene transfer into Brassica napus from related species. 13th Crucifer Genetics Workshop, Davis, California, USA. Abst.:p 15.

    Google Scholar 

  • Winter H, Diestel A, Gärtig S et al (2003) Transfer of new blackleg resistances into oilseed rape. Proc GCIRC 11th Int Rapeseed Congr 1:19–21.

    Google Scholar 

  • Wong CE, Li Y, Whitty BR et al (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574

    PubMed  Google Scholar 

  • Xu TF, Zhang L, Sun XF et al (2004) Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. Biotechnol Appl Biochem 39:123

    PubMed  Google Scholar 

  • Yamagishi H (1998) Distribution and allelism of restorer genes for Ogura cytoplasmic male sterility in wild and cultivated radishes. Genes Genet Syst 73:79–83

    Google Scholar 

  • Yang C, Mu X (2006) Allelopathic effects of companion weed Descurainia sophia on wheat. Yingyong Shengtai Xuebao 17:2389–2393

    PubMed  Google Scholar 

  • Yaniv Z, Elber Y, Zur M et al (1991) Differences in fatty acid composition of oils of wild cruciferae seed. Phytochemistry 30:841–843

    Google Scholar 

  • Yaniv Z, Schafferman D, Amar Z (1998) Tradition, uses and biodiversity of rocket (Eruca sativa, Brassicaceae in Israel). Econ Bot 52:394–400

    Google Scholar 

  • Yaniv Z, Schafferman D, Elber Y et al (1994) Evaluation of Sinapis alba, native to Israel, as a rich source of erucic acid in seed oil. J Industr Crops 2:137–142

    Google Scholar 

  • Yaniv Z, Schafferman D, Zur M et al (1997) Evaluation of Matthiola incana as a source of omega-3-linolenic acid. Ind Crops Prod 6:285–289

    CAS  Google Scholar 

  • Zhang L, Xu TF, Sun XF et al (2003) Factors influencing shoot regeneration from cotyledons of tetraploid Isatis indigotica Fort. In Vitro Cell Dev Biol Plant 39:459–462

    Google Scholar 

  • Zhang T, Cao ZY, Wang XY (2005) Induction of somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa Mill. In Vitro Cell Dev Biol Plant 41:655–657

    Google Scholar 

  • Zhang W, Fu Q, Dai X, Bao M (2008) The culture of isolated microspores of ornamental kale (Brassica oleracea var. acephala) and the importance of genotype to embryo regeneration. Sci Hort 117:69–72

    CAS  Google Scholar 

  • Zheng HG, Hall JC (2001) Understanding auxinic herbicide resistance in wild mustard: physiological, biochemical, and molecular genetic approaches. Weed Sci 49:276–281

    Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crops Prod 6:113–119

    Google Scholar 

  • Zubr J, Matthäus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crops Prod 15:155–162

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne I. Warwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Warwick, S.I. (2011). Brassicaceae in Agriculture. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_2

Download citation

Publish with us

Policies and ethics