Skip to main content

Plant Products with Antifungal Activity: From Field to Biotechnology Strategies

  • Chapter
  • First Online:
Natural Products as Source of Molecules with Therapeutic Potential

Abstract

In this chapter, informations on the recent advances regarding antifungal activity of natural products obtained from plants collected directly from their natural habitat or from plant cell and organ, cultures have been reported. The biotechnological approaches could increase uniformity and predictability of the extracts and overcome problems associated with geographical, seasonal, and environmental variations. Human fungal pathogens are the cause of severe diseases associated with high morbidity and mortality. The major human fungal pathogens are Candida species, dermatophytes, Aspergillus species, and Cryptococcus neoformans. Side effects and resistance are frequently attributed to the current antifungal agents. Moreover, the treatments often require long-term therapy and are not resolving. Plants represent a source of antifungal agents, but up to date, the number of new phytochemicals reaching the market is very low. This review attempts to summarize the current status of botanical screening efforts, as well as in vitro and in vivo studies on antifungal activity of plant products. Despite the currently non-uniform regulatory framework in all the states, the plant-derived products are increasingly in demand for their effectiveness. The basic conclusion from these studies is that rigorous, well-designed clinical trials are needed to validate the effectiveness and safety of plant extracts for their use as antifungals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abba Y, Hassim H, Hamzah H, Noordin MM (2015) Antiviral activity of resveratrol against human and animal viruses. Adv Virol 65(6):297–303

    Google Scholar 

  • Abedini A, Roumy V, Mahieux S et al (2013) Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). J Evid Based Complement Alternat Med 2013:1–11

    Article  Google Scholar 

  • Adrian M, Jeandet P, Veneau J et al (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23(7):1689–1702

    Article  CAS  Google Scholar 

  • Ahmad I (2016) Recent insight into the biological activities of synthetic xanthone derivatives. Eur J Med Chem 116:267–280

    Article  CAS  PubMed  Google Scholar 

  • Ahmad K, Talha Khalil A, Somayya R (2016) Antifungal, phytotoxic and hemagglutination activity of methanolic extracts of Ocimum basilicum. J Tradit Chin Med 36(6):794–798

    Article  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Akroum S (2017) Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L. J Mycol Med 27(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Alimpić A, Knežević A, Milutinović M et al (2017) Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind Crop Prod 105:1–9

    Article  CAS  Google Scholar 

  • Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:S445–S451

    Article  CAS  PubMed  Google Scholar 

  • Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agr Sci 5(5):572–576

    CAS  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avato P, Raffo F, Guglielmi G et al (2004) Extracts from St John’s wort and their antimicrobial activity. Phytother Res 18(3):230–232

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP et al (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40(11):983–995

    Article  CAS  Google Scholar 

  • Balakumar S, Rajan S, Thirunalasundari T et al (2011) Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pac J Trop Biomed 1(4):309–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  • Bansod S, Rai M (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 3(2):81–88

    Google Scholar 

  • Basri DF, Xian LW, Abdul Shukor NI et al (2014) Bacteriostatic antimicrobial combination: antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus. Biomed Res Int 2014:1–8

    Article  CAS  Google Scholar 

  • Bassiri-Jahromi S, Pourshafie MR, Ardakani EM et al (2017) In vivo comparative evaluation of the pomegranate (Punica granatum) peel extract as an alternative agent to nystatin against oral candidiasis. Iran J Med Sci 43(3):296–304

    Google Scholar 

  • Belchí-Navarro S, Almagro L, Lijavetzky D et al (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Belhadj A, Telef N, Saigne C et al (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46(4):493–499

    Article  CAS  PubMed  Google Scholar 

  • Bertoli A, Giovannini A, Ruffoni B et al (2008) Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56(13):5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Bhuyan DJ, Vuong QV, Chalmers AC et al (2017) Phytochemical, antibacterial and antifungal properties of an aqueous extract of Eucalyptus microcorys leaves. S Afr J Bot 112:180–185

    Article  CAS  Google Scholar 

  • Bragutsa EV (2007) Treatment of chronic resistant forms of fungal skin lesions (malasshesiosis and mycosis of the foot) using combined therapy with the Terbizil preparation. Ukr. J Dermatol, Venereal, Brach Metol 1:57–59

    Google Scholar 

  • Brandle JE, Starratt AN, Gijzen M (1998) Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci 78(4):527–536

    Article  CAS  Google Scholar 

  • Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119(2):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brighenti FL, Salvador MJ, Gontijo AVL et al (2017) Plant extracts: initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol 12:15–27

    Google Scholar 

  • Brooks GF et al (2013) Jawetz Melnick & Adelbergs medical microbiology, 26th edn. McGraw-Hill, New York

    Google Scholar 

  • Buck M, Hamilton C (2011) The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Rev Eur Community Int Environ Law 20(1):47–61

    Article  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32(3):203–217

    Article  CAS  PubMed  Google Scholar 

  • Cabañes FJ, Vega S, Castellá G (2011) Malassezia cuniculi sp. nov., a novel yeast species isolated from rabbit skin. Mala Med Mycol 49(1):40–48

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23(4):180–185

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Zuber JE, Navarrete-Dechent C, Bonifaz A et al (2016) Cutaneous involvement in the deep mycoses: a literature review. Part I—subcutaneous mycoses. Actas Dermosifiliogr 107(10):806–815

    Article  CAS  PubMed  Google Scholar 

  • Chalal M, Klinguer A, Echairi A et al (2014) Antimicrobial activity of resveratrol analogues. Molecules 19(6):7679–7688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan MMY (2002) Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol 63(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Maiti K, Kundu AP et al (2001) Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands. J Ethnopharmacol 77(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Yu H, Luo HM et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155

    Article  CAS  Google Scholar 

  • Chuang PH, Lee CW, Chou JY et al (2007) Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 98(1):232–236

    Article  CAS  PubMed  Google Scholar 

  • Clouser CL, Chauhan J, Bess MA et al (2012) Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. Bioorg Med Chem Lett 22(21):6642–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conceição LFR, Ferreres Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA et al (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • De Assis PA, Theodoro PN, De Paula JE et al (2014) Antifungal ether diglycosides from Matayba guianensis Aublet. Bioorg Med Chem Lett 24(5):1414–1416

    Article  CAS  PubMed  Google Scholar 

  • De Leo A, Arena G, Lacanna E et al (2012) Resveratrol inhibits epstein barr virus lytic cycle in Burkitt’s lymphoma cells by affecting multiple molecular targets. Antivir Res 96(2):196–202

    Article  CAS  PubMed  Google Scholar 

  • De Morais CB, Scopel M, Pedrazza GPR et al (2017) Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J Mycol Med 27(4):530–538

    Article  PubMed  Google Scholar 

  • Debnath M (2007) Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J Med Plants Res 2(2):045–051

    Google Scholar 

  • Decendit A, Waffo-Teguo P, Richard T et al (2002) Galloylated catechins and stilbene diglucosides in Vitis vinifera cell suspension cultures. Phytochemistry 60(8):795–798

    Article  CAS  PubMed  Google Scholar 

  • Denning DW, Bromley MJ (2015) How to bolster the antifungal pipeline. Science 347(6229):1414–1416

    Article  CAS  PubMed  Google Scholar 

  • Denning DW, Venkateswarlu K, Oakley KL et al (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41(6):1364–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias MI, Sousa MJ, Alves RC et al (2016) Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind Crop Prod 82:9–22

    Article  CAS  Google Scholar 

  • DiDone L, Oga D, Krysan DJ (2011) A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms. Yeast 28(8):561–568

    Article  CAS  PubMed  Google Scholar 

  • Docherty JJ, Fu MMH, Stiffler BS et al (1999) Resveratrol inhibition of herpes simplex virus replication. Antivir Res 43(3):145–155

    Article  CAS  PubMed  Google Scholar 

  • Docherty JJ, Sweet TJ, Bailey E et al (2006) Resveratrol inhibition of varicella-zoster virus replication in vitro. Antivir Res 72(3):171–177

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dovigo LN, Pavarina AC, Carmello JC et al (2011) Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg Med 43(9):927–934

    Article  PubMed  Google Scholar 

  • El-Atawi K, Elhalik M, Kulkarni T et al (2017) Evolving invasive neonatal systemic candidiasis, a review. J Pediatr Neonatal Care 6(6):00271

    Article  Google Scholar 

  • Endo EH, Costa GM, Nakamura TU et al (2015) Antidermatophytic activity of hydroalcoholic extracts from Rosmarinus officinalis and Tetradenia riparia. J Mycol Med 25(4):274–279

    Article  CAS  PubMed  Google Scholar 

  • Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55(9):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Falahati M, Tabrizib NO, Jahaniani F (2005) Anti dermatophyte activities of Eucalyptus camaldulensis in comparison with Griseofulvin. Iran J Pharmacol Ther 4(2):80–83

    Google Scholar 

  • Ferri M, Tassoni A, Franceschetti M et al (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9(3):610–624

    Article  CAS  PubMed  Google Scholar 

  • Ferri M, Dipalo SC, Bagni N et al (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124(4):1473–1479

    Article  CAS  Google Scholar 

  • Fernanda Lourenção Brighenti, Marcos José Salvador, Aline Vidal Lacerda Gontijo, Alberto Carlos Botazzo Delbem, Ádina Cléia Botazzo Delbem, Cristina Pacheco Soares, Maria Alcionéia Carvalho de Oliveira, Camila Miorelli Girondi, Cristiane Yumi Koga-Ito, (2017) Plant extracts: initial screening, identification of bioactive compounds and effect against biofilms. Future Microbiology 12(1):15–27

    Google Scholar 

  • Filip R, Davicino R, Anesini C (2010) Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res 24(5):715–719

    PubMed  Google Scholar 

  • Franklin G, Conceição LF, Kombrink E et al (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Galindo I, Hernáez B, Berná J et al (2011) Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir Res 91(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Gerth A, Schmidt D, Wilken D (2006) The production of plant secondary metabolites using bioreactors. In: XXVII international horticultural congress-IHC2006: international symposium on plant biotechnology: From Bench to 764, pp 95–104

    Google Scholar 

  • Grohskopf LA, Vincent JL (1996) Systemic Candida infections. Yale J Biol Med 69(6):505–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gullo FP, Rossi SA, de CO Sardi J et al (2013) Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Diss 32(11):1377–1391

    Article  CAS  Google Scholar 

  • Güllüce M, Sökmen M, Daferera D et al (2003) In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J Agric Food Chem 51(14):3958–3965

    Article  CAS  PubMed  Google Scholar 

  • Gurgel LA, Sidrim JJC, Martins DT (2005) In vitro antifungal activity of dragon’s blood from Croton urucurana against dermatophytes. J Ethnopharmacol 97(2):409–412

    Article  PubMed  Google Scholar 

  • Hall RD (2000) Plant cell culture initiation. Mol Biotechnol 16(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51(s4):2–15

    Article  PubMed  Google Scholar 

  • Hedayati MT, Pasqualotto AC, Warn PA (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153(6):1677–1692

    Article  CAS  PubMed  Google Scholar 

  • Hope WW, Castagnola E, Groll AH et al (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 18(s7):38–52

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R et al (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Kalidindi N, Thimmaiah NV, Jagadeesh NV et al (2015) Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. J Food Drug Anal 23(4):795–802

    Article  PubMed  Google Scholar 

  • Kauffmann CA, Mandell GL (2010) Atlas of fungal diseases. GEOTAR Media, Moscow, p 2010

    Google Scholar 

  • Kedzierski L, Curtis JM, Kaminska M et al (2007) In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes. J Parasitol Res 102(1):91–97

    Article  Google Scholar 

  • Khan N, Shreaz S, Bhatia R et al (2012) Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia 83(3):434–440

    Article  CAS  PubMed  Google Scholar 

  • Kim JY (2016) Human fungal pathogens: Why should we learn? J Microbiol 54(2016):145–148

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn K (2010) Toxic plants. Columbia University Press, New York

    Google Scholar 

  • Klotter F, Studer A (2014) Total synthesis of resveratrol-based natural products using a palladium-catalyzed decarboxylative arylation and an oxidative heck reaction. Angew Chem Int Ed Engl 53(9):2473–2476

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Uhle F, Wolff M et al (2015) Cardiac effects of echinocandins after central venous administration in adult rats. Antimicrob Agents Chemother 59(3):1612–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J et al (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31(2):351–358

    Article  CAS  Google Scholar 

  • Koroishi AM, Foss SR, Cortez DA et al (2008) In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J Ethnopharmacol 117(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Kulko AB (2012) Pathogens spectrum of deep human mycosis. Oncohematology 7(3):55–61

    Google Scholar 

  • Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373(15):1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227

    Article  PubMed  Google Scholar 

  • Laphookhieo S, Syers JK, Kiattansakul R et al (2006) Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem Pharm Bull 54(5):745–747

    Article  CAS  Google Scholar 

  • Larronde F, Richard T, Delaunay JC et al (2005) New stilbenoid glucosides isolated from Vitis vinifera cell suspension cultures (cv. Cabernet Sauvignon). Planta Med 71(09):888–890

    Article  CAS  PubMed  Google Scholar 

  • Lichterman BL (2004) Book: aspirin: the story of a wonder drug. Br Med J 329(7479):1408

    Article  Google Scholar 

  • Liu M, Katerere DR, Gray AI et al (2009) Phytochemical and antifungal studies on Terminalia mollis and Terminalia brachystemma. Fitoterapia 80(6):369–373

    Article  CAS  PubMed  Google Scholar 

  • Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crop Prod 34(1):785–801

    Article  CAS  Google Scholar 

  • Mahboubi M, HeidaryTabar R, Mahdizadeh E (2017) The anti-dermatophyte activity of Zataria multiflora essential oils. J Mycol Med 27(2):232–237

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud DA, Hassanein NM, Youssef KA et al (2011) Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz J Microbiol 42(3):1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudabadi AZ, Nasery MG (2009) Anti fungal activity of shallot, Allium ascalonicum Linn.(Liliaceae) in vitro. J Med Plants Res 3(5):450–453

    Google Scholar 

  • Mahmoudabadi AZ, Dabbagh MA, Fouladi Z (2007) In vitro anti-Candida activity of Zataria multiflora Boiss. J Evid Based Complement Altern Med 4(3):351–353

    Article  Google Scholar 

  • Mander L, Liu HW (2010) Comprehensive natural products II: chemistry and biology, vol 1. Elsevier

    Google Scholar 

  • Martins N, Barros L, Henriques M et al (2015a) Activity of phenolic compounds from plant origin against Candida species. Ind Crop Prod 74:648–670

    Article  CAS  Google Scholar 

  • Martins N, Ferreira IC, Barros L et al (2015b) Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Ind Crop Prod 66:62–67

    Article  Google Scholar 

  • Morais-Braga MFB, Carneiro JNP, Machado AJT et al (2016) Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. J Ethnopharmacol 24(194):1140–1152

    Article  Google Scholar 

  • Morales M, Ros B, Pedreno MA (2000) Plant stilbenes: recent advances in their chemistry and biology. Advances in Plant Physiology 3:39–70

    Google Scholar 

  • More NV, Kharat AS (2016) Antifungal and Anticancer Potential of Argemone mexicana L. Medicines 3(4):28

    Article  CAS  PubMed Central  Google Scholar 

  • Mulinacci N, Santamaria AR, Giaccherini C et al (2008) Anthocyanins and flavan-3-ols from grapes and wines of Vitis vinifera cv. Cesanese d’Affile. Nat Prod Res 22(12):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118(1):1–16

    Article  CAS  Google Scholar 

  • Naeem I, Saddiqe Z, Patel A et al (2010) Analysis of flavonoid and antimicrobial activity of extracts of Hypericum perforatum. Asian J Chem 22(5):3596

    CAS  Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka, pp 247–277. http://doi.org/10.5772/61442.

    Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacog Rev 1(1):69–79

    CAS  Google Scholar 

  • Neelofar K, Shreaz S, Rimple B et al (2011) Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 57(3):204–210

    Article  CAS  PubMed  Google Scholar 

  • Nejad BS, Deokule SS (2009) Anti-dermatophytic activity of Drynaria quercifolia (L.) J. Smith. Jundishapur J Microbiol 2(1):25

    Google Scholar 

  • Nepovím A, Vaněk T (1998) In vitro propagation of Stevia rebaudina plants using multiple shoot culture. Planta Med 64(08):775–776

    Article  PubMed  Google Scholar 

  • Nicolaou KC, Kang Q, Wu T et al (2010) Total synthesis and biological evaluation of the resveratrol-derived polyphenol natural products hopeanol and hopeahainol. J Am Chem Soc 132(21):7540–7548

    Article  CAS  PubMed  Google Scholar 

  • Onlom C, Khanthawong S, Waranuch N (2014) In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int J Cosmet Sci 6(1):74–78

    Article  Google Scholar 

  • Palamara AT, Nencioni L, Aquilano K et al (2005) Inhibition of influenza A virus replication by resveratrol. J Infect Dis 191(10):1719–1729

    Article  CAS  PubMed  Google Scholar 

  • Pappas PG, Kauffman CA, Andes DR (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62(4):e1–e50

    PubMed  PubMed Central  Google Scholar 

  • Parsaeimehr A, Sargsyan E, Javidnia K (2010) A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules 15(3):1668–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqua G, Monacelli B, Silvestrini A (2003) Accumulation of essential oils in relation to root differentiation in Angelica archangelica L. Eur J Histochem 47(1):87

    Article  CAS  PubMed  Google Scholar 

  • Pasqua G, Monacelli B, Valletta A et al (2005) Synthesis and/or accumulation of bioactive molecules in the in vivo and in vitro root. Plant Biosyst 139(2):180–188

    Article  Google Scholar 

  • Paulo L, Oleastro M, Gallardo E et al (2001) Antimicrobial properties of resveratrol: a review. In: Science against microbial pathogens: communicating current research and technological advances 2:1225–1235

    Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125

    Article  CAS  PubMed  Google Scholar 

  • Pezet R, Pont V (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Daniel M, Purkayastha RE (eds) Handbook of phytoalexin metabolism and action. Dekker, New York, pp 317–331

    Google Scholar 

  • Pezet R, Gindro K, Viret O et al (2004) Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis-Geilweilerhof 43(3):145–148

    CAS  Google Scholar 

  • Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125(1):S3–S13

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro L, Nakamura CV, Dias Filho BP et al (2003) Antibacterial xanthones from Kielmeyera variabilis mart. (Clusiaceae). Mem Inst Oswaldo Cruz 98(4):549–552

    Article  CAS  PubMed  Google Scholar 

  • Piraccini BM, Gianni C (2013) Update on the management of onychomycosis. G Ital Dermatol Venereol 148(6):633–638

    CAS  PubMed  Google Scholar 

  • Policegoudra RS, Chattopadhyay P, Aradhya SM et al (2014) Inhibitory effect of Tridax procumbens against human skin pathogens. J Herb Med 4(2):83–88

    Article  Google Scholar 

  • Pulianmackal AJ, Kareem AV, Durgaprasad K et al (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranganathan S, Balajee SAM (2000) Anti-Cryptococcus activity of combination of extracts of Cassia alata and Ocimum sanctum. Mycoses 43(7–8):299–301

    Article  CAS  PubMed  Google Scholar 

  • Rangkadilok N, Tongchusak S, Boonhok R et al (2012) In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia 83(3):545–553

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153

    Article  CAS  PubMed  Google Scholar 

  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264

    Article  CAS  Google Scholar 

  • Reichling J, Weseler A, Saller R (2001) A current review of the antimicrobial activity of Hypericum perforatum L. Pharmacopsychiatry 34(1):116–118

    Article  Google Scholar 

  • Rodrigues ER, Nogueira NGP, Zocolo GJ et al (2012) Pothomorphe umbellata: antifungal activity against strains of Trichophyton rubrum. J Mycol Med 22(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131(3):511–521

    Article  CAS  PubMed  Google Scholar 

  • Sakagami Y, Sawabe A, Komemushi S et al (2007) Antibacterial activity of stilbene oligomers against vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) and their synergism with antibiotics. Biocontrol Sci 12(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Santamaria AR, Antonacci D, Caruso G et al (2010) Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Natl Prod Res 24(15):1488–1498

    Article  CAS  Google Scholar 

  • Santamaria AR, Mulinacci N, Valletta A et al (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59(17):9094–9101

    Article  CAS  PubMed  Google Scholar 

  • Santamaria AR, Innocenti M, Mulinacci N et al (2012) Enhancement of viniferin production in Vitis vinifera L. cv. Alphonse Lavallée Cell suspensions by low-energy ultrasound alone and in combination with methyl jasmonate. J Agric Food Chem 60(44):11135–11142

    Article  CAS  PubMed  Google Scholar 

  • Schaller M, Friedrich M, Papini M et al (2016) Topical antifungal-corticosteroid combination therapy for the treatment of superficial mycoses: conclusions of an expert panel meeting. Mycoses 59(6):365–373

    Article  PubMed  Google Scholar 

  • Schultz TP, Boldin WD, Fisher TH et al (1992) Structure-fungicidal properties of some 3-and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemistry 31(11):3801–3806

    Article  CAS  Google Scholar 

  • Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53(2):356–362

    Article  CAS  PubMed  Google Scholar 

  • Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N et al (2006) In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia 77(4):321–323

    Article  PubMed  Google Scholar 

  • Shaokat SS, Hameed HA, Mohammad HJ (2017) Anti-fungal activity of Punica granatum I. peels powder and extracts from pathogenic samples. Indian J Pharm Sci 16(2):12–20

    Google Scholar 

  • Shariff N, Sudarshana MS, Umesha S et al (2006) Antimicrobial activity of Rauvolfia tetraphylla and Physalis minima leaf and callus extracts. Afr J Biotechnol 5(10):946–950

    Google Scholar 

  • Shin S, Kang CA (2003) Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett Appl Microbiol 36(2):111–115

    Article  CAS  PubMed  Google Scholar 

  • Simonetti G, Santamaria AR, D’Auria FD et al (2014) Evaluation of anti-Candida activity of Vitis vinifera L. seed extracts obtained from wine and table cultivars. Biomed Res Int 2014:1–11

    Article  CAS  Google Scholar 

  • Simonetti G, Tocci N, Valletta A et al (2016) In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Nat Prod Res 30(5):544–550. http://doi.org/10.1080/14786419.2017.1410811

  • Simonetti G, D’Auria FD, Mulinacci N et al (2017a) Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Nat Prod Res:1–5. http://doi.org/10.1080/14786419.2017.1410811

  • Simonetti G, D’auria FD, Mulinacci N (2017b) Anti-dermatophyte and anti-Malassezia activity of extracts rich in polymeric flavan-3-ols obtained from Vitis vinifera seeds. Phytother Res 31(1):124–131

    Article  CAS  PubMed  Google Scholar 

  • Snyder SA, Gollner A, Chiriac MI (2011) Regioselective reactions for programmable resveratrol oligomer synthesis. Nature 474(7352):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrinho ACN, de Souza EB, Rocha MFG et al (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind Crop Prod 84:108–115

    Article  CAS  Google Scholar 

  • Sökmen M, Serkedjieva J, Daferera D et al (2004) In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem 52(11):3309–3312

    Article  CAS  PubMed  Google Scholar 

  • Soliman S, Alnajdy D, El-Keblawy AA et al (2017) Plants’ natural products as alternative promising anti-Candida drugs. Pharmacogn Rev 11(22):104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Suksamrarn S, Suwannapoch N, Phakhodee W et al (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51(7):857–859

    Article  CAS  Google Scholar 

  • Süntar I, Oyardı O, Akkol EK (2016) Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm Biol 54(6):1065–1070

    Article  PubMed  Google Scholar 

  • Swarup V, Ghosh J, Ghosh S et al (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51(9):3367–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassoni A, Fornalè S, Franceschetti M et al (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166(3):895–905

    Article  CAS  PubMed  Google Scholar 

  • Taylor EJ, Yu Y, Champer J et al (2014) Resveratrol demonstrates antimicrobial effects against Propionibacterium acnes in vitro. Dermatol Ther 4(2):249–257

    Article  Google Scholar 

  • Teodoro GR, Ellepola K, Seneviratne CJ et al (2015) Potential use of phenolic acids as anti-Candida agents: a review. Front Microbiol 6(1420):2015

    Google Scholar 

  • Tocci N, Ferrari F, Santamaria AR et al (2010) Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat Prod Res 24(3):286–293

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD et al (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91(4):977–987

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, D’Auria FD, Simonetti G et al (2012) A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots. Plant Physiol Biochem 57:54–58

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, D’Auria FD, Simonetti G et al (2013a) Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol Biochem 70:342–347

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD et al (2013b) Chemical composition and antifungal activity of Hypericum perforatum subsp. angustifolium roots from wild plants and plants grown under controlled conditions. Plant Biosyst 147(3):557–562

    Article  Google Scholar 

  • Tocci N, Gaid M, Kaftan F et al (2017) Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol 217(3):1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Tolba H, Moghrani H, Benelmouffok A et al (2015) Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J Mycol Med 25(4):e128–e133

    Article  CAS  PubMed  Google Scholar 

  • Tusevski O, Simic SG (2013) Phenolic acids and flavonoids in Hypericum perforatum L. hairy roots. Int J Pharm Bio Sci 4(3):737–748

    Google Scholar 

  • Tusevski O, Stanoeva J, Stefova M et al (2013a) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Open Life Sci 8(10):1010–1022

    CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M et al (2013b) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J 2013:1

    Article  CAS  Google Scholar 

  • Valente J, Zuzarte M, Gonçalves MJ et al (2013) Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol 62:349–354

    Article  CAS  PubMed  Google Scholar 

  • Valletta A, Trainotti L, Santamaria AR et al (2010) Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae). BMC Plant Biol 10(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valletta A, De Angelis G, Badiali C et al (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35(5):1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos LCS, Sampaio MCC, Sampaio FC et al (2003) Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 46:192–196

    Article  PubMed  Google Scholar 

  • Velegraki A, Cafarchia C, Gaitanis G (2015) Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog 11(1):e1004523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1(1):13–25

    Article  CAS  Google Scholar 

  • Verweij PE, Snelders E, Kema GH et al (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9(12):789–795

    Article  CAS  PubMed  Google Scholar 

  • Vinterhalter B, Ninković S, Cingel A et al (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50(4):767–770

    Article  Google Scholar 

  • Vorzheva II, Chernyak AB (2004) Allergy to dermatophyte fungies. Allergology 4:42–47

    Google Scholar 

  • Waffo-Teguo P, Lee D, Cuendet M (2001) Two new stilbene dimer glucosides from grape (Vitis vinifera) cell cultures. J Nat Prod 64(1):136–138

    Article  CAS  PubMed  Google Scholar 

  • White TC, Findley K, Dawson TL et al (2014) Fungi on the skin: dermatophytes and malassezia. Cold Spring Harb Perspect Med 4:a019802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AS, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3):249–268

    Article  CAS  PubMed  Google Scholar 

  • Xi HF, Ma L, Wang LN et al (2015) Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N Z J Crop Hortic Sci 43(3):163–172

    Article  CAS  Google Scholar 

  • Zang N, Deng XX et al (2011) Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol 85:13061–13068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavrel M, White TC (2015) Medically important fungi respond to azole drugs: an update. Future Microbiol 10:1355–1373

    Article  CAS  PubMed  Google Scholar 

  • Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P et al (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:1–12

    Article  CAS  Google Scholar 

  • Zubrická D, Mišianiková A, Henzelyová J et al (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34(11):1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Zuzarte M, Gonçalves MJ, Cavaleiro C et al (2013) Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind Crop Prod 44:97–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Simonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simonetti, G., Valletta, A., Kolesova, O., Pasqua, G. (2018). Plant Products with Antifungal Activity: From Field to Biotechnology Strategies. In: Cechinel Filho, V. (eds) Natural Products as Source of Molecules with Therapeutic Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-00545-0_2

Download citation

Publish with us

Policies and ethics