Skip to main content

Occurrence and Distribution of Fungi in Saline Environments

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Fungi are present in saline environments that can be broadly categorized as either open ocean or intertidal (coastline) habitats. Many ecological niches exist within these environments, in which fungi adapted to marine conditions may act as saprobes, pathogens, or symbionts. These fungi have a substantial impact on ecosystem functions such as nutrient cycling, productivity, life history and demographics of other organisms, and ecosystem resilience. Recent biodiversity research demonstrates that fungi colonize a wide variety of marine substrates and possess unique adaptations for life submerged in or routinely exposed to saline water. The more well-known marine fungi include decomposers of floating wood, mangrove associates, and saltmarsh saprobes and symbionts. Recent research on less easily accessible or previously overlooked habitats like deep sea vents and sand beaches show that marine fungi are more ubiquitous and diverse than previously considered; there are many opportunities for future research to uncover new marine fungal species and to expand our ecological and functional understanding of known species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460:105–111

    Article  Google Scholar 

  • Andreakis N, Høj L, Kearns P, Hall MR, Ericson G, Cobb RE, Gordon BR, Evans-Illidge E (2015) Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters. PLoS One 10:e0136130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Au DWT, Jones EBG, Vrijmoed LLP (1999) Observations on the biology and ultrastructure of the asci and ascospores of Julella avicenniae from Malaysia. Mycol Res 103:865–872

    Article  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benner R, Newell SY, MacCubbin AE, Hodson RE (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl Environ Microbiol 48:36–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA (2003) Dynamics of bacterial and fungal communities on decaying saltmarsh grass. Appl Environ Microbiol 69:6676–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita M, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73:121–133

    CAS  PubMed  Google Scholar 

  • Burgaud G, Hué NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresforsch, Bremerhaven 5:301–320

    Google Scholar 

  • d’Entremont TW, López-Gutiérrez JC, Walker AK (2018) Examining arbuscular mycorrhizal fungi in saltmarsh hay (Spartina patens) and smooth cordgrass (Spartina alterniflora) in the Minas Basin, Nova Scotia. Northeast Nat 25:72–86

    Article  Google Scholar 

  • da Luz Calado M, Carvalho L, Pang KL, Barata M (2015) Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese saltmarshes. Microb Ecol 70:612–633

    Article  Google Scholar 

  • de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte K, Rocha-Santos TAP, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. Trends Anal Chem 34:97–110

    Article  CAS  Google Scholar 

  • Eppley SM, Mercer CA, Haaning C, Graves CB (2009) Sex-specific variation in the interaction between Distichlis spicata (Poaceae) and mycorrhizal fungi. Am J Bot 96:1967–1973

    Article  PubMed  Google Scholar 

  • Fazzani K, Jones EBG (1977) Spore release and dispersal in marine and brackish water fungi. Mater Org 12:235–248

    Google Scholar 

  • Feldmann J (1938) Le Blodgettia confervoides Harv. est-il un lichen? Rev Bryol Lichénol 11:155–163

    Google Scholar 

  • Fell JW, Master IM (1973) Fungi associated with the degradation of mangrove (Rhizophora mangle L.) leaves in South Florida. In: Stevenson LH, Colwell RR (eds) Estuarine microbial ecology. USA University of South Carolina Press, Columbia, pp 455–466

    Google Scholar 

  • Fletcher A (1975a) Key for the identification of British marine and maritime lichens I. Siliceous rocky shore species. Lichenologist 7:1–52

    Article  Google Scholar 

  • Fletcher A (1975b) Key for the identification of British marine and maritime lichens II. Calcareous and terricolous species. Lichenologist 7:73–115

    Article  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbary DJ, Deckett RJ, Hubbard CB (2005) Ascophyllum and its symbionts VII. Three-way interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylii (Ascomycetes) and Vertebrata lanosa (Rhodophyta). Algae 20:353–361

    Article  Google Scholar 

  • Gessner RV (1976) In vitro growth and nutrition of Buergenerula spartinae, a fungus associated with Spartina alterniflora. Mycologia 68:583–599

    Article  CAS  Google Scholar 

  • Gessner RV (1977) Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia 69:477–491

    Article  Google Scholar 

  • Gessner RV, Kohlmeyer J (1976) Geographical distribution and taxonomy of fungi from salt marsh Spartina. Can J Bot 54:2023–2037

    Article  Google Scholar 

  • Grasso S, La Ferla R, Jones EBG (1985) Lignicolous marine fungi in a harbour environment (Milazzo). Bot Mar 28:259–264

    Article  Google Scholar 

  • Gunn CR, Dennis JV (1976) World guide to tropical drift in seeds and fruits. A Demeter Press Book. Quadrangle/The New York Times Book, New York

    Google Scholar 

  • Gutiérrez MH, Jara AM, Pantoja P (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18(5):1646–1653

    Article  PubMed  Google Scholar 

  • Hawksworth DL (2000) Freshwater and marine lichen-forming fungi. Fungal Divers 5:1–7

    Google Scholar 

  • Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Henssen A, Johns HM (1974) Lichenes: eine einführung in die flechtenkunde. G Thieme

    Google Scholar 

  • Higgins R (2000) Bacteria and fungi of marine mammals: a review. Can Vet J 41:L105–L116

    Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Oxford University Press, Oxford

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroff Inst Meeresch Bremerhaven 5:419–441

    Google Scholar 

  • Hyde KD (1989a) Intertidal fungi from the mangrove fern, Acrostichum speciosum, including Massarina acrostichi sp. nov. Mycol Res 93:435–438

    Article  Google Scholar 

  • Hyde KD (1989b) Vertical zonation of intertidal mangrove fungi. In: Hattori T, Ishida Y, Maeuyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 302–306

    Google Scholar 

  • Hyde KD (1990a) A comparison of the intertidal mycota of five mangrove tree species. Asian Mar Biol 7:93–107

    Google Scholar 

  • Hyde KD (1990b) A study of the vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquat Bot 36:255–262

    Article  Google Scholar 

  • Hyde KD (1992a) Fungi from decaying intertidal fronds of Nypa fruticans, including three new genera and four new species. Bot J Linn Soc 110:95–110

    Article  Google Scholar 

  • Hyde KD (1992b) Intertidal fungi from Kandelia candel including Phomatospora kandelae sp. nov. Trans Mycol Soc Jpn 33:313–316

    Google Scholar 

  • Hyde KD, Jones EBG (1998) Marine mangrove fungi. Mar Ecol 9:15–33

    Article  Google Scholar 

  • Hyde KD, Sarma VV (2006) Biodiversity and ecological observations on filamentous fungi of mangrove palm Nypa fruticans wurumb (Liliopsida – Arecales) along the Tutong River, Brunei. Indian J Mar Sci 35:297–307

    Google Scholar 

  • Hyde KD, Chalermongse A, Boonthavikoon T (1990a) Ecology of intertidal fungi at Ranong mangrove, Thailand. Trans Mycol Soc Jpn 31:17–27

    Google Scholar 

  • Hyde KD, Chalermongse A, Boonthavikoon T (1990b) The distribution of intertidal fungi on Rhizophora apiculate. In: Morton B (ed) The marine biology of the South China Sea. Proceedings of the 1st International Conference on Marine Biology of Hong Kong and South China Sea, pp 643–652

    Google Scholar 

  • Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Jones EBG (1993) Tropical marine fungi. In: Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology. Cambridge University Press, Cambridge, pp 73–90

    Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981

    Article  Google Scholar 

  • Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73:790–801

    Article  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG, Tan TK (1987) Observations on manglicolous fungi from Malaysia. Trans Br Mycol Soc 89:390–392

    Article  Google Scholar 

  • Jones EMG, Kuhne H, Trussell PC, Turner RD (1972) Results of an international cooperative research programme on the biodeterioration of timber submerged in the sea. Mater Org 7:93–118

    Google Scholar 

  • Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 628–666

    Google Scholar 

  • Kim GH, Moon KH, Kim JY, Shim J, Klochkova TA (2014) A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249–265

    Article  Google Scholar 

  • Kirk PW (1983) Direct enumeration of marine arenicolous fungi. Mycologia 75:670–682

    Article  Google Scholar 

  • Kohlmeyer J (1969) Ecological notes on fungi in mangrove forests. Trans Br Mycol Soc 53:237–250

    Article  Google Scholar 

  • Kohlmeyer J (1972) Marine fungi deteriorating chitin of hydrozoan and keratin-like annelid tubes. Mar Biol 12:277–284

    Article  Google Scholar 

  • Kohlmeyer J (1983) Geography of marine fungi. Aust J Bot Suppl Ser 13:67–76

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1971) Marine fungi from tropical America and Africa. Mycologia 63:831–861

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1972) Is Ascophyllum nodosum lichenized? Bot Mar 15:109–112

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1977) Bermuda marine fungi. Trans Br Mycol Soc 68:207–219

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, London

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1993) Biogeographic observations on Pacific marine fungi. Mycologia 85:337–346

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Fungi on Juncus roemerianus. 10. A new Orbilia with ingoldian anamorph. Mycologia 90:303–309

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1999) Fungi on Juncus roemerianus. 13. Hyphpolynema juncatile sp. nov. Mycotaxon 70:489–495

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1411–1412

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and Spartina: new marine species of Anthostomella, with a list of marine fungi known on Spartina. Mycol Res 106:365–374

    Article  Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1995) Fungi on Juncus roemerianus 4. New marine ascomycetes. Mycologia 87:532–542

    Article  Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56

    Article  Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydorothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Leong WF, Tan TK, Jones EBG (1991) Fungal colonization of submerged Bruguiera cylindrica and Rhizophora apiculata wood. Bot Mar 34:69–76

    Article  Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Article  CAS  PubMed  Google Scholar 

  • Lightner DV (1988) Black gill syndrome of penaeid shrimp. In: Sindermann CJ, Lightner DV (eds) Disease diagnosis and control in North American marine aquaculture, Developments in aquaculture and fisheries science, vol 17. Elsevier Scientific, New York, pp 86–88

    Google Scholar 

  • Mcowen CJ, Weatherdon LV, Van Bochove J, Sullivan E, Blyth S, Zockler C, Stanwell-Smith D, Kingston N, Martin CS, Spalding M, Fletcher S (2017) A global map of saltmarshes. Biodivers Data J 5:e11764

    Article  Google Scholar 

  • Meyer FP (1991) Aquaculture disease and health management. J Anim Sci 69:4201–4208

    Article  CAS  PubMed  Google Scholar 

  • Meyers SP (1969) Thalassiomycetes XI. Further studies of the genus Lindra with a description of L. marinera, a new species. Mycologia 61:486–495

    Article  Google Scholar 

  • Meyers SP, Opurt PA, Simms J, Boral LL (1965) Thalassiomycetes VII. Observations on fungal infestation of turtle grass, Thalassia testudinum König. Bull Mar Sci 15:548–564

    Google Scholar 

  • Miller JD, Whitney NJ (1981) Fungi from the Bay of Fundy 1: lignicolous marine fungi. Can J Bot 59:1128–1133

    Article  Google Scholar 

  • Mo Z, Li S, Kong F, Tang X, Mao Y (2016) Characterization of a novel fungal disease that infects the gametophyte of Pyropia yezoensis (Bangiales, Rhodophyta). J Appl Phycol 28:395–404

    Article  Google Scholar 

  • Moe RL (1997) Verrucaria tavaresiae sp. nov., a marine lichen with a brown algal photobiont. Bull Calif Lichen Soc 4:7–11

    Google Scholar 

  • Nakagiri A, Tokura R (1994) Taxonomic studies of the genus Corollospora (Halosphaeriales, Ascomycotina) with descriptions of seven new species. Trans Mycol Soc Jpn 28:413–436

    Google Scholar 

  • Nakagiri A, Newell SY, Ito T, Tan TK, Pek CL (1996) Biodiversity and ecology of the oomycetous fungus, Haltophytophthora. In: Turner IM (ed) Biodiversity and the dynamics of ecosystems, DIWPA Series, vol 1, pp 273–280

    Google Scholar 

  • Newell SY (1976) Mangrove fungi: the succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings. In: Jones EBG (ed) Recent advances in aquatic mycology. Wiley, New York pp, pp 51–91

    Google Scholar 

  • Newell SY (1992) Autumn distribution of marine Pythiaceae across a mangrove-saltmarsh boundary. Can J Bot 70:1912–1926

    Article  Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Newell SY, Blum LK, Crawford RE, Dai T, Dionne M (2000) Autumnal biomass and potential productivity of salt marsh fungi from 29° to 43° north latitude along the United States Atlantic Coast. Appl Environ Microbiol 66:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noga EJ (1990) A synopsis of mycotic diseases of marine fishes and invertebrates. In: Perkins FO, Cheng TC (eds) Pathology in marine science. Academic Press, San Diego, pp 143–160

    Google Scholar 

  • Norton JH, Thomas AD, Barker JR (1994) Fungal infection in the cultured juvenile boring clam Tridacna crocea. J Invertebr Pathol 64:273–275

    Article  Google Scholar 

  • Opurt PA, Meyers SP, Boral LL, Simms J (1964) Thalassiomycetes V. A new species of Lindra from turtle grass, Thalassia testudinum König. Bull Mar Sci Gulf Caribb 14:405–417

    Google Scholar 

  • Pang KL, Chow RK, Chan CW, Vrijmoed LP (2011) Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res 30:5859

    Article  Google Scholar 

  • Pérez-Ortega S, Garrido-Benavent I, Grube M, Olmo R, de los Ríos A (2016) Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Divers 80:285–300

    Article  Google Scholar 

  • Peters AF, Moe RL (2001) DNA sequences confirm that Petroderma maculiforme (Phaeophyceae) is the brown algal phycobiont of the marine lichen Verrucaria tavaresiae (Verrucariales, Ascomycota) from central California. Bull Calif Lichen Soc 8:41–43

    Google Scholar 

  • Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of oak (Querus sp.) and larch (Larix sp.) in Svanemøllen Harbour, Denmark. Bot Mar 40:451–463

    Article  Google Scholar 

  • Petrini O, Fisher PJ (1986) Fungal endophytes in Salicornia perennis. Trans Br Mycol Soc 87:647–651

    Article  Google Scholar 

  • Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–3

    Article  Google Scholar 

  • Pointing BS, Vrijmoed LLP, Jones EBG (1998) A quantitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 412:293–298

    Article  Google Scholar 

  • Poon MOK, Hyde KD (1998a) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–156

    Google Scholar 

  • Poon MOK, Hyde KD (1998b) Evidence for the vertical distribution of saprophytic fungi on senescent Phragmites australis culms at Mai Po marshes, Hong Kong. Bot Mar 41:285–292

    Google Scholar 

  • Porter D (1986) Mycoses of marine organisms: an overview. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 141–153

    Google Scholar 

  • Pugh GJF, Jones EBG (1986) 27 Antarctic marine fungi: a preliminary account. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, p 323

    Google Scholar 

  • Raghukumar C (2000) Fungi from marine habitats: an application in bioremediation. Mycol Res 104:1222–1226

    Article  CAS  Google Scholar 

  • Raghukumar C, Lande V (1988) Shell disease of rock oyster Crassostrea cucullata. Dis Aquat Org 4:77–81

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S (1991) Fungal invasion of massive corals. Mar Ecol 12:251–260

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163

    Article  Google Scholar 

  • Rämä T, Hasset BT, Bubnova E (2017) Arctic marine fungi: from filaments and flagella to operational taxonomic units and beyond. Bot Mar 60:433–452

    Article  CAS  Google Scholar 

  • Ramaiah N (2006) A review on fungal diseases of algae, marine fishes, shrimps and corals. Indian J Mar Sci 35:380–387

    Google Scholar 

  • Rateb ME, Ebel R (2010) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  Google Scholar 

  • Ravikumar DR, Vittal BPR (1996) Fungal diversity on decomposing biomass of mangrove plant Rhizophora in Pichavaram estuary, East coast of India. Indian J Mar Sci 25:142–144

    Google Scholar 

  • Read SJ, Jones EBG, Moss ST, Hyde KD (1994) Ultrastructure of asci and ascospores of two mangrove fungi: Swampomyces armeniacus and Marinosphaera mangrovei. Mcyol Res 99:1465–1471

    Google Scholar 

  • Ritchie D (1957) Salinity optima for marine fungi affected by temperature. Am J Bot 44:870–874

    Article  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rozema J, Aep W, van Diggelen J, van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the saltmarsh environment. Acta Bot Neerl 35:457–462

    Article  Google Scholar 

  • Sadaba RB (1996) An ecological study of fungi associated with the mangrove associate Acanthus ilicifolius in Mai Po, Hong Kong. Ph.D. Dissertation, Department of Ecology and Biodiversity, University of Hong Kong, Hong Kong

    Google Scholar 

  • Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ (1995) Observations on the vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia 295:119–125

    Article  Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2004) The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. Am J Bot 91:511–522

    Article  PubMed  Google Scholar 

  • Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Vittal BPR (2001) Biodiversity of mangrove fungi on different substrata of Rhizophora apiculate and Avicennia spp. from Godavari and Krishna deltas, east coast of India. Fungal Divers 5:23–41

    Google Scholar 

  • Sarmiento-Ramírez JM, Abella E, Martín MP, Tellería MT, López-Jurado LF, Marco A, Diéguez-Uribeondo J (2010) Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol Lett 312:192–200

    Article  PubMed  CAS  Google Scholar 

  • Schaumann K (1975) Olologische untersuchungen uber hohere pilze im meer-und brackwasser der deutschen bucht unter besondere berusksichigung der holzbesiedelen arten. Veroff Inst Meeresch Bremerhaven 15:79–182

    Google Scholar 

  • Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 204:589–596

    Article  Google Scholar 

  • Schmit JP, Shearer CA (2003) A checklist of mangrove associated fungi, their geographical distribution and known host plants. Mycotaxon 85:423–477

    Google Scholar 

  • Schneider J (1976) Lignicolous marine fungi (Ascomycetes and Deuteromycetes) from 2 fjords of Western Baltic. Bot Mar 19:295–307

    Article  Google Scholar 

  • Seshadri R, Sieburth JM (1971) Cultural estimation of yeasts on seaweeds. Appl Microbiol 22:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum J. Ag. J Exp Mar Biol Ecol 175:227–242

    Article  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Shields JD (2011) Diseases of spiny lobsters: a review. J Invertebr Pathol 106:79–91

    Article  CAS  PubMed  Google Scholar 

  • Smolowitz RM, Bullis RA, Abt DA (1992) Mycotic bronchitis in laboratory-maintained hermit crabs (Pagurus spp.). J Crustac Biol 12:161–168

    Article  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Sridhar KR, Alias SA, Pang K (2012) Mangrove fungi. In: Jones EBG, Pang K (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston

    Google Scholar 

  • Stewart JE (1984) Lobster diseases. Helgoländer Meeresuntersuchungen 37:243

    Article  Google Scholar 

  • Sundari R (1997) The biology of arenicolous marine fungi. Ph.D. Dissertation, University Malaya, Malaysia

    Google Scholar 

  • Tan TK, Leong WF, Jones EBG (1989) Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can J Bot 67:2686–2691

    Article  Google Scholar 

  • Tan TK, Leong WF (1990) Mangrove fungi in Singapore and some possible factors influencing their occurrence. Trans Mycol Soc Jpn 31:35–44

    Google Scholar 

  • Tan TK, Teng CL, Jones EBG (1995) Substrate type and microbial interactions as factors affecting ascocarp formation by mangrove fungi. Hydrobiologia 295:127–134

    Article  Google Scholar 

  • Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisthammer KH, Cobain GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46

    Article  Google Scholar 

  • Torzilli AP, Sikaroodi M, Chalkey D, Gillevet PM (2006) A comparison of fungal communities from four saltmarsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698

    Article  CAS  PubMed  Google Scholar 

  • Van Dover CL, Ward MF, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54–62

    Article  CAS  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005) Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hadwigia 80:173–197

    Article  Google Scholar 

  • Velez P, González MC, Rosique-Gil E, Cifuentes J, del Rocío R-MM, Capello-García S, Hanlin RT (2013) Community structure and diversity of marine ascomycetes from coastal beaches of the southern Gulf of Mexico. Fungal Ecol 6:513–521

    Article  Google Scholar 

  • Velez P, González MC, Capello-García S, Rosique-Gil E, Hanlin RT (2015) Diversity of marine ascomycetes from the disturbed sandy beaches of Tabasco, Mexico. J Mar Biol Assoc UK 95:897–903

    Article  Google Scholar 

  • Vicente VA, Orélis-Ribeiro R, Najafzadeh MJ, Sun J, Guerra RS, Miesch S, Ostrensky A, Meis JF, Klaassen CH, de Hoog GS, Boeger WA (2012) Black yeast-like fungi associated with Lethargic Crab Disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Vet Microbiol 158:109–122

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Nakamura K, Hatai K (1995) First case of Ochroconis humicola infection in marine cultured fish in Japan. Fish Pathol 30:125–126

    Article  Google Scholar 

  • Walker AK, Campbell J (2010) Marine fungal diversity: a comparison of natural and created saltmarshes of the north-central Gulf of Mexico. Mycologia 102:513–521

    Article  PubMed  Google Scholar 

  • Walker AK, Vélez P, González MC (2017) Marine fungi. eLS/Wiley, Chichester

    Book  Google Scholar 

  • Webber FC (1967) Observations on the structure, life history and biology of Mycosphaerella ascophylii. Trans Br Mycol Soc 50:583–601

    Article  Google Scholar 

  • Xu W, Guo S, Gong L, Alias SA, Pang K, Luo Z (2018) Phylogenetic survey and antimicrobial activity of cultivable fungi associated with five scleractinian coral species in the South China Sea. Bot Mar 61:75–84

    Article  CAS  Google Scholar 

  • You YH, Yoon H, Seo Y, Kim M, Shin JH, Lee IJ, Choo YS, Kim JG (2012) Analysis of genomic diversity of endophytic fungal strains isolated from the roots of Suaeda japonica and S. maritima for the restoration of ecosystems in Buan salt marsh. Microbiol Biotechnol Lett 40:287–295

    Article  Google Scholar 

  • Yue Y, Yu H, Li R, Xing R, Liu S, Li P (2015) Exploring the antibacterial and antifungal potential of jellyfish-associated marine fungi by cultivation-dependent approaches. PLoS One 10:e0144394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison K. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bunbury-Blanchette, A.L., Walker, A.K. (2019). Occurrence and Distribution of Fungi in Saline Environments. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_2

Download citation

Publish with us

Policies and ethics