Skip to main content

Diseases of Cucumbers, Melons, Pumpkins, Squash, and Watermelons

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Vegetable and Herb Diseases

Abstract

Cucurbits have been domesticated for over 10,000 years. It is estimated that well over 200 million tons of cucurbits are produced annually on over 8 million ha of land. Although there are over 58 species of cucurbits known to be cultivated, 4 groups dominate production: cucumber, melon, watermelon, and squash/pumpkin. Diseases are a major limiting factor in production and include soilborne fungal and oomycete diseases, foliar fungal and oomycete diseases, bacterial diseases, viruses, and nematodes. The persistence of oomycete and fungal pathogens that cause diseases such as Phytophthora blight and Fusarium wilt, respectively, in the soil make these diseases important in many areas of the world. Foliar diseases such as gummy stem blight and powdery mildew are a challenge to manage in part due to fungicide resistance issues. Multiple viruses infect and negatively impact cucurbit production worldwide. While some virus species are mechanically and/or seed transmitted, most are insect transmitted. Common insect vectors of cucurbit viruses include whitefly, thrips, and aphid species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrahamian PE, Abou-Jawdah Y (2014) Whitefly-transmitted criniviruses of cucurbits: current status and future prospects. Virus Dis 25:26–38

    Article  Google Scholar 

  • Adams ML, Ojiambo PS (2013) Evaluation of fungicides for the control of Alternaria leaf blight of cantaloupe, Kinnston 2012. Plant Dis Manag Rep 7:V065. https://doi.org/10.1094/PDMR07

    Article  Google Scholar 

  • Adams M, Quesada-Ocampo LM (2017) Evaluation of cultivars and fungicides for control of downy mildew on cucumber, Clinton 2016. Plant Dis Manag Rep 11:1–2

    Google Scholar 

  • Adkins S, Kousik CS (2017) Cucumber vein yellowing. In: Keinath A, Zitter T, Wintermantel W (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 143–144

    Google Scholar 

  • Adkins S, Webb SE, Achor D, Roberts PD, Baker CA (2007) Identification and characterization of a novel whitefly-transmitted member of the family Potyviridae isolated from cucurbits in Florida. Phytopathology 97:145–154

    Article  PubMed  Google Scholar 

  • Adkins S, Polston JE, Turechek WW (2009a) Cucurbit leaf crumple virus identified in common bean in Florida. Plant Dis 93:320

    Article  PubMed  Google Scholar 

  • Adkins S, Webster CG, Baker CA, Weaver R, Rosskopf EN, Turechek WW (2009b) Detection of three whitefly-transmitted viruses infecting the cucurbit weed Cucumis melo var. dudaim in Florida. Plant Health Progr. https://doi.org/10.1094/PHP-2009-1118-01-BR

  • Adkins S, McCollum TG, Albano JP, Kousik CS, Baker CA, Webster CG, Roberts PD, Webb SE, Turechek WW (2013) Physiological effects of squash vein yellowing virus infection on watermelon. Plant Dis 97:1137–1148

    Article  PubMed  Google Scholar 

  • Adkins S, Turechek WW, Roberts PD, Webb SE, Baker CA, Kousik CS (2017) Squash vein yellowing. In: Keinath A, Zitter T, Wintermantel W (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 149–151

    Google Scholar 

  • Adlerz WC (1969) Melothria pendula plant infected with watermelon mosaic virus I as a source of inoculum for cucurbits in Collier County, Florida. J Econ Entomol 65:1303–1306

    Article  Google Scholar 

  • Agarwal G, Kavalappara SR, Gautam S, da Silva A, Simmons A, Srinivasan R, Dutta B (2021) Field screen and genotyping of Phaseolus vulgaris against two begomoviruses in Georgia, USA. Insects 12:49. https://doi.org/10.3390/insects12010049

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrios GN (2005) Plant diseases caused by nematodes. In: Plant pathology, 5th edn. Elsevier Academic, New York

    Google Scholar 

  • Aguilar JM, Abad J, Aranda MA (2006) Resistance to cucurbit yellow stunting disorder virus in cucumber. Plant Dis 90:583–586

    Article  PubMed  Google Scholar 

  • Ainsworth GC (1935) Mosaic diseases of the cucumber. Ann Appl Biol 22:55–67

    Article  Google Scholar 

  • Al-Kiyumi KS (2006) Greenhouse cucumber production systems in Oman: a study on the effect of cultivation practices on crop diseases and crop yields. PhD thesis, University of Reading, Reading

    Google Scholar 

  • Al-Mawaali QS, Al-Sadi AM, Khan AJ, Al-Hasani HD, Deadman ML (2012) Response of cucurbit rootstocks to Pythium aphanidermatum. Crop Prot 42:64–68

    Article  Google Scholar 

  • Al-Sadi AM, Al-Said FA, Al-Kiyumi KS, Al-Mahrouqi RS, Al-Mahmooli IH, Deadman ML (2011) Etiology and characterization of cucumber vine decline in Oman. Crop Prot 30:192–197

    Article  Google Scholar 

  • Alvarez M, Campbell RN (1978) Transmission and distribution of squash mosaic virus in seeds of cantaloupe. Phytopathology 68:257–263

    Article  Google Scholar 

  • Ando K, Grumet R (2006) Evaluation of altered cucumber plant architecture as a means to reduce Phytophthora capsici disease incidence on cucumber fruit. J Am Soc Hort Sci 131:491–498

    Article  Google Scholar 

  • Ando K, Hammar S, Grumet R (2009) Age-related resistance of diverse cucurbit fruit to infection by Phytophthora capsici. J Am Hort Sci 134:176–182

    Article  Google Scholar 

  • Antignus Y, Wang Y, Pearlsman M, Lachman O, Lavi N, Gal-On A (2001) Biological and molecular characterization of a new cucurbit-infecting tobamovirus. Phytopathology 91:565–571

    Article  PubMed  Google Scholar 

  • Armstrong GM, Armstrong JK (1978) Formae speciales and races of Fusarium oxysporum causing wilt of the cucurbitaceae. Phytopathology 68:19–28

    Article  Google Scholar 

  • Arny CJ, Rowe RC (1991) Effects of temperature and duration of surface wetness on spore production and infection of cucumbers by Didymella bryoniae. Phytopathology 81(2):206–209

    Article  Google Scholar 

  • Attavar A, Tymon L, Perkins-Veazie P, Miles CA (2020) Cucurbitaceae germplasm resistance to Verticillium wilt and grafting compatibility with watermelon. HortScience 55(2):141–148. https://doi.org/10.21273/HORTSCI14631-19

    Article  Google Scholar 

  • Avenot HF, Thomas A, Gitaitis RD, Langston BD Jr, Stevenson KL (2012) Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest Manag Sci 68(4):645–651

    Article  PubMed  Google Scholar 

  • Babadoost M (2004) Phytophthora blight: a serious threat to cucurbit industries. In: APSnet feature. American Phytopathological Society, St. Paul. https://www.apsnet.org/edcenter/apsnetfeatures/Pages/PhytophthoraBlight.aspx. Accessed 28 Feb 2021

  • Babadoost M, Zitter TA (2009) Fruit rots of pumpkin: a serious threat to the pumpkin industry. Plant Dis 93(8):772–782

    Article  PubMed  Google Scholar 

  • Babadoost M, Salisu S, Khanal S (2020) Effectiveness of selected fungicide for control of Phytophthora blight in processing pumpkin, 2019. Plant Dis Manag Rep 14:V0065

    Google Scholar 

  • Balaž J, Ilicic R, Masirevic S, Josic D, Kojic S (2014) First report of Pseudomonas syringae pv. syringae causing bacterial leaf spots of oil pumpkin (Cucurbita pepo L.) in Serbia. Plant Dis 98:684

    Article  PubMed  Google Scholar 

  • Bartels R (2012) Protecting against bacterial wilt. Am Veg Grow. https://www.growingproduce.com/vegetables/protecting-against-bacterial-wilt/. 26–28

  • Batta Y (2003) Alternaria leaf spot disease on cucumber: susceptibility and control using leaf disk assay. An-Najah Univ J Res 17(2):269–279

    Article  Google Scholar 

  • Bello Rodriguez JC, Sakalidis ML, Perla D, Hausbeck MK (2021) Detection of airborne sporangia of Pseudoperonospora cubensis and P. humuli in Michigan using Burkard spore traps couple to quantitative PCR. Plant Dis 105:1373–1381

    Article  Google Scholar 

  • Ben Salem I, Correia KC, Boughalleb N, Michereff SJ, León M, Abad-Campos P, García-Jiménez J, Armengol J (2013) Monosporascus eutypoides, a cause of root rot and vine decline in Tunisia, and evidence that M. cannonballus and M. eutypoides are distinct species. Plant Dis 97:737–743

    Article  PubMed  Google Scholar 

  • Berbegal M, Ortega A, Jiménez- Gasco MM, Olivares- García C, Jiménez-Díaz RM, Armengol J (2010) Genetic diversity and host range of Verticillium dahliae isolates from artichoke and other vegetable crops in Spain. Plant Dis 94:396–404

    Article  PubMed  Google Scholar 

  • Berkeley MJ (1855) Vibrio forming cysts on the roots of cucumbers. Gard Chron Agric Gazette 14:220

    Google Scholar 

  • Berlanger I, Powelson ML (2000) Verticillium wilt. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-0801-01

  • Bernhardt EA, Grogan RG (1982) Effect of soil matric potential on the formation and indirect germination of sporangia of Phytophthora parasitica, Phytophthora capsici, and Phytophthora cryptogea. Phytopathology 72:507–511

    Article  Google Scholar 

  • Bezerra IC, Resende RO, Pozzer L, Nagata T, Kormelink R, de Avila AC (1999) Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89:823–830

    Article  PubMed  Google Scholar 

  • Bhat RG, Subbarao KV (1999) Host range specificity in Verticillium dahliae. Phytopathology 89:1218–1225

    Article  PubMed  Google Scholar 

  • Bhat NA, Bhat KA, Zargar MY, Teli MA, Nazir M, Zargar SM (2010) Current status of angular leaf spot (Pseudomonas syringae pv. lachrymans) of cucumber: a review. Int J Curr Sci 8:1–11

    Google Scholar 

  • Bittner RJ, Mila AL (2016) Effects of oxathiapiprolin on Phytophthora nicotianae, the causal agent of black shank of tobacco. Crop Prot 81:57–64

    Article  Google Scholar 

  • Blancard D, Lecoq H, Pitrat M (1994) A colour atlas of cucurbit diseases: observation, identification and control, 1st edn. Wiley, New York. 299 p

    Google Scholar 

  • Blum M, Waldner M, Olaya G, Cohen Y, Gisi U, Sierotzki H (2011) Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Pest Manag Sci 67:1211–1214

    Article  PubMed  Google Scholar 

  • Boewe GH (1963) Host plants of charcoal rot disease in Illinois. Plant Dis Rep 47(8):753–755

    Google Scholar 

  • Boubourakas IN, Hatziloukas E, Antignus Y, Kati NI (2004) Etiology of leaf chlorosis and deterioration of the fruit interior of watermelon plants. J Phytopathol 152:580–588

    Article  Google Scholar 

  • Boughalleb N, Mahjoub M (2006) In vitro determination of Fusarium spp. infection on watermelon seeds and their localization. Plant Pathol J 5(2):178–182

    Article  Google Scholar 

  • Boughalleb N, Armengol J, El Mahjoub M (2005) Detection of races 1 and 2 of Fusarium solani f. sp. cucurbitae and their distribution in watermelon fields in Tunisia. J Phytopathol 153:162–168

    Article  Google Scholar 

  • Bourbos VA, Skoudridakis MT, Darakist GA, Koulizakis M (1997) Calcium cyanamide and soil solarization for the control of Fusarium solani f.sp. cucurbitae in greenhouse cucumber. Crop Prot 16(4):383–386

    Article  Google Scholar 

  • Bowers JH, Papavizas GC, Johnston SA (1990) Effect of soil temperature and soil-water matric potential on the survival of Phytophthora capsici in natural soil. Plant Dis 74:771–777

    Article  Google Scholar 

  • Bowman G, Cramer C, Shirley C (2007) Managing cover crops profitably, 3rd edn. Sustainable Agriculture Network. 212 p

    Google Scholar 

  • Brown R, Bolanos-Herrera A, Myers JR, Jahn MM (2003) Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica 129:253–258

    Article  Google Scholar 

  • Brust GE (1997) Differential susceptibility of pumpkins to bacterial wilt related to plant growth stage and cultivar. Crop Prot 16(5):411–414

    Article  Google Scholar 

  • Brust GE, Foster RE (1999) New economic threshold for striped cucumber beetle (Coleoptera: Chrysomelidae) in cantaloupe in the Midwest. J Econ Entomol 92(4):936–940

    Article  Google Scholar 

  • Brust GE, Rane KK (1995) Differential occurrence of bacterial wilt in muskmelon due to preferential striped cucumber beetle feeding. HortScience 30:1043–1045

    Article  Google Scholar 

  • Bruton BD, Biles CL (2017a) Charcoal rot. In: Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 27–28

    Google Scholar 

  • Bruton BD, Biles CL (2017b) Fusarium fruit rot. In: Keinath A, Zitter T, Wintermantel W (eds) Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 96–99

    Google Scholar 

  • Bruton BD, Gubler WD (2017) Verticillium wilt. In: Keinath A, Zitter T, Wintermantel W (eds) Compendium of cucurbit diseases, 2nd edn. APS Press, St. Paul, pp 50–51

    Google Scholar 

  • Bruton BD, Reuveni R (1985) Vertical distribution of microsclerotia of Macrophomina phaseolina under various soil types and crops. Agric Ecosyst Environ 12:165–169

    Article  Google Scholar 

  • Bruton BD, Jeger MJ, Reuveni R (1987) Macrophomina phaseolina infection and vine decline in cantaloupe in relation to planting date, soil environment, and plant maturation. Plant Dis 71:259–263

    Article  Google Scholar 

  • Bruton BD, Fish WW, Subbarao KV, Isakeit T (2007) First report of Verticillium wilt of watermelon in the Texas high plains. Plant Dis 91:1053

    Article  PubMed  Google Scholar 

  • Bryan MK (1930) Bacterial leaf spot of squash. J Agric Res 40(4):385–391

    Google Scholar 

  • Burdman S, Walcott R (2012) Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol Plant Pathol 13(8):805–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Café-Filho AC, Ristaino JB (2008) Fitness of isolates of Phytophthora capsici resistant to mefenoxam from squash and pepper fields in North Carolina. Plant Dis 92:1439–1443

    Article  PubMed  Google Scholar 

  • Café-Filho AC, Duniway JM, Davis RM (1995) Effects of the frequency of furrow irrigation on root and fruit rots of squash caused by Phytophthora capsici. Plant Dis 79:44–48

    Article  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, Engler JD, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  PubMed  Google Scholar 

  • Carter WW (1979) Corky dry rot of cantaloup caused by Fusarium roseum ‘semitectum’. Plant Dis Rep 63(12):1080–1084

    Google Scholar 

  • Carter WW (1981) Reevaluation of heated water dip as a postharvest treatment for controlling surface and decay fungi of muskmelon fruits. HortScience 16(3):334–335

    Article  Google Scholar 

  • Ceponis MJ, Cappellini RA, Lightner GW (1986) Disorders in muskmelon shipments in the New York market, 1972–1984. Plant Dis 70:605–607

    Article  Google Scholar 

  • Champaco ER, Martyn RD, Miller ME (1993) Comparison of Fusarium solani and F. oxysporum as causal agents of fruit rot and root rot of muskmelon. HortScience 28(12):1174–1177

    Article  Google Scholar 

  • Chiemsombat P, Adkins S (2006) Tospoviruses. In: Rao GP, Lava Kumar P, Holguín-Peña RJ (eds) Characterization, diagnosis and management of plant viruses, vol 3. Studium Press, Houston, pp 1–37

    Google Scholar 

  • Choi G-S (2001) Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathol J 17:243–248

    Google Scholar 

  • Ciuffo M, Kurowski C, Vivoda E, Copes B, Masenga V, Falk BW, Turina M (2009) A new tospovirus sp. in cucurbit crops in Mexico. Plant Dis 93:467–474

    Article  PubMed  Google Scholar 

  • Cohen Y (1977) The combined effects of temperature, leaf wetness, and inoculum concentration on infection of cucumbers with Pseudoperonospora cubensis. Can J Bot 55:1478–1489

    Article  Google Scholar 

  • Cohen Y (2015) The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of Pseudoperonospora cubensis – causal agent of cucurbit downy mildew. PLoS One 10:1–22

    Article  Google Scholar 

  • Cohen S, Nitzany FE (1960) A whitefly-transmitted virus of cucurbits in Israel. Phytopathol Mediterr 1:44–46

    Google Scholar 

  • Cohen R, Paris H (2003) Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130:433–441

    Article  Google Scholar 

  • Cohen Y, Rubin AE (2012) Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. Eur J Plant Pathol 132:577–592

    Article  Google Scholar 

  • Cohen R, Pivonia S, Shtienberg D, Edelstein M, Raz D, Gerstl Z, Katan J (1999) Efficacy of fluazinam in suppression of Monosporascus cannonballus, the causal agent of sudden wilt of melons. Plant Dis 83:1137–1141

    Article  PubMed  Google Scholar 

  • Cohen R, Burger Y, Horev C, Porat A, Edelstein M (2005) Performance of Galia-type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus-infested and non-infested soils. Ann Appl Biol 146:381–387

    Article  Google Scholar 

  • Cohen R, Omari N, Porat A, Edelstein M (2012a) Management of macrophomina wilt in melons using grafting or fungicide soil application: pathological, horticultural and economical aspects. Crop Prot 35:58–63

    Article  Google Scholar 

  • Cohen R, Pivonia S, Crosby KM, Martyn RD (2012b) Advances in the biology and management of monosporascus vine decline and wilt of melons and other cucurbits. Hortic Rev 39:77–120

    Google Scholar 

  • Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U (2015) Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology 105:998–1012

    Google Scholar 

  • Cohen R, Elkabet M, Edelstein M (2016) Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Prot 85:46–51

    Article  Google Scholar 

  • Collange B, Navarrete M, Peyre TG, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Google Scholar 

  • Colucci SJ, Wehner TC, Holmes GJ (2006) The downy mildew epidemic of 2004 and 2005 in the Eastern United States. In: Proceedings of the Cucurbitaceae, pp 403–411

    Google Scholar 

  • Cooper JG (2013) Cucurbit downy mildew (Pseudoperonospora cubensis): cucumber resistance. MS thesis, Virginia Tech University, Blacksburg

    Google Scholar 

  • Cortez I, Saaijer J, Wongjkaew KS, Pereira AM, Goldbach R, Peters D, Kormelink R (2001) Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Arch Virol 146:265–278

    Google Scholar 

  • Coutts BA, Kehoe MA, Jones RAC (2011) Minimizing losses caused by Zucchini yellow mosaic virus in vegetable crops in tropical, sub-tropical and Mediterranean environments through cultural methods and host resistance. Virus Res 159:141–160

    Google Scholar 

  • Crall JM (1963) Physiologic specialization in Fusarium oxysporum f. sp. niveum. Phytopathology 53:873. (Abstract)

    Google Scholar 

  • Crinò P, Lo Bianco C, Rouphael Y, Colla G, Saccardo F, Paratore A (2007) Evaluation of rootstock resistance to Fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ melon. HortScience 42(3):521–525

    Google Scholar 

  • D’Arcangelo KN, Adams ML, Kerns JP, Quesada-Ocampo LM (2021) Assessment of fungicide product applications and program approaches for control of downy mildew on pickling cucumber in North Carolina. Crop Prot 140:105412

    Article  Google Scholar 

  • Dabirian S, Inglis D, Miles CA (2017) Grafting watermelon and using plastic mulch to control Verticillium wilt caused by Verticillium dahliae in Washington. HortScience 52(3):349–356. https://doi.org/10.21273/HORTSCI11403-16

    Article  Google Scholar 

  • Damm U, Cannon PF, Liu F, Barreto RW, Guatimosim E, Crous PW (2013) The Colletotrichum orbiculare species complex: important pathogens of field crops and weeds. Fungal Divers 61(1):29–59

    Article  Google Scholar 

  • Darzi E, Smith E, Shargil D, Lachman O, Ganot L, Dombrovsky A (2018) The honeybee Apis mellifera contributes to cucumber green mottle mosaic virus spread via pollination. Plant Pathol 59:244–251

    Article  Google Scholar 

  • Davidse LC (1995) Phenylamide fungicides: biochemical action and resistance. In: Modern selective fungicides, properties, applications, mechanisms of action. Gustav Fisher Verlag, New York, pp 347–354

    Google Scholar 

  • Davis RF (2007) Effect of Meloidogyne incognita on watermelon yield. Nematropica 37:287–293

    Google Scholar 

  • Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee S, Huh Y, Sun Z, Miguel A, King SR, Cohen R, Lee J (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • de Neergaard E (1989) Histological investigation of flower parts of cucumber infected by Didymella bryoniae. Can J Plant Path 11(1):28–38

    Article  Google Scholar 

  • De Sa PB, Hiebert E, Purcifull DE (2000) Molecular characterization and coat protein serology of watermelon leaf mottle virus (Potyvirus). Arch Virol 145:641–650

    Article  PubMed  Google Scholar 

  • Deadman ML (2017) Pythium and Phytophthora damping-off and root rot. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 48–50

    Google Scholar 

  • Dervis S, Yetisir H, Tok FM, Kurt S, Karaca F (2009) Vegetative compatibility groups and pathogenicity of Verticillium dahliae isolates from watermelon in Turkey. Afr J Agr Res 4(11):1268–1275

    Google Scholar 

  • Desbiez C, Verdin E, Tepfer M, Wipf-Scheibel C, Millot P, Dafalla G, Lecoq H (2016) Characterization of a new cucurbit-infecting ipomovirus from Sudan. Arch Virol 161:2913–2915

    Article  PubMed  Google Scholar 

  • Di Mola I, Ventorino V, Cozzolino E, Ottaiano L, Romano I, Duri LG, Pepe P, Mori M (2021) Biodegradable mulching vs traditional polyethylene film for sustainable solarization: chemical properties and microbial community response to soil management. Appl Soil Ecol 163:103921

    Article  Google Scholar 

  • Dombrovsky A, Tran-Nguyen LTT, Jones RAC (2017) Cucumber green mottle mosaic virus: rapidly increasing global distribution, etiology, epidemiology, and management. Ann Rev Phytopathol 55:231–256

    Article  Google Scholar 

  • Dorst JJMV (1988) Surface water as source in the spread of cucumber green mottle mosaic virus. Neth J Agric Sci 36:291–299

    Google Scholar 

  • Duffus JE (1965) Beet pseudo-yellows virus, transmitted by the greenhouse whitefly (Trialeurodes vaporariorum). Phytopathology 55:450–453

    Google Scholar 

  • Dunn AR, Milgroom MG, Meitz JC, McLead A, Fry WE, McGrath MT, Dillard HR, Smart CD (2010) Population structure and resistance to mefenoxam of Phytophthora capsici in New York State. Plant Dis 94:1461–1468

    Article  PubMed  Google Scholar 

  • Dutta B (2017) Syringae blight and leaf spot. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, p 78

    Google Scholar 

  • Dutta B, Gitaits RD, Lewis KJ, Langston DB (2013) A new report of Xanthomonas cucurbitae causing bacterial leaf spot of watermelon in Georgia, USA. Plant Dis 97:556

    Article  PubMed  Google Scholar 

  • Edel-Hermann V, Lecomte C (2019) Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109:512–530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW

    Article  PubMed  Google Scholar 

  • Egel DS (2017) Alternaria leaf blight. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 51–53

    Google Scholar 

  • Egel DS, Guan W (2019) Evaluation of melon varieties for resistance to bacterial wilt, 2018. Plant Dis Manag Rep. https://doi.org/10.1094/PDMR13:V057

  • Egel DS, Martyn RD (2007) Fusarium wilt of watermelon and other cucurbits. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2007-0122-01

  • Egel DS, Ruhl G, Hoke S, Dicklow MB, Wick R (2010) First report of black leg of hydroponic basil in the U.S. caused by Plectosporium tabacinum. Plant Dis 94(4):484

    Article  PubMed  Google Scholar 

  • Egel DS, Santini J, Marchino C, Hoke S (2017) Evidence for secondary spread of Fusarium wilt of watermelon in transplant trays. HortScience 52(9):S7. (Abstract)

    Google Scholar 

  • Egel DS, Kleczewski NM, Mumtaz F, Foster R (2018) Acibenzolar-S-methyl is associated with yield reduction when used for managing bacterial wilt (Erwinia tracheiphila) in cantaloupe. Crop Prot 109:136–141

    Article  Google Scholar 

  • Egel DS, Guan W, Creswell T, Bonkowski J (2020) First report of Macrophomina phaseolina causing charcoal rot of cucumber in Indiana. Plant Dis 104(7):2030. https://doi.org/10.1094/PDIS-11-19-2421-PDN

    Article  Google Scholar 

  • Eisenback JD, Triantaphyllou HH (1991) Root-knot nematodes: Meloidogyne species and races. In: Nickle WR (ed) Manual of agricultural nematology. Marcell Dekker, New York, pp 191–274

    Google Scholar 

  • Ellouze W, Mishra V, Howard RJ, Ling K-S, Zhang W (2020) Control of cucumber green mottle mosaic virus in commercial greenhouse production with agricultural disinfectants and resistant cucumber varieties. Agronomy 10:1879. https://doi.org/10.3390/agronomy10121879

    Article  Google Scholar 

  • Elmer WH (1996) Fusarium fruit rot of pumpkin in Connecticut. Plant Dis 80:131–135

    Article  Google Scholar 

  • Elmer WH, Covert SF, O’Donnell K (2007) Investigation of an outbreak of Fusarium foot and fruit rot of pumpkin within the United States. Plant Dis 91:1142–1146

    Article  PubMed  Google Scholar 

  • Elmer W, Li D, Yavuz S, Madeiras A, Schultes N (2019) Heuchera root rot, a new disease for Plectosphaerella cucumerina. J Phytopathol 168:56–62

    Article  Google Scholar 

  • Elmstrom GW, Hopkins DL (1973) Field resistance to root-knot nematode in muskmelon. HortScience 8(2):134

    Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupin caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Article  Google Scholar 

  • England GK, Strickland JS, McGovern RJ (2007) Plectosporium blight of cucurbits. Proc Fla State Hort Soc 120:168–169

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Evans KJ, Nyquist W, Latin RX (1992) A model based on temperature and leaf wetness duration for establishment of Alternaria leaf blight of muskmelon. Phytopathology 82:890–895

    Article  Google Scholar 

  • Everts KL, Sardanelli S, Kratochvil RJ, Armentrout DK, Gallagher L (2006) Root-knot and root-lesion nematode suppression by cover crops, poultry litter, and poultry litter compost. Plant Dis 90:487–492

    Article  PubMed  Google Scholar 

  • Everts KL, Egel DS, Langston D, Zhou XG (2014) Chemical management of Fusarium wilt of watermelon. Crop Prot 66:114–119

    Article  Google Scholar 

  • Farr DF, Rossman AY (2020) Fungal databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed 10 Nov 2020

  • Feng J, Li J, Randhawa P, Bonde M, Schaad NW (2009) Evaluation of seed treatments for the eradication of Acidovorax avenae subsp. citrulli from melon and watermelon seeds. Can J Plant Pathol 31:180–185

    Article  Google Scholar 

  • Fernández-Pavía SP, Rodríguez-Alvarado G, López-Ordaz A, Fernández-Pavía YL (2006) First report of Phytophthora capsici causing wilt on hydropronically grown cucumber in Mexico. Plant Dis 90:1552–1552

    Article  PubMed  Google Scholar 

  • Ferriera JF, Knox-Davies PS (1984) Occurrence and control of Fusarium oxysporum on sweet melon seed. Phytophylactica 16:67–69

    Google Scholar 

  • Fessehaie A, Walcott RR (2005) Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp citrulli. Phytopathology 95:413–419

    Article  PubMed  Google Scholar 

  • Flasinski S, Scott SW, Barnett OW, Sun C (1995) Diseases of peperomia, impatiens and hibbertia caused by cucumber mosaic virus. Plant Dis 79:843–848

    Article  Google Scholar 

  • Foster R, Brust G, Palumbo J (2005) Watermelon, muskmelon, and cucumber. In: Vegetable insect management. Meister Media Worldwide, Willoughby, pp 198–214

    Google Scholar 

  • Foster R, Bordelon B, Hirst P, Clingerman V, O’Donnell M, Ballard R (2016) Protecting pollinators in fruit and vegetable production. Purdue University POL-2. 8 pp

    Google Scholar 

  • FRAC Code List ©*2017: fungicides sorted by mode of action (including FRAC Code numbering). (2017). Retrieved May 15, 2017, from FRAC Code List ©*2017: fungicides sorted by mode of action (including FRAC Code numbering)frac.info/publications/downloads

    Google Scholar 

  • FRAC Code List ©*2020: fungicides sorted by mode of action (including FRAC Code numbering). (2017). Retrieved May 15, 2017, from FRAC Code List ©*2017: fungicides sorted by mode of action (including FRAC Code numbering)frac.info/publications/downloads

    Google Scholar 

  • Frankle WG, Hopkins DL, Stall RE (1993) Ingress of the watermelon fruit blotch bacterium into fruit. Plant Dis 77:1090–1092

    Article  Google Scholar 

  • Gallitelli D (2000) The ecology of cucumber mosaic virus and sustainable agriculture. Virus Res 71:9–21

    Article  PubMed  Google Scholar 

  • Gamliel A, Grinstein A, Zilberg V, Ucko O, Katan J (2000) Control of soilborne diseases by combining soil solarization and fumigants. Acta Hortic 532:157–164

    Article  Google Scholar 

  • Gannibal PB (2011) Alternaria cucumerina causing leaf spot of pumpkin newly reported in North Caucasus (Russia). New Dis Rep 23:36. https://doi.org/10.5197/j.2044-0588.2011.023.036

    Article  Google Scholar 

  • Gevens AJ, Ando K, Lamour KH, Grumet R, Hausbeck MK (2006) A detached cucumber fruit method to screen resistance to Phytophthora capsici and effect of fruit age on susceptibility to infection. Plant Dis 90:1276–1282

    Article  PubMed  Google Scholar 

  • Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK (2007) Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology 97:421–428

    Article  PubMed  Google Scholar 

  • Gilbertson RL (2017a) Diseases caused by Begomoviruses. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 110–111

    Google Scholar 

  • Gilbertson RL (2017b) Cucurbit leaf crumple. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 111–113

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Ann Rev Virol 2:67–93

    Article  Google Scholar 

  • Gilreath JP, Noling JW, Santos BM (2004) Methyl bromide alternatives for bell pepper (Capsicum annuum) and cucumber (Cucumis sativus) rotations. Crop Prot 23:347–351

    Article  Google Scholar 

  • Gil-Salas FM, Peters J, Boonham N, Cuadrado IM, Janssen D (2011) Yellowing disease of zucchini squash produced by mixed infections of Cucurbit yellow stunting disorder virus and Cucumber vein yellowing virus. Phytopathology 101:1365–1372

    Article  PubMed  Google Scholar 

  • Giné A, González C, Serrano L, Sorribas FJ (2017) Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur J Plant Pathol 148:795–805

    Article  Google Scholar 

  • Gisi U, Sierotzki H (2008) Fungicide modes of action and resistance in downy mildews. Eur J Plant Pathol 122:157–167

    Article  Google Scholar 

  • Gisi U, Sietzki H (2015) Oomycete fungicides: phenylamides, quinone outside inhibitors, and carboxylic acid amides. In: Fungicide resistance in plant pathogens. Springer, Tokyo, pp 145–174

    Chapter  Google Scholar 

  • Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci 58:859–857

    Article  PubMed  Google Scholar 

  • Gleason ML, Saalau Rojas E (2017) Bacterial wilt. In: Keinath AP, Zitter TA, Wintermantel WM (eds) Compendium of cucurbit diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 74–75

    Google Scholar 

  • Gonsalves D, Chee P, Provvidenti R, Seem R, Slightom JM (1992) Comparison of coat protein mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Biotechnology 10:1562–1570

    Google Scholar 

  • Gould GE (1944) The biology and control of the striped cucumber beetle. Purdue University Agricultural Experiment Station, Lafayette

    Google Scholar 

  • Granke LL, Hausbeck MK (2010) Effects of temperature, concentration, age, and algaecides on Phytophthora capsici zoospore infectivity. Plant Dis 94:54–60

    Article  PubMed  Google Scholar 

  • Granke LL, Windstam ST, Hoch HC, Smart CD (2009) Dispersal and movement mechanisms of Phytophthora capsici sporangia. Phytopathology 99:1258–1264

    Article  PubMed  Google Scholar 

  • Granke LL, Quesada-Ocampo LM, Hausbeck MK (2011) Variation in phenotypic characteristics of Phytophthora capsici isolates from a worldwide collection. Plant Dis 95:1080–1088

    Article  PubMed  Google Scholar 

  • Granke LL, Quesada-Ocampo L, Lamour K, Hausbeck MK (2012a) Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Dis 95:1588–1600

    Article  Google Scholar 

  • Granke LL, Quesada-Ocampo LM, Hausbeck MK (2012b) Differences in virulence of Phytophthora capsici isolates from a worldwide collection on host fruits. Eur J Plant Pathol 132:281–296

    Article  Google Scholar 

  • Granke LL, Morrice JJ, Hausbeck MK (2014) Relationships between airborne Pseudoperonospora cubensis sporangia, environmental conditions, and cucumber downy mildew severity. Plant Dis 98:674–681

    Article  PubMed  Google Scholar 

  • Guan W, Zhao X, Dickson DW, Mendes ML (2014) Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto Cucumis metulifer. HortScience 49(8):1046–1051

    Article  Google Scholar 

  • Gubler WD, Bernhardt EA (1992) Cavity rot of winter melon caused by Verticillium dahlia. Plant Dis 76:414–417

    Article  Google Scholar 

  • Gubler WD, Grogan RG, Greathead AS (1978) Wilt of cucumber caused by Vertillicium albo-atrum in California. Plant Dis Rep 62(9):786–789

    Google Scholar 

  • Hagen C, Rojas MR, Kon T, Gilbertson RL (2008) Recovery from Cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029–1037

    Article  PubMed  Google Scholar 

  • Harpaz I, Cohen S (1965) Semipersistent relationship between cucumber vein yellowing virus (CVYV) and its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Phytopathol Z 54:240–248

    Article  Google Scholar 

  • Hartz TK, Carter WW, Bruton BD (1987) Failure of fumigation and solarization to control Macrophomina phaseolina and subsequent muskmelon decline. Crop Prot 6(4):261–264

    Article  Google Scholar 

  • Haudenshield JS, Palukaitis P (1998) Diversity among isolates of squash mosaic virus. J Gen Virol 79:2331–2341

    Article  PubMed  Google Scholar 

  • Hausbeck MK (2017) Downy mildew. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 56–58

    Google Scholar 

  • Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303

    Article  PubMed  Google Scholar 

  • Hausbeck MK, Linderman SD (2014) Evaluation of fungicides for control of downy mildew of cucumber, 2013. Plant Dis Manag Rep 8:V304

    Google Scholar 

  • Hausbeck MK, Cook AJ, Linderman SD, Naegele RP (2015a) Evaluation of foliar applications of fungicides for control of Phytophthora crown, root, and fruit rot of pumpkin, 2014. Plant Dis Manag Rep 9:V090

    Google Scholar 

  • Hausbeck MK, Cook AJ, Naegele RP, Linderman SD (2015b) Evaluation of an experimental and registered fungicides for control of downy mildew of cucumber, 2014. Plant Dis Manag Rep 9:V093

    Google Scholar 

  • Hausbeck MK, Perla DE, Cook AJ (2019) Evaluation of single fungicide products for control of downy mildew of cucumber, 2018. Plant Dis Manag Rep 13:V139

    Google Scholar 

  • Hirsch J, Moury B (2020) Cucumber mosaic virus (Bromoviridae). Reference module in life sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.21297-1

  • Holkar SK, Mandal B, Krishna Reddy M, Jain RK (2019) Watermelon bud necrosis orthotospovirus – an emerging constraint in the Indian subcontinent: an overview. Crop Protect 117:52–62

    Article  Google Scholar 

  • Holmes GJ, Ojiambo PS, Hausbeck MK, Quesada-Ocampo L, Keinath AP (2015) Resurgence of cucurbit downy mildew in the United States: a watershed event for research and extension. Plant Dis 99:428–441

    Article  PubMed  Google Scholar 

  • Hooks CRR, Fereres A (2006) Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool. Virus Res 120:1–16

    Article  PubMed  Google Scholar 

  • Hopkins DL (2003) Field control of bacterial fruit blotch of watermelon with a plant defense activator. Phytopathology 93(6):S37

    Google Scholar 

  • Hopkins DL, Schenk NC (1972) Bacterial leaf spot of watermelon caused by Pseudomonas syringae pv. lachrymans. Phytopathology 62:542–545

    Article  Google Scholar 

  • Hopkins DL, Thompson CM (2002a) Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37:924–926

    Article  Google Scholar 

  • Hopkins DL, Thompson CM (2002b) Evaluation of Citrullus sp. germplasm for resistance to Acidovorax avenae subsp. citrulli. Plant Dis 86:61–64

    Article  PubMed  Google Scholar 

  • Hopkins DL, Cucuzza JD, Watterson JC (1996) Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Dis 80:529–532

    Article  Google Scholar 

  • Ibrahim AN, Abdel-Hak TM, Mahrous MM (1975) Survival of Alternaria cucumerina, the causal organism of leaf spot disease of cucurbits. Acta Phytopathol Hun 10:309–313

    Google Scholar 

  • Isakeit T, Black MC, Barnes LW, Jones JB (1997) First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Dis 81:694. https://doi.org/10.1094/PDIS.1997.81.6.694C

    Article  PubMed  Google Scholar 

  • Iwaki M, Honda Y, Hanada K, Tochihara H, Yonah T, Hokama K, Yokoyama T (1984) Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis 68:1006–1008

    Article  Google Scholar 

  • Jabnoun-Khiareddine H, Daami-Remadi M, Ayed F, El Mahjoub M (2007) First report of Verticillium wilt of melon caused by Verticillium dahliae in Tunisia. Plant Pathol 56:726

    Article  Google Scholar 

  • Jackson KL, Yin J, Csinos AS, Ji P (2010) Fungicidal activity of fluopicolide for suppression of Phytophthora capsici on squash. Crop Prot 29:1421–1427

    Article  Google Scholar 

  • Jackson KL, Yin J, Ji P (2012) Sensitivity of Phytophthora capsici on vegetable crops in Georgia to Mandipropamid, Dimethomorph, and Cyazofamid. Plant Dis 96:1337–1342

    Article  PubMed  Google Scholar 

  • Janssen D, Ruiz L, Velasco L, Segunda E, Cuadrado IM (2002) Non-cucurbitaceous weed species shown to be natural hosts of Cucumber vein yellowing virus in South-Eastern Spain. Plant Pathol 51:797

    Article  Google Scholar 

  • Jarial K, Jarial RS, Gupta SK (2015) Bacterial spot (Xanthomonas cucurbitae) of cucurbits: a review. NBU J Plant Sci 9(1):33–39

    Article  Google Scholar 

  • Jasinski JR, Predheur RJ, Miller SA, Lewis Ivey ML, Riedel RM (2007) Controlling bacterial infections on pumpkin fruit in OH with varietal resistance and bactericides, 2011. Plant Dis Manag Rep 6:V054. https://doi.org/10.1094/PDMR06

    Article  Google Scholar 

  • Jenkins SF Jr, Wehner TC (1983) Occurrence of Fusarium oxysporum f. sp. cucumerinum on greenhouse-grown Cucumis sativus seed stocks in North Carolina. Plant Dis 67:1024–1025

    Article  Google Scholar 

  • Ji P, Csinos AS (2015) Effect of oxathiapiprolin on asexual life stages of Phytophthora capsici and disease development on vegetables. Ann Appl Biol 166:229–235

    Article  Google Scholar 

  • Johnson KL, Minsavage GV, Le T, Jones JB, Walcott RR (2011) Efficacy of a nonpathogenic Acidovorax citrulli strain as a biocontrol seed treatment for bacterial fruit blotch of cucurbits. Plant Dis 95:697–704

    Article  PubMed  Google Scholar 

  • Juarez M, Aranda MA (2017) Tomato leaf curl New Delhi. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 116–118

    Google Scholar 

  • Katan J (1981) Solar heating (solarization) control of soilborne pests. Annu Rev Phytopathol 19:211–236

    Article  Google Scholar 

  • Katan T (1999) Current status of vegetative compatibility groups in Fusarium oxysporum. Phytoparasitica 27:51–64

    Article  Google Scholar 

  • Katan T, Di Primo P (1999) Current status of vegetative compatibility groups in Fusarium oxysporum: supplement. Phytoparasitica 27:273–277

    Article  Google Scholar 

  • Katan J, Greenberger A, Alon H, Grinstein A (1975) Increasing soil temperatures by mulching for the control of soil-borne diseases. Phytoparasitica 3:69

    Google Scholar 

  • Kato K, Hanada K, Kameya-Iwaki M (2000) Melon yellow spot virus: a distinct species of the genus Tospovirus isolated from melon. Phytopathology 90:422–426

    Article  PubMed  Google Scholar 

  • Keinath AP (2001) Effect of fungicide applications scheduled to control gummy stem blight on yield and quality of watermelon fruit. Plant Dis 85(1):53–58

    Article  PubMed  Google Scholar 

  • Keinath AP (2002) Survival of Didymella bryoniae in buried watermelon vines in South Carolina. Plant Dis 86(1):32–38

    Article  PubMed  Google Scholar 

  • Keinath AP (2007) Sensitivity of populations of Phytophthora capsici from South Carolina to mefenoxam, dimethomorph, zoxamide, and cymoxanil. Plant Dis 91:743–748

    Article  PubMed  Google Scholar 

  • Keinath AP (2008) Survival of Didymella bryoniae in infested muskmelon crowns in South Carolina. Plant Dis 92(8):1223–1228

    Article  PubMed  Google Scholar 

  • Keinath AP (2014a) Differential susceptibility of nine cucurbit species to the foliar blight and crown canker phases of gummy stem blight. Plant Dis 98(2):247–254

    Article  PubMed  Google Scholar 

  • Keinath AP (2014b) Reproduction of Didymella bryoniae on nine species of cucurbits under field conditions. Plant Dis 98(10):1379–1386

    Article  PubMed  Google Scholar 

  • Keinath AP (2015) Identification of races of Colletotrichum orbiculare on muskmelon in South Carolina. Plant Health Progr 16(2):88–89

    Article  Google Scholar 

  • Keinath AP (2016a) Polyoxin D and other biopesticides reduce gummy stem blight but not anthracnose on melon seedlings. Plant Health Progr 17(3):177–181

    Article  Google Scholar 

  • Keinath AP (2016b) Utility of a cucumber plant bioassay to assess fungicide efficacy against Pseudoperonospora cubensis. Plant Dis 100:490–499

    Article  PubMed  Google Scholar 

  • Keinath AP (2018) Minimizing yield and quality losses in watermelon with multi-site and strobilurin fungicides effective against foliar and fruit anthracnose. Crop Prot 106:72–78

    Article  Google Scholar 

  • Keinath AP, Wechter WP, Rutter WB, Agudelo PA (2019) Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. niveum remain resistant when coinfected by Meloidogyne incognita in the field. Plant Dis 103:1383–1390. https://doi.org/10.1094/PDIS-10-18-1869-RE

    Article  PubMed  Google Scholar 

  • Kendrick JB, Schroeder (1934) Inoculation tests with Verticillium wilt of muskmelons. Phytopathology 24(11):1250–1252

    Google Scholar 

  • Khanal C, Desaeger JA (2020) On-farm evaluations of non-fumigant nematicides on cucurbits. Crop Prot 133:105152. https://doi.org/10.1016/j.cropro.2020.105152

    Article  Google Scholar 

  • Khuong G, Hua H, Timper P, Ji P (2019) Meloidogyne incognita intensifies the severity of Fusarium wilt on watermelon caused by Fusarium oxysporum f. sp. niveum, Can. J Plant Pathol 41(2):261–269. https://doi.org/10.1080/07060661.2018.1564939

    Article  Google Scholar 

  • Kim HK, Park JH, Choi SL (1989) Influence of various in vitro conditions on growth of Phytophthora capsici, pathogen of pepper crown and root rot. Korean J Plant Pathol 5:230–238

    Google Scholar 

  • Kim DS, Prak HC, Chun SJ, Yu SH, Par KJ, Oh JH, Shin KH, Koh YJ, Kim BS, Hahm YI, Chung BK (1999) Field performance of a new fungicide ethaboxam against cucumber downy mildew, potato late blight and pepper phytophthora blight in Korea. Plant Pathol J 15:48–52

    Google Scholar 

  • King SR, Davis AR, Zhang X, Crosby K (2010) Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hortic 127:106–111

    Article  Google Scholar 

  • Kleczewski N, Egel DS, (2011) A diagnostic guide for Fusarium wilt of watermelon. Plant Health Progr. https://doi.org/10.1094/PHP-2011-01-DG

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  PubMed  Google Scholar 

  • Koike ST, Tidwell TE, Fogle DG, Patterson CL (1991) Anthracnose of greenhouse-grown watermelon transplants caused by Colletotrichum orbiculare in California. Plant Dis 75(6):644

    Article  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007a) Charcoal rot. In: Vegetable diseases: a color handbook. Academic, Boston, p 240

    Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007b) Monosporascus root rot and vine decline. In: Vegetable diseases: a color handbook. Academic, Boston, pp 241–242

    Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007c) Verticillium wilt. In: Vegetable diseases: a color handbook. Academic, Boston, pp 246–247

    Google Scholar 

  • Kousik CS, Keinath AP (2008) First report of insensitivity to cyazofamid among isolates of Phytophthora capsici from the southeastern United States. Plant Dis 92:979

    Article  PubMed  Google Scholar 

  • Kousik CS, Adkins S, Turechek WW, Roberts PD (2009) Sources of resistance in U.S. plant introductions to watermelon vine decline caused by squash vein yellowing virus. HortScience 44:256–262

    Article  Google Scholar 

  • Kousik CS, Ikerd JL, Harrison HF (2014) Development of pre- and postharvest Phytophthora fruit rot on watermelons treated with fungicies in the field. Plant Health Progr 15:145–150

    Article  Google Scholar 

  • Kousik CS, Parada C, Quesada-Ocampo LM (2015a) First report of Phytophthora fruit rot on bitter gourd (Mormordica charantia) and sponge gourd (Luffa cylindrica) caused by Phytophthora capsici. Plant Health Progr 16:93–94

    Google Scholar 

  • Kousik CS, Adkins S, Webster CG, Turechek WW, Stansly P, Roberts PD (2015b) Influence of insecticides and reflective mulch on watermelon vine decline caused by squash vein yellowing virus (SqVYV). Plant Health Progr. https://doi.org/10.1094/PHP-RS-14-0040

  • Kousik CS, Ji P, Egel D, Quesada-Ocampo LM (2017) Fungicide rotation schemes for managing Phytophthora fruit rot of watermelon across Southeastern United States. Plant Health Progr 18:28–34

    Article  Google Scholar 

  • Kousik CS, Mandal M, Hassel R (2018) Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Dis 102:1290–1298. https://doi.org/10.1094/PDIS-09-17-1384-RE

    Article  PubMed  Google Scholar 

  • Kousik CS, Ikerd JL, Mandal M (2019) Relative susceptibility of commercial watermelon varieties to powdery mildew. Crop Prot 125:104910

    Article  Google Scholar 

  • Krasnow CS, Hausbeck MK (2016) Evaluation of winter squash and pumpkin cultivars for age-related resistance to Phytophthora capsici fruit rot. HortScience 51:1251–1255

    Article  Google Scholar 

  • Krasnow CS, Hausbeck MK (2020) Evaluation of fungicides to control Phytophthora fruit rot of winter squash, 2015. Plant Dis Manag Rep 14:V108

    Google Scholar 

  • Krikun J, Frank ZR (1982) Metham sodium applied by sprinkler irrigation to control pod rot and Verticillium wilt of peanut. Plant Dis 66:128–130

    Article  Google Scholar 

  • Lamour KH, Hausbeck MK (2000) Mefenoxam nsensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:396–400

    Article  PubMed  Google Scholar 

  • Lamour KH, Hausbeck MK (2003) Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis 87:841–845

    Article  PubMed  Google Scholar 

  • Lamour KH, Stam R, Jupe J, Huitema E (2012) The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol 13:329–337

    Article  PubMed  Google Scholar 

  • Langston DB Jr, Walcott RR, Gitaitis RD, Sanders FH Jr (1999) First report of a fruit rot of pumpkin caused by Acidovorax avenae subsp. citrulli in Georgia. Plant Dis 83:199. https://doi.org/10.1094/PDIS.1999.83.2.199B

    Article  PubMed  Google Scholar 

  • Langston DB Jr, Sanders FH, Brock JH, Gitaitis RD, Flanders JT, Beard GH (2003) First report of a field outbreak of a bacterial leaf spot of cantaloupe and squash caused by Pseudomonas. Plant Dis 87(5):600. https://doi.org/10.1094/PDIS.2003.87.5.600B

    Article  PubMed  Google Scholar 

  • Lapidot M, Legg JP, Wintermantel WM, Polston JE (2014) Management of whitefly-transmitted viruses in open-field production systems. Adv Virus Res 90:147–206

    Article  PubMed  Google Scholar 

  • Latin R, Egel DS (2001) MELCAST: melon disease forecaster. Purdue University Coop. Ext., West Lafayette. https://www.extension.purdue.edu/extmedia/BP/BP-64-W.pdf

  • Latin RX, Hopkins DL (1995) Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis 79:761–765

    Article  Google Scholar 

  • Latin RX, Rane KR, Evans KJ (1994) Effect of Alternaria leaf blight on soluble solid content of muskmelon. Plant Dis 78:979–982. https://doi.org/10.1094/PD-78-0979

    Article  Google Scholar 

  • Latin R, Tikhonova I, Rane K (1995) Factors affecting the survival and spread of Acidovorax avenae subsp. citrulli in watermelon transplant production facilities. Phytopathology 85:1413–1417

    Article  Google Scholar 

  • Leach JG, Currence TM (1938) Fusarium wilt of muskmelon in Minnesota. Minn Agric Exp Stn Bull 129:1–32

    Google Scholar 

  • Lebeda A, Cohen Y (2011) Cucurbit downy mildew (Pseudoperonospora cubensis) – biology, ecology, epidemiology, host-pathogen interaction and control. Eur J Plant Pathol 129:157–192

    Article  Google Scholar 

  • Lebeda A, Kristkova E (1996) Resistance in Cucurbita pepo and Cucurbita maxima germplasms to cucumber mosaic virus. Genet Resour Crop Evol 43:461–469

    Article  Google Scholar 

  • Leben C (1983) Chemicals plus heat as seed treatments for control of angular leaf spot of cucumber seedlings. Plant Dis 67:991–993

    Article  Google Scholar 

  • Lecoq H (2017) Watermelon chlorotic stunt. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 118–119

    Google Scholar 

  • Lecoq H, Desbiez C (2012) Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. In: Loebenstein G, Lecoq H (eds) Viruses and virus diseases of vegetables in the Mediterranean Basin. Advance in virus research, vol 84, pp 67–126. 570 pp

    Chapter  Google Scholar 

  • Lecoq H, Desbiez C (2017) Moroccan watermelon mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 132–133

    Google Scholar 

  • Lecoq H, Piquemal J-P, Michel MJ, Blancard D (1988) Virus de la mosaique de la courge: une nouvelle menace pour les cultures de melon en France? PHM Revue Horticole 289:25–30

    Google Scholar 

  • Lee GP, Min BE, Kim CS, Choi SH, Harn CH, Kim SU, Ryu KH (2003) Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit infecting Tobamoviruses. J Virol Methods 110:19–24

    Article  PubMed  Google Scholar 

  • Leonian LH (1922) Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12:401–408

    Google Scholar 

  • Li J-X, Liu S-S, Gu Q-S (2016) Transmission efficiency of cucumber green mottle mosaic virus via seeds, soil, pruning and irrigation water. J Phytopathol 164:300–309

    Article  Google Scholar 

  • Li HX, Nuckols TA, Harris D, Stevenson KL, Brewer MT (2019a) Differences in fungicide resistance profiles and multiple resistance to a quinone-outside inhibitor (QoI), two succinate dehydrogenase inhibitors (SDHI), and a demethylation inhibitor (DMI) for two Stagonosporopsis species causing gummy stem blight of cucurbits. Pest Manag Sci 75(11):3093–3101

    Google Scholar 

  • Li YG, Jiang WY, Jiang D, Wang RT, Tian S, Ji P, Jiang BW (2019b) First report of fruit rot on postharvest pumpkin caused by Fusarium acuminatum in China. Plant Dis 103(5):1035

    Google Scholar 

  • Li Y, Both A, Wyenandt CA, Durner EF, Heckman JR (2019c) Applying Wollastonite to soil to adjust pH and suppress powdery mildew on pumpkin. HortTechnology 29(6):811–820

    Article  Google Scholar 

  • Ling K-S, Li R, Zhang W (2014) First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Dis 98:701

    PubMed  Google Scholar 

  • Liu Q, Saalau Rojas E, Batzer JC, Gleason ML (2013) Impact of plant age on development of bacterial wilt on muskmelon. Phytopathology 103(Suppl 2):S2.83

    Google Scholar 

  • Liu Q, Ravanlou A, Babadoost M (2016) Occurrence of bacterial spot on pumpkin and squash fruit in the north central region of the United States and bacteria associated with the spots. Plant Dis 100:2377–2382

    Article  PubMed  Google Scholar 

  • Loebenstein G, Raccah B (1980) Control of non-persistently transmitted aphid-borne viruses. Phytoparasitica 8:221–235

    Article  Google Scholar 

  • López-Sesé AI, Gómez-Guillamón ML (2000) Resistance to Cucurbit yellowing stunting disorder virus (CYSDV) in Cucumis melo L. HortScience 35:110–113

    Article  Google Scholar 

  • Louro D, Quinot A, Neto E, Fernandes JE, Marian D, Vecchiati M, Caciagli P, Vaira AM (2003) Occurrence of Cucumber vein yellowing virus in cucurbitaceous species in southern Portugal. New Dis Rep 8:32

    Google Scholar 

  • Ma G, Bao S, Zhao J, Sui Y, Wu X (2021) Morphological and molecular characterization of alternaria species causing leaf blight on watermelon in China. Plant Dis 105:60–70

    Article  PubMed  Google Scholar 

  • Makizumi Y, Igarashi M, Gotoh K, Murao K, Yamamoto M, Udonsri N, Ochiai H, Thummabenjapone P, Kaku H (2011) Genetic diversity and pathogenicity of cucurbit-associated Acidovorax. J Gen Plant Pathol 77:24–23

    Article  Google Scholar 

  • Malathrakis NE, Vakalounakis DJ (1983) Resistance to benzimidazole fungicides in the gummy stem blight pathogen Didymella bryoniae on cucurbits. Plant Pathol 32(4):395–399

    Article  Google Scholar 

  • Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MM (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103:538–544

    Article  PubMed  Google Scholar 

  • Maliogka VI, Wintermantel WM, Orfanidou CG, Katis NI (2020) Criniviruses infecting vegetable crops. In: Poltronieri P, Hong Y (eds) Applied plant biotechnology for improving resistance to biotic stress. Elsevier, London, pp 251–289

    Chapter  Google Scholar 

  • Mansour A, Al-Musa A (1993) Cucumber vein yellowing virus; host range and virus vector relationships. J Phytopathol 137:73–79

    Article  Google Scholar 

  • Martin HL, Horlock CM (2002) First report of Acidovorax avenae subsp. citrulli as a pathogen of gramma in Australia. Plant Dis 86(12):1406

    Article  PubMed  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18(2):111–181

    Article  Google Scholar 

  • Martin B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78:2701–2705

    Article  PubMed  Google Scholar 

  • Martin HL, O’Brien RG, Abbott DV (1999) First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis 83:965

    Article  PubMed  Google Scholar 

  • Martin-Hernandez AM, Pico B (2021) Natural resistances to viruses in cucurbits. Agronomy 11:23. https://doi.org/10.3390/agronomy11010023

    Article  Google Scholar 

  • Martyn RD (1987) Fusarium oxysporum f. sp. niveum race 2, a new race of the watermelon wilt pathogen in the United States. Plant Dis 70:233–236

    Article  Google Scholar 

  • Martyn RD (2014) Fusarium wilt of watermelon: 120 years of research. In: Janick J (ed) Horticultural reviews, vol 42, 1st edn. Wiley-Blackwell

    Google Scholar 

  • Martyn RD (2017a) Fusarium crown, foot, and fruit rots. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 29–30

    Google Scholar 

  • Martyn RD (2017b) Fusarium wilts. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 32–33

    Google Scholar 

  • Martyn RD (2017c) Monosporascus root rot and vine decline. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 41–42

    Google Scholar 

  • Martyn RD (2017d) Fusarium wilt of watermelon. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 38–40

    Google Scholar 

  • Martyn RD, Gordon TR (2017) Fusarium wilt of melon. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 36–38

    Google Scholar 

  • Martyn RD, Hartz TK (1986) Use of soil solarization to control Fusarium wilt of watermelon. Plant Dis 70:762–766

    Article  Google Scholar 

  • Martyn RD, McLaughlin R (1983) Susceptibility of summer squash to the watermelon wilt pathogen (Fusarium oxysporum f. sp. niveum). Plant Dis 67:263–266

    Article  Google Scholar 

  • Martyn RD, Miller ME (1996) Monosporascus root rot and vine decline: an emerging disease of melons worldwide. Plant Dis 80:716–725

    Article  Google Scholar 

  • Martyn RD, Vakakounakis DJ (2012) Fusarium wilts of greenhouse cucurbits: melon, watermelon, and cucumber. In: Fusarium wilts of greenhouse and ornamental crops, 1st edn. APS Press, St. Paul, pp 159–174

    Google Scholar 

  • Mathis WL, Williams-Woodward J, Csinos AS (1999) Insensitivity of Phytophthora capsici to mefenoxam in Georgia. (Abst). Phytopathology 89:S49

    Google Scholar 

  • Maynard DN (2001) Watermelons characteristics, production, and marketing. ASHS, Alexandria

    Google Scholar 

  • McCreight JD (2000) Inheritance of resistance to lettuce infectious yellows virus in melon. Hort Sci 35:1118–1120

    Google Scholar 

  • McCreight JD, Wintermantel WM (2011) Genetic resistance in melon PI 313970 to Cucurbit yellow stunting disorder virus. HortScience 46:1582–1587

    Article  Google Scholar 

  • McGovern RJ (1994) First report of Corky dry rot of cantaloupe caused by Fusarium semitectum in Florida. Plant Dis 78:926. https://doi.org/10.1094/PD-78-0926B

    Article  Google Scholar 

  • McGrath MT (1994) Heterothallism in Sphaerotheca fulginea. Mycologia 86(4):517–523

    Article  Google Scholar 

  • McGrath MT (1996) Phytophthora fruit rot. In: Zitter TA, Hopkins DL, Thomas CE (eds) Compendium of cucurbit diseases. American Phytopathological Society, St. Paul, pp 53–54

    Google Scholar 

  • McGrath MT (2001) Fungicide resistance issues in cucurbit powdery mildew: experiences and challenges. Plant Dis 85(3):236–245

    Article  PubMed  Google Scholar 

  • McGrath MT (2017a) Powdery mildew. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 62–64

    Google Scholar 

  • McGrath MT (2017b) First report of resistance to Quinoxyfen in Podosphaera xanthii, causal agent of cucurbit powdery mildew, in the United States. Plant Health Progr 18:94. https://doi.org/10.1094/PHP-03-17-0018-BR

    Article  Google Scholar 

  • McGrath MT, Mensasha SR (2013) Managing Phytophthora blight with biofumigation. Phytopathology 103(S2):93

    Google Scholar 

  • McGrath MT, Sexton ZF (2018) Poor control of cucurbit powdery mildew associated with first detection of resistance to cyflufenamid in the causal agent, Podosphaera xanthii, in the United States. Plant Disease Progr 19:222–223. https://doi.org/10.1094/PHP-06-18-0029-BR

    Article  Google Scholar 

  • McKeen CD, Wensley RN (1961) Longevity of Fusarium oxysporum in soil culture. Science 134:1528–1529

    Article  PubMed  Google Scholar 

  • McLean DM (1958) A seed-borne bacterial cotyledon spot of squash. Plant Dis Rep 42:425–426

    Google Scholar 

  • Mertely JC, Martyn RD, Miller ME, Bruton BD (1991) Role of Monosporascus cannonballus and other fungi in a root rot/vine decline disease of muskmelon. Plant Dis 75:1133–1137

    Article  Google Scholar 

  • Mertely JC, Martyn RD, Miller ME, Bruton BD (1993) An expanded host range for the muskmelon pathogen Monosporascus cannonballus. Plant Dis 77:667–673

    Article  Google Scholar 

  • Meyer MD, Hausbeck MK (2012) Using cultural practices and cultivar resistance to manage Phytophthora crown rot on summer squash. HortScience 47:1080–1084

    Article  Google Scholar 

  • Meyer MD, Hausbeck MK (2013) Age-related resistance to Phytophthora fruit rot in ‘Dickenson Field’ processing pumpkin and ‘Golden Delicious’ winter squash fruit. Plant Dis 97:446–452

    Article  PubMed  Google Scholar 

  • Miao J, Dong X, Lin D, Wang Q, Liu P, Chen F, Du Y, Liu X (2015) Activity of the novel fungicide Oxathiapiprolin against plant-pathogenic oomycetes. Pest Manag Sci 72:1572–1577

    Article  PubMed  Google Scholar 

  • Mihail JD (1992) Macrophomina. In: Singleton LL, Mihail JD, Rush CM (eds) Methods for research on soilborne phytopathogenic fungi. American Phytopathological Society Press, Saint Paul, p 134

    Google Scholar 

  • Milgroom MG, Peever TL (2003) Population biology of plant pathogens: the synthesis of plant disease epidemiology and population genetics. Plant Dis 87:608–617

    Article  PubMed  Google Scholar 

  • Miller S (2020) Plectosporium blight of pumpkins, squash. In: VegNet Newsletter, 15 August 2020. https://u.osu.edu/vegnetnews/2020/08/15/plectosporium-blight-of-pumpkins-squash/. Accessed 01 Mar 2021

  • Miller SA, Lewis Ivey ML (2017) Hot water and chlorine treatment of vegetable seeds to eradicate bacterial plant pathogens. HYG-3085-05. In: Vegetable production systems laboratory. Ohio State University. https://u.osu.edu/vegprolab/grafting-publications/hot-water-and-chlorine-treatment-of-vegetable-seeds-to-eradicate-bacterial-plant-pathogens/. Accessed 01 Mar 2021

  • Miller ME, Martyn RD, Bruton BD (2000) Muskmelon growth and yield in response to fumigation. Acta Hortic 510:179–185

    Article  Google Scholar 

  • Miller SA, Mera JR, Saint-Preux C (2017) Evaluation of fungicides for the control of Alternaria leaf spot of cantaloupe, 2016. Plant Dis Manag Rep 11:V054. https://doi.org/10.1094/PDMR11

    Article  Google Scholar 

  • Mitani S, Araki S, Yamaguchi T, Takii Y, Ohshima T, Matsuo N (2001) Biological properties of the novel fungicide cyazofamid against Phytophthora infestans on tomato and Pseudoperonospora cubensis on cucumber. Pest Manag Sci 58:139–145

    Article  Google Scholar 

  • Mitchell RF, Hanks LM (2009) Insect frass as a pathway for transmission of bacterial wilt of cucurbits. Environ Entomol 38(2):395–403

    Article  PubMed  Google Scholar 

  • Mohammadi AS, Maynard ET, Foster RE, Egel DS, McNamara KT (2018) Muskmelon cultivar attractiveness to striped cucumber beetle and susceptibility to bacterial wilt. Hortscience 53(6):782–787. https://doi.org/10.21273/HORTSCI12882-18

    Article  Google Scholar 

  • Monroe JS, Santini JB, Latin R (1997) A model defining the relationship between temperature and leaf wetness and infection of watermelon by Colletotrichum orbiculare. Plant Dis 81(7):739–742

    Article  PubMed  Google Scholar 

  • Morris SC, Wade NL (1983) Control of postharvest disease in cantaloups by treatment with guazatine and benomyl. Plant Dis 67:792–794

    Article  Google Scholar 

  • Morris CE, Glaux C, Latour X, Gardan L, Samson R, Pitrat M (2000) The relationship of host range, physiology, and genotype to virulence on cantaloupe in Pseudomonas syringae from cantaloupe blight epidemics in France. Phytopathology 90:636–646

    Article  PubMed  Google Scholar 

  • Morris KA, Langston DB, Dickson DW, Davis RF, Timper P, Noe JP (2015) Efficacy of fluensulfone in a tomato–cucumber double cropping system. J Nematol 47(4):310–315

    PubMed  PubMed Central  Google Scholar 

  • Morris KA, Langston DB, Dutta B, Davis RF, Timper P, Noe JP, Dickson DW (2016) Evidence for a disease complex between Pythium aphanidermatum and root-knot nematodes in cucumber. Plant Health Progr 17(3):200. https://doi.org/10.1094/PHP-BR-16-0036

    Article  Google Scholar 

  • Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK (2014) Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLoS One 9(5):e95930. https://doi.org/10.1371/journal.pone.0095930

    Article  PubMed  PubMed Central  Google Scholar 

  • Naegele RP, Quesada-Ocampo LM, Kurjan JD, Saude C, Hausbeck MK (2016) Regional and temporal population structure of Pseudoperonospora cubensis in Michigan and Ontario. Phytopathology 106:372–379

    Article  PubMed  Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M, Afshari-azad H (2010) Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol Mediterr 49:321–329

    Google Scholar 

  • Nelson MR, Knuhtsen HK (1973) Squash mosaic virus variability: review and serological comparisons of six biotypes. Phytopathology 63:920–926

    Article  Google Scholar 

  • Netzer D (1976) Physiological races and soil population level of Fusarium wilt of water- melon. Phytoparasitica 4:131–136

    Article  Google Scholar 

  • Newberry EA, Jardini TM, Rubio I, Roberts PD, Babu B, Koike ST, Bouzar H, Goss EM, Jones JB, Bull CT, Paret ML (2016) Angular leaf spot of cucurbits is associated with genetically diverse Pseudomonas syringae strains. Plant Dis 100:1397–1404

    Article  PubMed  Google Scholar 

  • Newberry EA, Babu B, Roberts PD, Dufault NS, Goss EM, Jones JB, Paret ML (2018) Molecular epidemiology of Pseudomonas syringae pv. syringae causing bacterial leaf spot of watermelon and squash in Florida. Plant Dis 102:511–518. https://doi.org/10.1094/PDIS-07-17-1002-RE

    Article  PubMed  Google Scholar 

  • Njoroge SMC, Toler JE, Keinath AP (2009) Soil solarization on populations of Pythium spp., fluorescent pseudomonas, and damping-off of broccoli and cucumber. Int J Veg Sci 16(1):15–31

    Article  Google Scholar 

  • Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26(4S):573–586

    PubMed  PubMed Central  Google Scholar 

  • Noling JW, Gilreath JP (2002) Weed and nematode management: simultaneous considerations. In: Gobenauf GL (ed) Annual international research conference on methyl bromide alternatives and emissions reductions, Orlando

    Google Scholar 

  • Nuangmek W, Aiduang W, Suwannarach N, Kumla J, Kiatsiriroat T, Lumyong S (2019) First report of fruit rot on cantaloupe caused by Fusarium equiseti in Thailand. J Gen Plant Pathol 85:295–300

    Article  Google Scholar 

  • Ojiambo PS, Holmes GJ (2011) Spatiotemporal spread of cucurbit downy mildew in the Eastern United States. Ecol Epidemiol 101:451–461

    Google Scholar 

  • Ojiambo PS, Paul PA, Holmes GJ (2010) A quantitative review of fungicide efficacy for managing downy mildew in cucurbits. Dis Control Pest Manag 100:1066–1076

    Google Scholar 

  • Ojiambo PS, Gent DH, Quesada-Ocampo LM, Hausbeck MK, Holmes GJ (2015) Epidemiology and population biology of Pseudoperonospora cubensis: a model system for Management of Downy Mildews. Annu Rev Phytopathol 53:223–246

    Article  PubMed  Google Scholar 

  • Okuda M, Wintermantel WM (2017) Cucurbit chlorotic yellows. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 122–123

    Google Scholar 

  • Okuda M, Okazaki S, Yamasaki S, Okuda S, Sugiyama M (2010) Host range and complete genome sequence of Cucurbit chlorotic yellows virus, a new member of the genus Crinivirus. Phytopathology 100:560–566

    Article  PubMed  Google Scholar 

  • Okuda S, Okuda M, Sugiyama M, Sakata Y, Takeshita M, Iwai H (2013) Resistance in melon to cucurbit chlorotic yellows virus, a whitefly transmitted crinivirus. Eur J Plant Pathol 135:313–321

    Article  Google Scholar 

  • Olczak-Woltman H, Masny A, Bartoszewski G, Plucienniczak A, Niemirowicz-Szczytt K (2007) Genetic diversity of Pseudomonas syringae pv. lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathol 56:373–382

    Article  Google Scholar 

  • Orfanidou CG, Baltzi A, Dimou NA, Katis NI, Maliogka VI (2017) Cucurbit chlorotic yellows virus: insights into its natural host range, genetic variability, and transmission parameters. Plant Dis 101:2053–2058

    Article  PubMed  Google Scholar 

  • Owen JH (1955) Fusarium wilt of cucumber. Phytopathology 45:435–439

    Google Scholar 

  • Owen JH (1956) Cucumber wilt, caused by Fusarium oxysporum f. sp. cucumerinum n. f. Phytopathology 46:153–157

    Google Scholar 

  • Pair SD (1997) Evaluation of systemically treated squash trap plants and attracticidal baits for early-season control of striped and spotted cucumber beetles (Coleoptera: Chrysomelidae) and squash bug (Hemiptera: Coreidae) in cucurbit crops. J Econ Entomol 90(5):1307–1314

    Article  Google Scholar 

  • Palti J, Cohen Y (1980) Downy Mildew of Cucurbits (Pseudoperonospora cubensis): the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8:109–147

    Article  Google Scholar 

  • Paludan N (1985) Spread of viruses by recirculated nutrient solutions in soilless cultures. Tidsskr Planteavl 89:467–474

    Google Scholar 

  • Paplomatas EJ, Elena K, Tsagkarakou A, Perdikaris A (2002) Control of Verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. In: Paroussi G et al (eds) Proceedings of the 2nd Balkan symposium on vegetables and potatoes. Acta Hortic 579 ISHS 2002

    Google Scholar 

  • Parada-Rojas CH, Quesada-Ocampo LM (2018) Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies. Sci Rep 8:5194

    Article  PubMed  PubMed Central  Google Scholar 

  • Parada-Rojas CH, Quesada-Ocampo LM (2019) Characterizing sources of resistance to Phytophthora blight of pepper caused by Phytophthora capsici in North Carolina. Plant Health Progr 20:112–119

    Article  Google Scholar 

  • Parra G, Ristaino JB (2001) Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis 85:1069–1075

    Article  PubMed  Google Scholar 

  • Patel JS, Radetsky LC, Nagare R, Rea MS (2020) Nighttime application of UV-C to control cucumber powdery mildew. Plant Health Progr 21:40–46. https://doi.org/10.1094/PHP-11-19-0081-RS

    Article  Google Scholar 

  • Pavón CF, Babadoost M, Lambert KN (2008) Quantification of Phytophthora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Dis 92:143–149

    Article  PubMed  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI Publishing, New York. 432 pp

    Book  Google Scholar 

  • Peng JC, Yeh SD, Huan LH, Li JT, Cheng YF, Chen TC (2011) Emerging threat of thrips-borne melon yellow spot virus on melon and watermelon in Taiwan. Eur J Plant Pathol 130:205–214

    Article  Google Scholar 

  • Pérez-García A, Romero D, Fernández-Ortuño D, López-Ruiz F, De Vicente A, Torés JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits: pathogen profile. Mol Plant Pathol 10:153–160

    Article  PubMed  Google Scholar 

  • Pérez-Hernández A, Rocha LO, Porcel-Rodríguez E, Summerell BA, Liew ECY, Gómez-Vázquez JM (2020) Pathogenic, morphological, and phylogenetic characterization of Fusarium solani f. sp. cucurbitae isolates from cucurbits in Almería Province, Spain. Plant Dis 104:1465–1476. https://doi.org/10.1094/PDIS-09-19-1954-RE

    Article  PubMed  Google Scholar 

  • Peterson PD, Campbell CL (2002) Prevalence and ecological association of foliar pathogens of cucumber in North Carolina, 1996–1998. Plant Dis 86(10):1094–1100

    Article  PubMed  Google Scholar 

  • Philosoph AM, Dombrovsky A, Elad Y, Koren A, Frenkel O (2019) Insight into late wilting disease of cucumber demonstrates the complexity of the phenomenon in fluctuating environments. Plant Dis 103(11):2877–2883

    Article  PubMed  Google Scholar 

  • Pivonia S, Cohen R, Levita R, Katan J (2002) Improved solarization of containerized medium for the control of Monosporascus collapse in melon. Crop Prot 21:907–912

    Article  Google Scholar 

  • Pivonia S, Gerstl Z, Maduel A, Levita R, Cohen R (2010) Management of Monosporascus sudden wilt of melon by soil application of fungicides. Eur J Plant Pathol 128:201–209

    Article  Google Scholar 

  • Ploetz R, Heine G, Haynes J, Watson M (2002) An investigation of biological attributes that may contribute to the importance of Phytophthora capsici as a vegetable pathogen in Florida. Ann Appl Biol 140:61–67

    Article  Google Scholar 

  • Pohronezny K, Larsen PO, Emmatty DA, Farley JD (1977) Field studies of yield losses in pickling cucumber due to angular leaf spot. Plant Dis Rep 61:386–390

    Google Scholar 

  • Pozzi EA, Luciani CE, Celli MG, Conci VC, Perotto MC (2020) First report of Zucchini lethal chlorosis virus in Argentina infecting squash crops. Plant Dis 104:602

    Article  Google Scholar 

  • Provvidenti R, Gilbertson RL (2017a) Cucumber mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 110–111

    Google Scholar 

  • Provvidenti R, Gilbertson RL (2017b) Papaya ringspot. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 133–135

    Google Scholar 

  • Provvidenti R, Gilbertson RL (2017c) Watermelon mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 136–139

    Google Scholar 

  • Provvidenti R, Gilbertson RL (2017d) Zucchini yellow mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 139–141

    Google Scholar 

  • Provvidenti R, Robinson RW, Munger HM (1978) Resistance in feral species to six viruses infecting Cucurbita. Plant Dis Rep 62:326–329

    Google Scholar 

  • Provvidenti R, Brown JK, Gilbertson RL (2017a) Squash leaf curl. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 113–115

    Google Scholar 

  • Provvidenti R, Haudenshield JS, Wintermantel WM (2017b) Squash mosaic virus. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 135–136

    Google Scholar 

  • Pruvost O, Robene-Soustrade I, Ah-You N, Jouen E, Boyer C, Wuster G, Hostachy B, Napoles C, Dogley W (2009) First report of Xanthomonas cucurbitae causing bacterial leaf spot of watermelon in the Seychelles. Plant Dis 93(6):671

    Article  PubMed  Google Scholar 

  • Punja Z, Tirajoh A, Collyer D, Ni L (2019) Efficacy of Bacillus subtilis strain QST 713 (Rhapsody) against four major diseases of greenhouse cucumbers. Crop Prot 124:104845. https://doi.org/10.1016/j.cropro.2019.104845

    Article  Google Scholar 

  • Purcifull DE, Hiebert E, Petersen MA, Simone GW, Kucharek TA, Gooch MD, Crawford WE, Beckham KA, De Sa PB (1998) Partial characterization of a distinct potyvirus isolated from watermelon in Florida. Plant Dis 82:1386–1390

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Hausbeck MK (2010) Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. Phytopathology 100:619–627

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Fulbright DW, Hausbeck MK (2009) Susceptibility of Fraser Fir to Phytophthora capsici. Plant Dis 93:135–141

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Granke L, Hausbeck MK (2011a) Temporal genetic structure of Phytophthora capsici populations from a creek used for irrigation in Michigan. Plant Dis 95:1358

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Granke LL, Mercier MR, Olsen J, Hausbeck MK (2011b) Investigating the genetic structure of Phytophthora capsici populations. Phytopathology 101:1061–1073

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Granke LL, Olsen J, Gutting J, Runge F, Thines M, Lebeda A, Hausbeck MK (2012) The genetic structure of Pseudoperonospora cubensis populations. Plant Dis 96:1459–1470

    Article  PubMed  Google Scholar 

  • Quesada-Ocampo LM, Vargas A, Naegele RP, Francis DM, Hausbeck MK (2016) Resistance to crown and root rot caused by Phytophthora capsici in a tomato advanced backcross of Solanum habrochaites and Solanum lycopersicum. Plant Dis 100:829–835

    Article  PubMed  Google Scholar 

  • Quiot-Douine L, Lecoq H, Quiot JB, Pitrat M, Labonne G (1990) Serological and biological variability of virus isolates related to strains of papaya ringspot virus. Phytopathology 80:256–263

    Article  Google Scholar 

  • Quito-Avila DF, Peralta EL, Martin RR, Ibarra MA, Alvarez RA, Mendoza A, Insuasti M, Ochoa J (2014) Detection and occurrence of melon yellow spot virus in Ecuador: an emerging threat to cucurbit production in the region. Eur J Plant Pathol 140:193–197

    Article  Google Scholar 

  • Radewald KC, Ferrin DM, Stanghellini ME (2004) Sanitation practices that inhibit reproduction of Monosporascus cannonballus in melon roots left in the field after crop termination. Plant Pathol 53:660–668

    Article  Google Scholar 

  • Radin AM, Drummond FA (1994) An evaluation of the potential for the use of trap cropping for control of striped cucumber beetle, Acalymma vittata (F.) (Coleoptera: Chrysomelidae). J Agric Entomol 11(2):95–113

    Google Scholar 

  • Rahman A, Wallace E, Crouch J, Martin F, Quesada-Ocampo LM (2017) Unravelling historical shifts in Pseudoperonospora cubensis populations in the U.S. that resulted in the 2004 cucurbit downy mildew epidemic. Phytopathology 107:S5.22

    Google Scholar 

  • Rahman A, Standish JR, D’Arcangelo K, Quesada-Ocampo LM (2021) Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology 111:312

    Article  PubMed  Google Scholar 

  • Raimondo ML, Carlucci A (2018) Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy. Plant Pathol 67:626–641

    Article  Google Scholar 

  • Rampersad SN (2009) First report of Fusarium solani fruit rot of pumpkin (Cucurbita pepo) in Trinidad. Plant Dis 93(5):547

    Article  PubMed  Google Scholar 

  • Rampersad SN (2010) Verticillium dahliae (Kleb.) infecting pumpkin seed. J Phytopathol 158:329–333

    Article  Google Scholar 

  • Rand FV, Enlows EMA (1916) Transmission and control of bacterial wilt of cucurbits. J Agric Res 6:417–434

    Google Scholar 

  • Rane KK, Latin RX (1992) Bacterial fruit blotch of watermelon – association of the pathogen with seed. Plant Dis 76:509–512

    Article  Google Scholar 

  • Rao ALN, Varma A (1984) Transmission studies with Cucumber green mottle mosaic virus. J Phytopathol 109:325–331

    Article  Google Scholar 

  • Rennberger G, Keinath AP (2018) Susceptibility of fourteen new cucurbit species to gummy stem blight caused by Stagonosporopsis citrulli under field conditions. Plant Dis 102(7):1365–1375

    Article  PubMed  Google Scholar 

  • Rennberger G, Gerard P, Keinath AP (2018) Occurrence of foliar pathogens of watermelon on commercial farms in South Carolina estimated with stratified cluster sampling. Plant Dis 102(11):2285–2295

    Article  PubMed  Google Scholar 

  • Rennberger G, Gerard P, Keinath AP (2019) Factors influencing the occurrence of foliar pathogens in commercial watermelon fields in South Carolina based on stratified cluster sampling. Plant Dis 103(3):484–494

    Article  PubMed  Google Scholar 

  • Rennberger G, Turechek WW, Keinath AP (2021) Dynamics of the ascospore dispersal of Stagonosporopsis citrulli, a causal agent of gummy stem blight of cucurbits. Plant Pathol 70(8):1908-1919

    Google Scholar 

  • Reuveni R, Krikun, J, Nachmias, A, Shlevin, E (1982) The role of Macrophomina phaseolina in a collapse of melon plants in Israel. Phytoparasitica 10(1):51–56

    Google Scholar 

  • Reuveni R, Rotem J (1974) Effect of humidity on epidemiological patterns of the powdery mildew (Sphaerotheca fulginea) on squash. Phytoparasitica 2(1):25–33

    Article  Google Scholar 

  • Reuveni M, Eyal H, Cohen Y (1980) Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Dis 64:1108–1109

    Article  Google Scholar 

  • Rhodes LH, Precheur RJ, Riedel RM, Jasinski JR, Kelly MR (2007) Field evaluation of Cucurbita plant introductions for resistance to white speck (Plectosporium blight), 2006. Plant Dis Manag Rep. https://doi.org/10.1094/PDMR01

  • Risser G, Banihashemi Z, Davis DW (1976) A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66:1105–1106

    Article  Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root -knot nematodes related to host plant resistance. Annu Rev Phytopathol 33:199–221

    Article  PubMed  Google Scholar 

  • Roberts PD, Urs RR, French-Monar RD, Hoffine MS, Seijo TE, McGovern RJ (2005) Survival and recovery of Phytophthora capsici and oomycetes in tailwater and soil from vegetable fields in Florida. Ann Appl Biol 146:351–359

    Article  Google Scholar 

  • Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon LA, Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL (2018) World management of geminiviruses. Ann Rev Phytopathol 56:637–677

    Article  Google Scholar 

  • Romay G, Lecoq H, Desbiez C (2014) Zucchini tigré mosaic virus is a distinct potyvirus in the Papaya ringspot virus cluster: molecular and biological insights. Arch Virol 159:277–289

    Article  PubMed  Google Scholar 

  • Romero D, Rivera ME, Cazorla FM, De Vicente A, Pérez-García A (2003) Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycol Res 107(1):64–71

    Article  PubMed  Google Scholar 

  • Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976

    Article  PubMed  Google Scholar 

  • Rubio I, Bouzar H, Jardini TM, Koike ST, Bull CT (2012) Novel Pseudomonas syringae strains associated with leaf spot diseases on watermelon (Citrullus lanatus) and squash (Cucurbita pepo) in California. Phytopathology 102:S4.103

    Google Scholar 

  • Rudolph BA, Snyder WC (1936) Verticillium from snap dragon, watermelon, celery and cowpea. Plant Dis Rep 20:125–126

    Google Scholar 

  • Saalau Rojas E, Gleason ML, Batzer JC, Duffy M (2011) Feasibility of delaying removal of row covers to suppress bacterial wilt of muskmelon (Cucumis melo). Plant Dis 95:729–734

    Article  PubMed  Google Scholar 

  • Saalau Rojas ES, Batzer JC, Beattie GA, Fleischer SJ, Shapiro LR, Williams M, Bessin R, Bruton B, Boucher TJ, Jesse LCH, Gleason L (2015) Bacterial wilt of cucurbits: resurrecting a classic pathosystem. Plant Dis 99:564–574. https://doi.org/10.1094/PDIS-10-14-1068-FE

    Article  Google Scholar 

  • Salcedo A, Hausbeck MK, Pigg S, Quesada-Ocampo LM (2020) Diagnostic guide for cucurbit downy mildew. Plant Health Progr 21:166–172

    Article  Google Scholar 

  • Sanei SJ, Waliyar F, Razavi SI, Okhovvat SM (2008) Vegetative compatibility, host range and pathogenicity of Verticillium dahliae isolates in Iran. Int J Plant Prod 2(1):37–46

    Google Scholar 

  • Sanogo S, Ji P (2013) Water management in relation to control of Phytophthora capsici in vegetable crops. Agric Water Manag 129:113–119

    Article  Google Scholar 

  • Sanogo S, Etarock BF, Clary M (2011) First report of bacterial wilt caused by Erwinia tracheiphila on pumpkin and watermelon in New Mexico. Plant Dis 95:1583

    Article  PubMed  Google Scholar 

  • Sasu MA, Seidl-Adams I, Wall K, Winsor JA, Stephenson AG (2010) Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ Entomol 39:140–148

    Article  PubMed  Google Scholar 

  • Savory EA, Granke L, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol 12:217–226

    Article  PubMed  Google Scholar 

  • Schenk NC (1968) Incidence of airborne fungus spores over watermelon fields in Florida. Phytopathology 58:91–94

    Google Scholar 

  • Sedighian N, Shams-Bakhsh M, Osdaghi E, Khodaygan P (2014) Etiology and host range of bacterial leaf blight and necrosis of squash and muskmelon in Iran. J Plant Pathol 96(3):507–514

    Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control, 2nd edn. Wiley, New York. 728 p

    Google Scholar 

  • Shi X, Qiao K, Li B, Zhang S (2019) Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil. Crop Prot 126:104922

    Article  Google Scholar 

  • Shim SA, Jang KS, Choi YH, Kim JC, Kim HT, Choi GJ (2013) Resistance degree of cucurbits cultivars to Colletotrichum orbiculare. Kor J Hortic Sci Technol 31(3):371–379

    Google Scholar 

  • Shoyinka SA, Brunt AA, Phillips S, Lesemann DE, Thottappilly G, Lastra R (1987) The occurrence, properties and affinities of Telfairia mosaic virus, a potyvirus prevalent in Telfairia occidentalis (Cucurbitaceae) in southwestern Nigeria. J Phytopathol 119:13–24

    Google Scholar 

  • Shrestha D, McAuslane HJ, Adkins ST, Smith HA, Dufault N, Webb SE (2016) Transmission of squash vein yellowing virus to and from cucurbit weeds and effects on sweetpotato whitefly behavior. Environ Entomol 45:967–973

    Article  PubMed  Google Scholar 

  • Sitterly WP (1978) Powdery mildew of cucurbits. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 359–379

    Google Scholar 

  • Stanghellini ME, Waugh MM, Radewald KC, Kim DH, Ferrin DM, Turini T (2003) Crop residue destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathol 53:50–53

    Article  Google Scholar 

  • Stevenson KL, Langston DB Jr, Seebold KW (2004) Resistance to azoxystrobin in the gummy stem blight pathogen documented in Georgia. Plant Health Progr. https://doi.org/10.1094/PHP-2004-1207-01-RS

  • Stewart JE, Turner AN, Brewer MT (2015) Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits. Fungal Biol 119:370–382

    Article  PubMed  Google Scholar 

  • Stravato VM, Carannante G, Moretti C, Cappelli C (2009) First report of Verticillium dahliae on squash (Cucurbita pepo) in Italy. Plant Dis 93(7):765

    Article  PubMed  Google Scholar 

  • Sufrin-Ringwald T, Lapidot M (2011) Characterization of a synergistic interaction between two cucurbit-infecting begomoviruses: squash leaf curl virus and watermelon chlorotic stunt virus. Phytopathology 101:281–289

    Article  PubMed  Google Scholar 

  • Suheri H, Latin RX (1991) Retention of fungicide for control of Alternaria leaf blight of muskmelon under greenhouse conditions. Plant Dis 75:1013–1015

    Article  Google Scholar 

  • Sultana N, Azeem T, Ghaffar A (2009) Location of seed-borne inoculum of Macrophomina phaseollina and its transmission in seedlings of cucumber. Pak J Bot 41(5):2563–2566

    Google Scholar 

  • Summers CG, Stapleton JJ, Newton AS, Duncan RA, Hart D (1995) Comparison of sprayable and film mulches in delaying the onset of aphid-transmitted virus diseases in zucchini squash. Plant Dis 79:1126–1131

    Article  Google Scholar 

  • Summers CF, Gulliford CM, Carlson CH, Lillis JA, Carlson MO, Cadle-Davidson L, Gent DH, Smart CD (2015) Identification of genetic variation between obligate plant pathogens Pseudoperonospora cubensis and P. humuli using RNA sequencing and genotyping-by-sequencing. PLoS One 10(11):e0143665

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton JC, Sopher CR, Owen-Going TN, Liu W, Grodzinksi B, Hall JC, Benchimol RL (2006) Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathol 32(4):307–321

    Article  Google Scholar 

  • Talboys PW (1984) Chemical control of Verticillium wilts. Phytopathol Mediterr 23:163–175

    Google Scholar 

  • Tamang P, Wintermantel WM, McCreight JD (2020) Suppression of cucurbit chlorotic yellows virus accumulation in melon breeding line MR-1 under natural infection in Imperial Valley, California. Cucurbit Genet Coop Rep 42:27–30

    Google Scholar 

  • Tantiwanich Y, Baker CA, Turechek WW, Adkins S (2014) Detection of papaya ringspot virus type W infecting the cucurbit weed Cucumis melo var. dudaim in Florida. Plant Health Progr 15:29–30. https://doi.org/10.1094/PHP-BR-13-0126

    Article  Google Scholar 

  • Thapa S (2014) Field survival of Xanthomonas cucurbitae, the causal agent of bacterial spot of pumpkin and efficacy of selected chemicals and biocontrol agents for control of the diseases. M.Sc thesis, Graduate College of the University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/49553

  • Thapa S, Babadoost M (2016) Effectiveness of chemical compounds and biocontrol agents for management of bacterial spot of pumpkin caused by Xanthomonas cucurbitae. Plant Health Progr 17:106–113

    Article  Google Scholar 

  • Thies JA (2017) Root-knot nematodes. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 156–157

    Google Scholar 

  • Thies JA, Ariss JJ, Hassell RL, Olson S, Kousi CS, Levi A (2010) Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94:1195–1199

    Article  PubMed  Google Scholar 

  • Thomas A, Carbone I, Lebeda A, Ojiambo PS (2017) Virulence structure within populations of Pseudoperonospora cubensis in the United States. Phytopathology 107:777–785

    Article  PubMed  Google Scholar 

  • Thompson DC, Jenkins SF (1985) Influence of cultivar resistance, initial disease, environment, and fungicide concentration and timing on anthracnose development and yield loss in pickling cucumbers. Phytopathology 75(12):1422–1427

    Article  Google Scholar 

  • Tian T (2017) Cucumber green mottle mosaic. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 128–130

    Google Scholar 

  • Tian T, Posis K, Maroon-Lango CJ, Mavrodieva V, Haymes S, Pitman TL, Falk BW (2014) First report of cucumber green mottle mosaic virus on melon in the United States. Plant Dis 98:1163

    Article  PubMed  Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681

    Article  Google Scholar 

  • Tomlinson JA, Carter AL, Dale WT, Simpson CJ (1970) Weed plants as sources of cucumber mosaic virus. Ann Appl Biol 66:11–16

    Article  Google Scholar 

  • Toporek SM, Keinath AP (2020a) Characterization of Pythium species collected from a multiple time-point sampling of cucurbits in South Carolina. Plant Dis 104(11):2832–2842

    Article  PubMed  Google Scholar 

  • Toporek SM, Keinath AP (2020b) Evaluating cucurbit rootstocks to prevent disease caused by Pythium aphanidermatum and P. myriotylum on watermelon. Plant Dis 104(11):3019–3025

    Article  PubMed  Google Scholar 

  • Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW, Hadden KC, Himmel PT, Hubbard JP, Boeshore ML, Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Biotechnology 13:1458–1465

    Google Scholar 

  • Turechek WW, Kousik CS, Adkins S (2010) Distribution of four viruses in single and mixed infections within infected watermelon plants in Florida. Phytopathology 100:1194–1203

    Article  PubMed  Google Scholar 

  • Turechek WW, Roberts PD, Stansly PA, Webster CG, Kousik CS, Adkins S (2014) Spatial and temporal analysis of squash vein yellowing virus infections in watermelon. Plant Dis 98:1671–1680

    Article  PubMed  Google Scholar 

  • Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00119

  • Ullman DE, German TL, Sherwood JL, Westcot DM, Cantone FA (1993) Tospovirus replication in insect vector cells: immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456–463

    Article  Google Scholar 

  • Umesh KC, Valencia J, Hurley C, Gubler W, Falk BW (1995) Stylet oil provides limited control of aphid-transmitted viruses in melons. Calif Agric 49:22–24

    Article  Google Scholar 

  • Vakalounakis DJ (1996) Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant Dis 80:313–316

    Article  Google Scholar 

  • Vakalounakis DJ, Martyn RD (2017) Fusarium wilt of cucumber. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 34–35

    Google Scholar 

  • Van Gundy SD, Walker JC (1957) Seed transmission, over-wintering and host-range of the cucurbit angular leaf spot pathogen. Plant Dis Rep 41:137–140

    Google Scholar 

  • Van Steekelenburg NAM (1978) Chemical control of Didymella bryoniae in cucumbers. Neth J Plant Pathol 84:27–34

    Article  Google Scholar 

  • Van Steekelenburg NAM (1985) Influence of humidity on incidence of Didymella bryoniae on cucumber leaves and growing tips under controlled environmental conditions. Neth J Plant Pathol 91:277–283

    Article  Google Scholar 

  • Varveri C, Vassilakos N, Bem F (2002) Characterization and detection of cucumber green mottle mosaic virus in Greece. Phytoparasitica 5:493–501

    Article  Google Scholar 

  • Vielba-Fernández A, Polonio A, Ruiz-Jiménez L, de Vicente A, Pérez-García A, Fernández-Ortuño D (2020) Fungicide resistance in powdery mildew fungi. Microorganisms 8:1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent-Sealy L, Brathwaite CWD (1982) Bacterial leaf spot of cucumber in Trinidad. Trop Agric 59(4):287–288

    Google Scholar 

  • Walcott RR (2008) Integrated pest management of bacterial fruit blotch in cucurbits. In: Ciancio A, Mukerji KG (eds) Integrated management of diseases caused by fungi, phytoplasma and bacteria. Springer, New York, pp 191–209

    Chapter  Google Scholar 

  • Walcott RR (2017) Bacterial Fruit Blotch. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 71–73

    Google Scholar 

  • Walcott RR, Langston DB Jr, Sanders FH Jr, Gitaitis RD (2000) Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. Phytopathology 90:191–196

    Article  PubMed  Google Scholar 

  • Walcott RR, Gitaitis RD, Castro AC (2003) Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93:528–534

    Article  PubMed  Google Scholar 

  • Walcott RR, Fessehaie A, Castro D (2004) Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J Phytopathol 152:277–285

    Article  Google Scholar 

  • Walker MN (1941) Fusarium wilt of watermelons. I. Effect of soil temperature on the wilt disease and the growth of watermelon seedlings. Univ Fla Agric Exp Stn Bull 363: 29

    Google Scholar 

  • Wallace EC, Adams M, Ivors K, Quesada-Ocampo LM (2014) First report of Pseudoperonospora cubensis causing downy mildew on Momordica balsamina and M. charantia in North Carolina. Plant Dis 98:1279

    Article  PubMed  Google Scholar 

  • Wallace EC, Adams M, Quesada-Ocampo LM (2015) First report of downy mildew on Buffalo gourd (Cucurbita foetidissma) caused by Pseudoperonospora cubensis in North Carolina. Plant Dis 99:1861

    Article  Google Scholar 

  • Wallace EC, D’Arcangelo KN, Quesada-Ocampo LM (2020) Population analyses reveal two host-adapted clades of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, on commercial and wild cucurbits. Phytopathology 110:1578–1587

    Article  PubMed  Google Scholar 

  • Walters SA, Wehner TC, Barker KR (1993) Root-knot nematode resistance in cucumber and horned cucumber. HortScience 28:151–154

    Article  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1980) Distribution of mycolaminarans and cell wall β-glucans in the life cycle of Phytophthora. Exp Mycol 4:269–280

    Article  Google Scholar 

  • Wang HL, Gonsalves D, Provvidenti R, Lecoq HL (1991) Effectiveness of cross-protection by a mild strain of zucchini yellow mosaic-virus in cucumber, melon, and squash. Plant Dis 75:203–207

    Article  Google Scholar 

  • Wang Z, Langston DB, Csinos AS, Gitaitis RD, Walcott RR, Ji P (2009) Development of an improved isolation approach and simple sequence repeat markers to characterize Phytophthora capsici populations in irrigation ponds in southern Georgia. Appl Environ Microbiol 75(17):5467–5473

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasilwa LA, Correll JC, Morelock TE, McNew RE (1993) Reexamination of races of the cucurbit anthracnose pathogen Colletotrichum orbiculare. Phytopathology 83(11):1190–1198

    Article  Google Scholar 

  • Wasilwa LA, Correll JC, Morelock TE (1996) Further characterization of Colletotrichum orbiculare for vegetative compatibility and virulence. Phytopathology 86:S67

    Google Scholar 

  • Waugh MM, Kim DH, Ferrin DM, Stanghellini ME (2003) Reproductive potential of Monosporascus cannonballus. Plant Dis 87:45–50

    Article  PubMed  Google Scholar 

  • Webb SE, Adkins S, Reitz SR (2012) Semipersistent whitefly transmission of squash vein yellowing virus, causal agent of viral watermelon vine decline. Plant Dis 96:839–844

    Article  PubMed  Google Scholar 

  • Webb SE, Badillo-Vargas IE, Purcifull DE, Hiebert E, Baker CA, Funderburk JE, Adkins S (2016a) Zucchini tigré mosaic virus infection of cucurbits in Florida. Plant Dis 100:2540

    Article  Google Scholar 

  • Webb SE, Adkins S, Maruthi MMN, Legg JP (2016b) Ipomoviruses: squash vein yellowing virus, Cucumber vein yellowing virus, Cassava brown streak virus, and Ugandan cassava brown streak virus. In: Brown JK (ed) Vector-mediated transmission of plant pathogens. American Phytopathological Society Press, St. Paul, pp 435–440

    Google Scholar 

  • Webster CG, Kousik CS, Turechek WW, Webb SE, Roberts PD, Adkins S (2013) Squash vein yellowing virus infection of vining cucurbits and the vine decline response. Plant Dis 97:1149–1157

    Article  PubMed  Google Scholar 

  • Wiant JS (1945) Mycosphaerella black rot of cucurbits. J Agric Res 71(5):193–213

    Google Scholar 

  • Wick RL (2017) Plectosporium blight. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 61–62

    Google Scholar 

  • Wijkamp I, Van Lent J, Kormelink R, Goldbach R, Peters D (1993) Multiplication of tomato spotted wilt virus in its vector, Frankliniella occidentalis. J Gen Virol 74:341–349

    Article  PubMed  Google Scholar 

  • Wiles AB, Walker JC (1952) Epidemiology and control of angular leaf spot of cucumber. Phytopathology 42:105–108

    Google Scholar 

  • Wilhelm S (1955) Longevity of Verticillium wilt fungus in the laboratory and field. Phytopathology 45:180–181

    Google Scholar 

  • Wilhelm S, Koch EC (1956) Verticillium wilt controlled. Calif Agric 10(6):3. and 14

    Google Scholar 

  • Wilhelm S, Stevenson EE (1955) Verticillium wilt of melons. Plant Dis Rep 39(11):881

    Google Scholar 

  • Winstead NN, Sasser JN (1956) Reaction of cucumber varieties to five root-knot nematodes (Meloloidogyne spp.). Plant Dis Rep 40(4):272–275

    Google Scholar 

  • Wintermantel WM (2017a) Cucurbit yellow stunting disorder. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 123–125

    Google Scholar 

  • Wintermantel WM (2017b) Diseases caused by yellowing viruses. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 120–121

    Google Scholar 

  • Wintermantel WM (2017c) Lettuce infectious yellows. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. PaulN, pp 125–126

    Google Scholar 

  • Wintermantel WM (2017d) Melon yellow spot. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 148–149

    Google Scholar 

  • Wintermantel WM (2017e) Pseudoyellows. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 126–127

    Google Scholar 

  • Wintermantel WM (2017g) Watermelon silver mottle. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, p 153

    Google Scholar 

  • Wintermantel WM (2017h) Uncommon and regionally specific cucurbit-infecting viruses. In: Keinath AP, Wintermantel WM, Zitter TA (eds) Compendium of cucurbit diseases and pests. American Phytopathological Society Press, St. Paul, pp 154–156

    Google Scholar 

  • Wintermantel WM, Hladky LL, Cortez AA, Natwick ET (2009) A new and expanded host range of Cucurbit yellow stunting disorder virus includes three agricultural crops. Plant Dis 93:685–690

    Article  PubMed  Google Scholar 

  • Wintermantel WM, Gilbertson RL, McCreight JD, Natwick ET (2016) Host-specific relationship between virus titer and whitefly transmission of Cucurbit yellow stunting disorder virus. Plant Dis 100:92–98

    Article  PubMed  Google Scholar 

  • Wintermantel WM, Gilbertson RL, Natwick ET, McCreight JD (2017) Emergence and epidemiology of Cucurbit yellow stunting disorder virus in the American Desert Southwest, and development of host plant resistance in melon. Virus Res 241:213–219

    Article  PubMed  Google Scholar 

  • Withers S, Gongora-Castillo E, Gent D, Thomas A, Ojiambo P, Quesada-Ocampo LM (2016) Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen. Phytopathology 106:1105–1116

    Article  PubMed  Google Scholar 

  • Wonglom P, Sunpapao A (2019) Fusarium incarnatum is associated with postharvest fruit rot of muskmelon (Cucumis melo). J Phytopathol 168:204–210

    Article  Google Scholar 

  • Wyenandt CA, Riedel RM, Rhodes LH, Bennett MA, Nameth SGP (2011) Fall- and spring-sown cover crop mulches affect yield, fruit cleanliness, and fusarium fruit rot development in pumpkin. HortTechnology 21:343–354

    Article  Google Scholar 

  • Wyenandt CA, McGrath MT, Everts KL, Rideout SL, Gugino BK, Kleczewski N (2018) Resistance management guidelines for cucurbit downy and powdery mildew control in the mid- Atlantic and northeast regions of the United States in 2018. Plant Health Progr 18:34–36

    Article  Google Scholar 

  • Yandoc-Ables CB, Rosskopf EN, Lamb EM (2007) Management of Phytophthora crown rot in pumpkin and zucchini seedlings with phosphonates. Plant Dis 92:1651–1656

    Article  Google Scholar 

  • Yao C, Zehnder G, Bauske E, Kloepper J (1996) Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. J Econ Entomol 89:510–514

    Article  Google Scholar 

  • You BJ, Chiang CH, Chen LF, Su WC, Yeh SD (2005) Engineered mild strains of Papaya ringspot virus for broader cross protection in cucurbits. Phytopathology 95:533–540

    Article  PubMed  Google Scholar 

  • Zasada IA, Ferris H, Elmore CL, Roncoroni JA, MacDonald JD, Bolkan LR, Yakbe LE (2003) Field application of brassicaceous amendments for control of soil- borne pests and pathogens. Plant Health Progr. https://doi.org/10.1094/PHP-2003-1120-01-RS

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhao X, Ni Y, Liu X, Zhao H, Wang J, Chen Y, Chen W, Liu H (2020) A simple and effective technique for production of pycnidia and pycnidiospores by Macrophomina phaseolina. Plant Dis 104:1183–1187. https://doi.org/10.1094/PDIS-08-19-1795-RE

    Article  PubMed  Google Scholar 

  • Zhou XG, Everts KL, Bruton BD (2010) Race 3, a new and highly virulent race of fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis 94:92–98

    Article  PubMed  Google Scholar 

  • Zitter TA (2017a) Angular leaf spot. In: Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 69–71

    Google Scholar 

  • Zitter TA (2017b) Xanthomonas leaf spot. In: Compendium of cucurbit diseases and pests, 2nd edn. APS Press, St. Paul, pp 79–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Egel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Egel, D.S. et al. (2023). Diseases of Cucumbers, Melons, Pumpkins, Squash, and Watermelons. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_33-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_33-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diseases of Cucumbers, Melons, Pumpkins, Squash, and Watermelons
    Published:
    02 January 2024

    DOI: https://doi.org/10.1007/978-3-030-35512-8_33-2

  2. Original

    Diseases of Cucumbers, Melons, Pumpkins, Squash, and Watermelons
    Published:
    30 August 2022

    DOI: https://doi.org/10.1007/978-3-030-35512-8_33-1