Skip to main content

Catnip (Nepeta cataria L.): Recent Advances in Botany , Horticulture and Production

  • Chapter
  • First Online:
Medicinal and Aromatic Plants of North America

Abstract

Catnip (Nepeta cataria L.), a popular aromatic herb used as a traditional medicine is more widely recognized for its use in the pet toy industry due to the behavioral effects it elicits on cats and other felids. A major interest in catnip is also due to its repellent activity against arthropods. Essential oil of catnip is an effective repellent against several species of mosquitoes, flies, ticks, mites, and other disease vectors, with results comparable to DEET. Both the repellency to arthropods and the characteristic effects on cats are mainly attributed to nepetalactone, a bicyclic oxygenated monoterpene in the essential oil of catnip. While catnip is grown as a garden herb and in the open field for dried biomass and essential oil, the lack of improved genetic materials makes it difficult for North American growers to expand production and ensure adequate product supply. The present chapter provides an overview of the recent advances in breeding, biochemistry, production systems, biological activities and potential new uses of N. cataria and other Nepeta species in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiguzel A, Ozer H, Sokmen M, Gulluce M, Sokmen A, Kilic H, Sahin F, Baris O (2009) Antimicrobial and Antioxidant Activity of the Essential Oil and Methanol Extract of Nepeta cataria. Pol J Microbiol 58:69–76

    CAS  PubMed  Google Scholar 

  • Agrian Database (2019) Herbicide Catnip. Retrieved October 7, 2019, from https://www.agrian.com/labelcenter/results.cfm

  • Aldrich JR, Chauhan K, Zhang QH (2016) Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)? PeerJ 4:e1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfieri SA Jr, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of plant diseases in Florida. Florida Department of Agriculture & Consumer Services, Division of Plant Industry, Tallahassee

    Google Scholar 

  • Al-Gabbiesh A, Kleinwächter M, Selmar D (2015) Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J Biol Sci 147:1–10

    Google Scholar 

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Science Society Press, Tokyo

    Google Scholar 

  • Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Anderson TA, Coats JR (1995) Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J Environ Sci Health Part B 30(4):473–484

    Article  Google Scholar 

  • Angelova V (2012) Potential of some medicinal and aromatic plants for phytoremediation of soils contaminated with heavy metals. Agrarni Nauki 4(11):61–66

    Google Scholar 

  • Aničić N, Matekalo D, Skorić M, Pećinar I, Brkušanin M, Živković JN, Mišić D (2018) Trichome-specific and developmentally regulated biosynthesis of nepetalactones in leaves of cultivated Nepeta rtanjensis plants. Ind Crop Prod 117:347–358

    Article  CAS  Google Scholar 

  • Asgari M, Nasiri M, Ashrafe Jafari A, Flah Hoseini L (2015) Investigation of chilling effects on characteristics of seed germination, vigor and seedling growth of Nepeta spp. J Rangeland Sci 5:313–324

    Google Scholar 

  • Augé RM, Stodola AJ, Moore JL, Klingeman WE, Duan X (2003) Comparative dehydration tolerance of foliage of several ornamental crops. Sci Hortic 98:511–516

    Article  Google Scholar 

  • Aydin S, Beis R, Öztürk Y, Hüsnü K, Baser C (1998) Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. J Pharm Pharmacol 50(7):813–817

    Article  CAS  PubMed  Google Scholar 

  • Bandh SA, Kamili AN, Ganai BA, Lone BA, Saleem S (2011) Evaluation of antimicrobial activity of aqueous extracts of Nepeta cataria. J Pharm Res 4:3141–3142

    Google Scholar 

  • Baranauskiene R, Venskutonis RP, Demyttenaere JC (2003) Sensory and instrumental evaluation of catnip (Nepeta cataria L.) aroma. J Agric Food Chem 51(13):3840–3848

    Article  CAS  PubMed  Google Scholar 

  • Bellesia F, Pagnoni UM, Trave R, Andreetti GD, Bocelli G, Sgarabotto P (1979) Synthesis and molecular structures of (1S) -cis, cis-iridolactones. J Chem Soc Perkin Trans 2:1341–1346

    Article  Google Scholar 

  • Bernardi MM, Kirsten TB, Salzgeber SA, Ricci EL, Romoff P, Guilardi Lago JH, Lourenço LM (2010) Antidepressant-like effects of an apolar extract and chow enriched with Nepeta cataria (catnip) in mice. Psychol Neurosci 3(2):251–258

    Article  Google Scholar 

  • Bernardi MM, Kirsten TB, Lago JHG, Giovani TM, de Oliveira Massoco C (2011) Nepeta cataria L. var. citriodora (Becker) increases penile erection in rats. J Ethnopharmacol 137(3):1318–1322

    Article  PubMed  Google Scholar 

  • Bernier UR, Furman KD, Kline DL, Allan SA, Barnard DR (2005) Comparison of contact and spatial repellency of catnip oil and N, N-diethyl-3-methylbenzamide (DEET) against mosquitoes. J Med Entomol 42(3):306–311

    CAS  PubMed  Google Scholar 

  • Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA (2011) Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 72:109–114

    Article  CAS  PubMed  Google Scholar 

  • Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Bol S, Caspers J, Buckingham L, Anderson-Shelton GD, Ridgway C, Buffington CT, Bunnik EM (2017) Responsiveness of cats (Felidae) to silver vine (Actinidia polygama), Tatarian honeysuckle (Lonicera tatarica), valerian (Valeriana officinalis) and catnip (Nepeta cataria). BMC Vet Res 13:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourrel C, Perineau F, Michel G, Bessiere JM (1993) Catnip (Nepeta cataria L.) essential oil: analysis of chemical constituents, bacteriostatic and fungistatic properties. J Essent Oil Res 5(2):159–167

    Article  CAS  Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89:1–700

    Google Scholar 

  • Braun U (1995) The Powdery mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Carrubba A (2017) Weeds and weeding effects on medicinal herbs. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham, pp 295–327

    Chapter  Google Scholar 

  • Cash EK (1953) A record of the fungi named by J.B. Ellis (Part 2). USDA National Agricultural Library, Beltsville

    Google Scholar 

  • Cash EK (1954) A record of the fungi named by J.B. Ellis (Part 3). USDA National Agricultural Library, Beltsville

    Google Scholar 

  • Chalchat JC, Lamy J (1997) Chemical composition of the essential oil isolated from wild catnip Nepeta cataria L. cv. citriodora from the Drôme region of France. J Essent Oil Res 9(5):527–532

    Article  CAS  Google Scholar 

  • Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017) Didymellaceae revisited. Stud Mycol 87:105–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittenden FH (1919) Farmers bulletin 1007: Control of the onion thrips. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Chupp C (1954) Monograph of the fungus genus Cercospora. Published by the Author, Ithaca

    Google Scholar 

  • Clapperton BK, Eason CT, Weston RJ, Woolhouse AD, Morgan DR (1994) Development and testing of attractants for feral cats, Felis catus L. Wildl Res 21:389–399

    Article  Google Scholar 

  • Claßen-Bockhoff R, Wester P, Tweraser E (2003) The staminal lever mechanism in Salvia L. (Lamiaceae)-a review. Plant Biol 5(01):33–41

    Article  Google Scholar 

  • Clevenger JF (1928) Apparatus for the determination of volatile oil. J Am Pharm Assoc 17(4):345–349

    Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10 hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Croteau R, Gershenzon J (1994) Genetic control of monoterpene biosynthesis in mints (Mentha: Lamiaceae). In: Genetic engineering of plant secondary metabolism. Springer, Boston, pp 193–229

    Chapter  Google Scholar 

  • Daskalova T (2004) Histological structure of the microsporangia, microsporogenesis and development of the male gametophyte in Nepeta cataria (Lamiaceae). Phytologia Balcanica 10(2–3):241–246

    Google Scholar 

  • Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L (2012) Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol 157(4):739–745

    Article  CAS  PubMed  Google Scholar 

  • De Gruyter J, Boerema GH, Van Der HA (2002) Contributions towards a monograph of Phoma (Coelomycetes) – VI. 2. Section Phyllostictoides: Outline of its taxa. Persoonia 18:1–53

    Google Scholar 

  • De Pooter HL, Nicolai B, De Laet J, De Buyck LF, Schamp NM, Goetghebeur P (1988) The essential oils of five Nepeta species. A preliminary evaluation of their use in chemotaxonomy by cluster analysis. Flavour Fragr J 3(4):155–159

    Article  Google Scholar 

  • Dikova B (2009) Establishment of some viruses-Polyphagues on economically important essential oil-bearing and medicinal plants in Bulgaria. Biotechnol Biotechnol Equip 23(Sup1):80–84

    Article  Google Scholar 

  • Dikova B (2011) Tomato spotted wilt virus on some medicinal and essential oil-bearing plants in Bulgaria. Bulgarian J Agric Sci 17(3):306–313

    Google Scholar 

  • Dmitrovic S, Skoric M, Boljevic J, Anicic N, Bozic D, Misic D, Opsenica D (2016) Elicitation effects of a synthetic 1, 2, 4, 5-tetraoxane and a 2, 5-diphenylthiophene in shoot cultures of two Nepeta species. J Serb Chem Soc 81(9):999–1012

    Article  CAS  Google Scholar 

  • Duppong LM, Delate K, Liebman M, Horton R, Romero F, Kraus G, Petrich J, Chowdbury PK (2004) The effect of natural mulches on crop performance, weed suppression and biochemical constituents of catnip and St. John’s wort Crop Sci 44(3):861–869

    Article  CAS  PubMed  Google Scholar 

  • Duda SC, Mărghitaş LA, Dezmirean DS, Bobiş O, Duda MM (2015a) Nepeta cataria: medicinal plant of interest in phytotherapy and bee keeping. Hop Med Plants 23:34–38

    Google Scholar 

  • Duda SC, Mărghitaş LA, Dezmirean DS, Duda M, Mărgăoan R, Bobiş O (2015b) Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: effect of harvest time and plant species. Ind Crop Prod 77:499–507

    Article  CAS  Google Scholar 

  • Dudka IO, Heluta VP, Tykhonenko YY, Andrianova TV, Hayova VP, Prydiuk MP, Dzhagan VV, Isikov VP (2004) Fungi of the Crimean Peninsula (Translated from Russian). M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kiev

    Google Scholar 

  • Duke JA (1976) Perennial weeds as indicators of annual climatic parameters. Agric Meteorol 16(2):291–294

    Article  Google Scholar 

  • Eisenbraun EJ, Browne CE, Irvin-Willis RL, McGurk DJ, Eliel EL, Harris DL (1980) Structure and stereochemistry of 4aα, 7α, 7aβ-nepetalactone from Nepeta mussini and its relationship to the 4aα, 7α, 7aα-nepetalactone and 4aβ, 7α, 7aβ-nepetalactone from Nepeta cataria. J Org Chem 45(19):3811–3814

    Article  CAS  Google Scholar 

  • El Gazzar A, Watson L (1970) Some economic implications of the taxonomy of Labiatae essential oils and rusts. New Phytol 69(2):487–492

    Article  Google Scholar 

  • Eom SH, Senesac AF, Tsontakis-Bradley I, Weston LA (2005) Evaluation of herbaceous perennials as weed suppressive groundcovers for use along roadsides or in landscapes. J Environ Hortic 23(4):198–203

    Article  Google Scholar 

  • Espín-Iturbe LT, Yañez BAL, García AC, Canseco-Sedano R, Vázquez-Hernández M, Coria-Avila GA (2017) Active and passive responses to catnip (Nepeta cataria) are affected by age, sex and early gonadectomy in male and female cats. Behav Process 142:110–115

    Article  Google Scholar 

  • Falk CL, Voorthuizen HV, Wall MM, Guldan SJ, Martin CA, Kleitz KM (2000) An economic analysis of transplanting versus direct seeding of selected medicinal herbs in New Mexico. J Herbs Spices Med Plants 7(4):15–29

    Article  Google Scholar 

  • Farr DF, Rossman AY (2019) Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved September 25, 2019, from https://nt.ars-grin.gov/fungaldatabases/

  • Feaster JE, Scialdone MA, Todd RG, Gonzalez YI, Foster JP, Hallahan DL (2009) Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks. J Med Entomol 46(4):832–840

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JM, Weeks WW, Fike WT (1990) Production of catnip in North Carolina. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Oregon, pp 527–528

    Google Scholar 

  • Filho JLS, Blank AF, Alves PB, Ehlert PA, Melo AS, Cavalcanti SC, Silva-Mann R (2006) Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L.) essential oil. Rev Bras 16(1):24–30

    Google Scholar 

  • Firoozabadi A, Zarshenas MM, Salehi A, Jahanbin S, Mohagheghzadeh A (2015) Effectiveness of Cuscuta planiflora Ten. and Nepeta menthoides Boiss. & Buhse in major depression: a triple-blind randomized controlled trial study. J Evid Based Complement Alternat Med 20(2):94–97

    Article  Google Scholar 

  • Formisano C, Rigano D, Senatore F (2011) Chemical constituents and biological activities of Nepeta species. Chem Biodivers 8:1783–1818

    Article  CAS  PubMed  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  CAS  PubMed  Google Scholar 

  • Gilani AH, Shah AJ, Zubair A, Khalid S, Kiani J, Ahmed A, Ahmad VU (2009) Chemical composition and mechanisms underlying the spasmolytic and bronchodilatory properties of the essential oil of Nepeta cataria L. J Ethnopharmacol 121(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Ginns JH (1986) Compendium of plant disease and decay fungi in Canada 1960–1980. Canadian Government Publishing Centre, Ottawa

    Book  Google Scholar 

  • Gonzalez Y, Jackson SC, Manzer LE (2012) U.S. Patent No. 8,329,229. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Greene HC (1944) Notes on Wisconsin parasitic fungi V. Wis Acad Sci 36:225–268

    Google Scholar 

  • Greene HC (1945) Notes on Wisconsin parasitic fungi VII. Am Midl Nat 34(1):258–270

    Article  Google Scholar 

  • Halbert SE, Rung A, Ziesk DC, Gill RJ (2009) A leafhopper pest of plants in the mint family, Eupteryx Decemnotata Rey, Ligurian Leafhopper, New To North America and intercepted in Florida on plants from California (PDF file). Retrieved September 26, 2019, from https://www.fdacs.gov/content/download/68538/file/Pest_Alert_-_Eupteryx_Decemnotata,_Ligurian_Leafhopper.pdf

  • Hallahan DL, Dawson GW, West JM, Wallsgrove RM (1992) Cytochrome P-450 catalysed monoterpene hydroxylation in Nepeta mussinii. Plant Physiol Biochem 30(4):435–443

    CAS  Google Scholar 

  • Hallahan DL, West JM, Smiley DW, Pickett JA (1998) Nepetalactol oxidoreductase in trichomes of the catmint Nepeta racemosa. Phytochemistry 48(3):421–427

    Article  CAS  Google Scholar 

  • Hegnauer (ed) (1989) Chemotaxonomie der Pflanzen. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Birkhäuser, Basel

    Google Scholar 

  • Herron S (2003) Catnip, Nepeta cataria, a morphological comparison of mutant and wild type specimens to gain an ethnobotanical perspective. Econ Bot 57:135–142

    Article  Google Scholar 

  • Heuskin S, Godin B, Leroy P, Capella Q, Wathelet JP, Verheggen F et al (2009) Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae). J Chromatogr A 1216:2768–2775

    Article  CAS  PubMed  Google Scholar 

  • Hornok L, Domokos J, Hethelyi E (1992) Effect of harvesting time on the production of Nepeta cataria var. citriodora Balb. Acta Hortic 306:290–295

    Article  Google Scholar 

  • Humphreys K (2017) Avoiding globalization of the prescription opioid epidemic. Lancet 390:437–439

    Article  PubMed  Google Scholar 

  • IBISWorld (2019) Insect repellent manufacturing. Retrieved October 7, 2019 from https://clients1.ibisworld.com/reports/us/industry/ataglance.aspx?entid=4948

  • Ibrahim ME, El-Sawi SA, Ibrahim FM (2017) Nepeta cataria L, one of the promising aromatic plants in Egypt: seed germination, growth and essential oil production. J Mat Environ Sci 8:1990–1995

    CAS  Google Scholar 

  • Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IR-4 Food Crop Database (2019) Herbicide Catnip. Retrieved October 7, 2019, from http://ir4app.rutgers.edu/ir4FoodPub/simpleSch.aspx

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:1–11

    Article  Google Scholar 

  • ITIS Report (2019) Nepeta cataria L. (n.d.). Retrieved October 5, 2019, from https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=32623#null

  • Jadczak P, Pizoń K (2017) Identification of taxa of microscopic fungi occurring on selected herbal plants and possible methods of their elimination. World Sci News 69:1–17

    Google Scholar 

  • Jamal A, Naeemullah M, Masood MS, Zakria M, Tahira R, Iqbal U, Iqbal SM (2011) Screening of mint germplasm under field and glasshouse conditions. Mycopathologia 9:29–32

    Google Scholar 

  • Jamzad Z, Ingrouille M, Simmonds MS (2003) Three new species of Nepeta (Lamiaceae) from Iran. Taxon 52(1):93–98

    Article  Google Scholar 

  • Javidnia K, Mehdipour AR, Hemmateenejad B, Rezazadeh SR, Soltani M, Khosravi AR, Miri R (2011) Nepetalactones as chemotaxonomic markers in the essential oils of Nepeta species. Chem Nat Compd 47(5):843–847

    Article  CAS  Google Scholar 

  • Kaiser C, Ernst M (2019) Catnip. Retrieved August 17, 2019, from http://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/catnip.pdf

  • Kalpoutzakis E, Aligiannis N, Mentis A, Mitaku S, Charvala C (2001) Composition of the essential oil of two Nepeta species and in vitro evaluation of their activity against Helicobacter pylori. Planta Med 67:880–883

    Article  CAS  PubMed  Google Scholar 

  • Kashyap D, Tuli HS, Sharma AK (2016) Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci 146:201–213

    Article  CAS  PubMed  Google Scholar 

  • Khanzada SA, Naeemullah M, Munir A, Iftikhar S, Masood S (2012) Plant parasitic nematodes associated with different Mentha species. Pak J Nematol 30(1):21–26

    Google Scholar 

  • Kleitz KM, Wall MM, Falk CL, Martin CA, Remmenga MD, Guldan SJ (2008) Stand establishment and yield potential of organically grown seeded and transplanted medicinal herbs. Hortic Technol 18(1):116–121

    Google Scholar 

  • Klimek B, Modnicki D (2005) Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae). Acta Pol Pharm 62(3):231–235

    CAS  PubMed  Google Scholar 

  • Kohl LM (2011) Astronauts of the nematode world: an aerial view of foliar nematode biology, epidemiology, and host range. Retrieved September 26, from https://www.apsnet.org/edcenter/apsnetfeatures/Pages/foliarnematodes.aspx

  • Koike ST, Azad HR, Cooksey DA (2001) Xanthomonas leaf spot of catnip: a new disease caused by a pathovar of Xanthomonas campestris. Plant Dis 85(11):1157–1159

    Article  PubMed  Google Scholar 

  • Kolalite MR (1998) Comparative analysis of ultrastructure of glandular trichomes in two Nepeta cataria chemotypes (N. cataria and N. cataria var. citriodora). Nord J Bot 18(5):589–598

    Article  Google Scholar 

  • Kooiman P (1972) The occurrence of iridoid glycosides in the Labiatae. Acta Botanica Neerlandica 21(4):417–427

    Article  CAS  Google Scholar 

  • Kuzuyama T, Seto H (2012) Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proce Jpn Acad Ser B Phys Biol Sci 88(3):41–52

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lee SY, Lee CY, Eom SH, Kim YK, Park NI, Park SU (2010) Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Sci Res Essays 5(10):1122–1126

    Google Scholar 

  • Lewis WH, Elvin-Lewis MP (1982) Medical botany: plants affecting man’s health. Wiley, New York

    Google Scholar 

  • Lichman BR, Kamileen MO, Titchiner GR, Saalbach G, Stevenson CE, Lawson DM, O’Connor SE (2019) Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat Chem Biol 15(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1800) Species plantarum, vol 4. Impensis GC Nauk, Berlin

    Google Scholar 

  • Louey J, Petersen N, Salotti D, Shaeffer H, James KD (2001) Oil of catnip by supercritical fluid extraction. Pap Am Chem Soc 221:215–221

    Google Scholar 

  • Lowery DT, Triapitsyn SV, Judd GJ (2007) Leafhopper host plant associations for Anagrus parasitoids (Hymenoptera: Mymaridae) in the Okanagan Valley, British Columbia. J Entomol Soc BC 104:9–16

    Google Scholar 

  • Majewski T (1979) Fungi of Poland (Mycota), basidiomycetes, uredinles II, vol 11 (Translated from Polish). State Science Public House, Kraków

    Google Scholar 

  • Malizia RA, Molli JS, Cardell DA, Retamar JA (1996) Volatile consituents of the essential oil of Nepeta cataria L. grown in Cordoba Province (Argentina). J Essent Oil Res:565–567

    Google Scholar 

  • Manukyan AE (2005) Optimum nutrition for biosynthesis of pharmaceutical compounds in celandine and catmint under outside hydroponic conditions. J Plant Nutr 28(5):751–761

    Article  CAS  Google Scholar 

  • Manukyan A (2011a) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. drought stress. Med Aromat Plant Sci Biotechnol 5(2):119–125

    Google Scholar 

  • Manukyan A (2011b) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: II. Nitrogen stress. Med Aromat Plant Sci Biotechnol 5(2):126–132

    Google Scholar 

  • Manukyan AE (2013) Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem Photobiol 89(2):406–414

    Article  CAS  PubMed  Google Scholar 

  • Manukyan AE, Schnitzler WH (2006) Influence of air temperature on productivity and quality of some medicinal plants under controlled environment conditions. Eur J Hortic Sci 71(1):26–35

    Google Scholar 

  • Marmy RMS, Norulakmal NH, Faridah G (2018) Optimization of Nepeta cataria essential oil extraction yield by ultrasonic-soxhlet extraction method using response surface methodology. IOP Conf Ser Mater Sci Eng 440:1–10

    Google Scholar 

  • Martin E, Altinordu F, Özcan T, Dirmenci T (2013) Karyomorphological study in Nepeta viscida Boiss.(Lamiaceae) from Turkey. J Appl Biol Sci 7(3): 26–30. E-ISSN: 2146-0108

    Google Scholar 

  • Massoco CO, Silva MR, Gorniak SL, Spinosa MS, Bernardi MM (1995) Behavioral effects of acute and long-term administration of catnip (Nepeta cataria) in mice. Vet Hum Toxicol 37(6):530–533

    CAS  PubMed  Google Scholar 

  • McDonough MJ, Gerace D, Ascerno ME (1999) Western flower thrips feeding scars and tospovirus lesions on petunia indicator plants. Retrieved September 26, from https://conservancy.umn.edu/bitstream/handle/11299/51810/1/7375.pdf

  • McElvain SM, Eisenbraun EJ (1957) The interconversion of nepetalic acid and isoiridomyrmecin (iridolactone). J Org Chem 22:976–977

    Article  CAS  Google Scholar 

  • McElvain SM, Bright RD, Johnson PR (1941) The constituents of the volatile oil of catnip. I. Nepetalic acid, nepetalactone and related compounds. J Am Chem Soc 63:1558–1563

    Article  CAS  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Article  PubMed  CAS  Google Scholar 

  • Mihaylova D, Georgieva L, Pavlov A (2013) In Vitro antioxidant activity and phenolic composition of Nepeta cataria L. extracts. Int J Agric Sci Technol 1(4):74–79

    Google Scholar 

  • Mint Evolutionary Genomics Consortium (2018) Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant 11(8):1084–1096

    Article  CAS  Google Scholar 

  • Missouri Botanical Garden (2019) Plant finder – Nepeta cataria. Retrieved April 24, 2019, from http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=e433

  • Modnicki D, Tokar M, Klimek B (2007) Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb.(Lamiaceae). Acta Pol Pharm 64(3):247–252

    CAS  PubMed  Google Scholar 

  • Moghaddam FM, Hosseini M (1996) Composition of the essential oil from Nepeta crassifolia Boiss. & Buhse. Flavour Fragr J 11:113–115

    Article  CAS  Google Scholar 

  • Mohamed HF, Mahmoud AA, Alatawi A, Hegazy MH, Astatkie T, Said-Al Ahl HA (2018) Growth and essential oil responses of Nepeta species to potassium humate and harvest time. Acta Physiol Plant 40:1–8

    Article  CAS  Google Scholar 

  • Mohammadi S, Saharkhiz MJ (2011) Changes in essential oil content and composition of catnip (Nepeta cataria L.) during different developmental stages. J Essent Oil Bearing Plants 14(4):396–400

    Article  CAS  Google Scholar 

  • Mohammadi S, Saharkhiz MJ, Javanmardi J (2017) Evaluation of interaction effects of spermidine and salinity on physiological and morphology trait of catnip (Nepeta cataria L.). Zeitschrift Fur Arznei-& Gewurzpflanzen 22(3):104–109

    Google Scholar 

  • Mohammadizad HA, Mehrafarin A, Naghdi Badi H (2017) Qualitative and quantitative evaluation of essential oil of Catnip (Nepeta cataria L.) under different drying conditions. J Med Plants 1(61):8–20

    Google Scholar 

  • Mountain Rose Herbs (2019) Mountain rose herbs: Catnip. Retrieved April 19, 2019, from https://www.mountainroseherbs.com/products/catnip/profile

  • Mułenko W, Majewski T, Ruszkiewicz-Michalska M (2008) A preliminary checklist of micromycetes in Poland. (Kraków W). Szafer Institute of Botany, Polish Academy of Sciences, Poland

    Google Scholar 

  • Nadda G (2013) Medicinal and aromatic crops as hosts of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J Trop Asian Entomol 2:44–46

    Google Scholar 

  • Naghibi F, Mosaddegh M, Mohammadi MM, Ghorbani A (2010) Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran J Pharm Res 4:63–79

    Google Scholar 

  • Nawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. Int J Phytoremediation 17(9):801–813

    Article  CAS  PubMed  Google Scholar 

  • Nickel H, Holzinger WE (2006) Rapid range expansion of Ligurian leafhopper, Eupteryx decemnotata Rey, 1891 (Hemiptera: Cicadellidae), a potential pest of garden and greenhouse herbs, in Europe. Russ Entomol J 15:295–301

    Google Scholar 

  • Nishad I, Srivastava AK, Saroj A, Babu BK, Samad A (2018) First report of root rot of Nepeta cataria caused by Macrophomina phaseolina in India. Plant Dis 102(11):2380

    Article  Google Scholar 

  • Pank F (1992) The influence of chemical weed control on quality characters of medicinal and aromatic plants. Acta Hortic 306:145–154

    Article  Google Scholar 

  • Park CH, Tannous P, Juliani HR, Wu QL, Sciarappa WJ, VanVranken R, Simon JE (2007) Catnip as a source of essential oils. Creating markets for economic development of new crops and new uses (ed: Whipkey A), pp 311–315

    Google Scholar 

  • Patience GS, Karirekinyana G, Galli F, Patience NA, Kubwabo C, Collin G, Boffito DC (2018) Sustainable manufacture of insect repellents derived from Nepeta cataria. Sci Rep 8:22–35

    Article  CAS  Google Scholar 

  • Payandeh M, Bordbar F, Mirtadzadini M, Khaniki GRB (2015) New chromosome counts for Nepeta (Lamiaceae) from flora of Iran. Biol Divers Conserv 8:70–73

    Google Scholar 

  • Peterson CJ, Coats J (2001) Insect repellents-past, present and future. Pestic Outlook 12:154–158

    Article  Google Scholar 

  • Peterson CJ, Coats JR (2011) Catnip essential oil and its nepetalactone isomers as repellents for mosquitoes. In: Paluch GE, Coats JR (eds) Recent developments in invertebrate repellents. American Chemical Society, Washington, DC, pp 59–65

    Chapter  Google Scholar 

  • Peterson CJ, Nemetz LT, Jones LM, Coats JR (2002) Behavioral activity of catnip (Lamiaceae) essential oil components to the German cockroach (Blattodea: Blattellidae). J Econ Entomol 95:377–380

    Article  CAS  PubMed  Google Scholar 

  • Pobożniak M, Anna S (2011) Biodiversity of thrips species (Thysanoptera) on flowering herbs in Cracow, Poland. J Plant Prot Res 51(4):393–398

    Article  Google Scholar 

  • Polsomboon S, Grieco JP, Achee NL, Chauhan KR, Tanasinchayakul S, Pothikasikorn J, Chareonviriyaphap T (2008) Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. J Am Mosq Control Assoc 24:513–520

    Article  PubMed  Google Scholar 

  • Potashev K, Sharonova N, Breus I (2014) The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Sci Total Environ 485:71–82

    Article  PubMed  CAS  Google Scholar 

  • Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671

    Article  CAS  Google Scholar 

  • Rabbani M, Sajjadi SE, Mohammadi A (2008) Evaluation of the anxiolytic effect of Nepeta persica Boiss. in mice. eCAM 5:181–186

    CAS  PubMed  Google Scholar 

  • Radulescu E, Negru A, Docea E (1973) Septoriozele din Romania. Editura Academiei Republicii Socialiste România, Bucarest

    Google Scholar 

  • Raeburn D, Souness JE, Tomkinson A, Karlsson J-A (1993) Isozyme-selective cyclic nucleotide phosphodiesterase inhibitors: Biochemistry, pharmacology and therapeutic potential in asthma. Prog Drug Res 40:9–32

    CAS  PubMed  Google Scholar 

  • Reichert WJ (2019) The phytochemical investigation, breeding and arthropod repellent efficacy of Nepeta cataria. Doctoral dissertation, Rutgers University-School of Graduate Studies

    Google Scholar 

  • Reichert W, Park HC, Juliani HR, Simon JE (2016) ‘CR9’: a new highly aromatic catnip Nepeta cataria L. cultivar rich in Z, E-Nepetalactone. HortScience 51:588–591

    Article  CAS  Google Scholar 

  • Reichert W, Villani T, Pan MH, Ho CT, Simon JE, Wu QL (2018) Phytochemical analysis and anti-inflammatory activity of Nepeta cataria accessions. J Med Active Plants 7(1):19–27

    Google Scholar 

  • Reichert W, Ejercito J, Guda T, Dong X, Wu Q, Ray A, Simon JE (2019) Repellency assessment of Nepeta cataria essential oils and isolated nepetalactones on Aedes aegypti. Sci Rep 9(1):1524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rigano D, Arnold NA, Conforti F, Menichini F, Formisano C, Piozzi F, Senatore F (2011) Characterisation of the essential oil of Nepeta glomerata Montbret et Aucer ex Bentham from Lebanon and its biological activities. Nat Prod Res:614–626

    Google Scholar 

  • Rim JA, Jang EJ (2017) Effects of substrate and Rootone on the rooting of Mentha spicata, Mentha x piperita, and Nepeta cataria. J People Plants Environ 20(5):511–520

    Article  Google Scholar 

  • Rung A, Halbert SE, Ziesk DC, Gill RJ (2009) A leafhopper pest of plants in the mint family, Eupteryx dec emnotata Rey (Hemiptera: Auchenorrhyncha: Cicadellidae), Ligurian leafhopper, new to North America. Insecta Mundi 88:1–4

    Google Scholar 

  • Rusanov VA, Bulgakov TS (2008) Powdery mildew fungi of Rostov region. Mikol Fitopatol 42(4):314–322

    Google Scholar 

  • Saeidnia S, Gohari AR, Hadjiakhoondi A (2008) Trypanocidal activity of oil of the young leaves of Nepeta cataria L. obtained by solvent extraction. J Med Plants 1:54–57

    Google Scholar 

  • Saharkhiz MJ, Zadnour P, Kakouei F (2016) Essential oil analysis and phytotoxic activity of catnip (Nepeta cataria L.). Am J Essent Oils Nat Prod 4(1):40–45

    Google Scholar 

  • Said-Al Ahl HA, Sabra AS, Hegazy MH (2016) Salicylic acid improves growth and essential oil accumulation in two Nepeta cataria chemotypes under water stress conditions. Ital J Agrometeorol 21(1):25–36

    Google Scholar 

  • Said-Al Ahl H, Naguib NY, Hussein MS (2018) Evaluation growth and essential oil content of catmint and lemon catnip plants as new cultivated medicinal plants in Egypt. Ann Agric Sci 63:201–205

    Article  Google Scholar 

  • Salehi B, Valussi M, Jugran AK, Martorell M, Ramírez-Alarcón K, Stojanović-Radić ZZ, Setzer WN (2018) Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci Technol 80:104–122

    Article  CAS  Google Scholar 

  • Schultz G, Simbro E, Belden J, Zhu J, Coats J (2004) Catnip, Nepeta cataria (Lamiales: Lamiaceae) – a closer look: seasonal occurrence of nepetalactone isomers and comparative repellency of three terpenoids to insects. Environ Entomol 33(6):1562–1569

    Article  CAS  Google Scholar 

  • Setzer WN (2016) Catnip essential oil: there is more to it than making your cat go crazy. Am J Essent Oils Nat Prod 4(4):12–15

    Google Scholar 

  • Sharma A, Cannoo DS (2013) Phytochemical composition of essential oils isolated from different species of genus Nepeta of Labiatae family: a review. Pharmacophore 4(6):181–211

    Google Scholar 

  • Sharonova N, Breus I (2012) Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene. Sci Total Environ 424:121–129

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Pan MH, Wu QL, Park CH, Juliani HR, Welch CR, Simon JE (2010) Identification of the anti-inflammatory bioactive compounds in oregano (Origanum spp.) and their simultaneous quantitation by LC/MS. J Agric Food Chem 58(12):7119–7125

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Pan MH, Wu QL, Park CH, Juliani HR, Ho CT, Simon JE (2011) A rapid LC/MS/MS method for the analysis of non-volatile anti-inflammatory agents from Mentha spp. J Food Science 76(6):900–908

    Article  CAS  Google Scholar 

  • Sherden NH, Lichman B, Caputi L, Zhao D, Kamileen MO, Buell CR, O’Connor SE (2018) Identification of iridoid synthases from Nepeta species: iridoid cyclization does not determine nepetalactone stereochemistry. Phytochemistry 145:48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sih A, Baltus MS (1987) Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 68(6):1679–1690

    Article  PubMed  Google Scholar 

  • Simon JE, Reichert W, Wu QL (2019) Catnip cultivar ‘CR3’. US Patent 10,512,231 B2, December 24, 2019

    Google Scholar 

  • Simpson MG (2010) Plant systematics. Academic, Amsterdam

    Book  Google Scholar 

  • Smitherman LC, Janisse J, Mathur A (2005) The use of folk remedies among children in an urban black community: remedies for fever, colic, and teething. Pediatrics 115:e297–e304

    Article  PubMed  Google Scholar 

  • St. Hilaire R (2003) Propagation of catnip by terminal and single-node cuttings. J Environ Hortic 21(1):20–23

    Article  Google Scholar 

  • St. Hilaire R, Hockman AW, Chavez SM (2002) Propagation and irrigation regime affect the development of catnip. Acta Hortic 629:321–327

    Google Scholar 

  • Stimart DP (1986) Commercial micropropagation of florist flower crops. In: Tissue culture as a plant production system for horticultural crops. Springer, Dordrecht, pp 301–315

    Chapter  Google Scholar 

  • Süntar I, Nabavi SM, Barreca D, Fischer N, Efferth T (2018) Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent. Phytother Res 32(2):185–198

    Article  PubMed  Google Scholar 

  • Suschke U, Sporer F, Schneele J, Geiss HK, Reichling J (2007) Antibacterial and cytotoxic activity of Nepeta cataria L., N. cataria var. citriodora (Beck.) Balb. and Melissa officinalis L. essential oils. Nat Prod Commun 2:1277–1286

    CAS  Google Scholar 

  • Taskova R, Mitova M, Evstatieva L, Ancev M, Peev D, Handjieva N, Popov S (1997) Iridoids, flavonoids and terpenoids as taxonomic markers in Lamiaceae, Scrophulariaceae and Rubiaceae. Bocconea 5(2):631–636

    Google Scholar 

  • Technavio. Global mosquito repellent market 2018–2022. Retrieved August 17, 2019 from https://www.technavio.com/report/global-mosquito-repellent-market-analysis-share-2018

  • Tisserat B, Vaughn SF (2004) Techniques to improve growth, morphogenesis and secondary metabolism responses from Lamiaceae species in vitro. Acta Hortic 629:333–340

    Article  Google Scholar 

  • Transparency Market Research (TMR). Catnip essential oil market – global industry analysis, size, share, growth, trends, and forecast 2017–2025. Retrieved August 17, 2019 from https://www.transparencymarketresearch.com/catnip-essential-oil-market.html

  • United States Department of Agriculture (USDA) (1960) Index of plant diseases in the United States. USDA, Washington, DC

    Google Scholar 

  • United States Department of Agriculture (USDA) (2019) Nepeta cataria L. Catnip. Retrieved August 17, 2019, from https://plants.usda.gov/core/profile?symbol=NECA2#

  • Waller GR, Price GH, Mitchell ED (1969) Feline attractant, cis, trans-nepetalactone: Metabolism in the domestic cat. Science 164(3885):1281–1282

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Cheng KW, Wu Q, Simon JE (2007) Quantification of nepetalactones in catnip (Nepeta cataria L.) by HPLC coupled with ultraviolet and mass spectrometric detection. Phytochem Anal 18(2):157–160

    Article  PubMed  CAS  Google Scholar 

  • Wesołowska A, Jadczak D, Grzeszczuk M (2011) GC-MS analysis of lemon catnip (Nepeta cataria L. var. citriodora Balbis) essential oil. Acta Chromatogr 23(1):169–180

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Winnicki AM, Śmieszek JM, Partyka D, Modnicki D (2013) Permeation-enhancing properties of Nepeta cataria var. citriodora dry extract. Herba Polonica 59(3):5–16

    Article  CAS  Google Scholar 

  • Yang Y, Wang XY, Wang J, Zhao TT, Cheng SY, Shao DD, Xu J (2016) Effects of species diversity on plant growth and remediation of Cd contamination in soil. Acta Sci Circumst 36:2103–2113

    Google Scholar 

  • Younis A, Riaz A, Khan MA, Khan AA (2009) Effect of time of growing season and time of day for flower harvest on flower yield and essential oil quality and quantity of four Rosa cultivars. Floricult Ornamental Biotechnol 3:98–103

    Google Scholar 

  • Zhu J, Zeng X (2006) Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J Am Mosq Control Assoc 22(3):515–523

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Zeng XP, Berkebile D, Du HJ, Tong Y, Qian K (2009) Efficacy and safety of catnip (Nepeta cataria) as a novel filth fly repellent. Med Vet Entomol 23:209–216

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Berkebile DR, Dunlap CA, Zhang A, Boxler D, Tangtrakulwanich K, Brewer G (2012) Nepetalactones from essential oil of Nepeta cataria represent a stable fly feeding and oviposition repellent. Med Vet Entomol 26:131–138

    Article  CAS  PubMed  Google Scholar 

  • Zimowska B (2008) Biodiversity of fungi colonizing and damaging selected parts of motherwort (Leonurus cardiaca L.). Herba Pollonica 54(2):30–40

    Google Scholar 

  • Zomorodian K, Saharkhiz MJ, Shariati S, Pakshir K, Rahimi MJ, Khashei R (2012) Chemical composition and antimicrobial activities of essential oils from Nepeta cataria L. against common causes of food-borne infections. ISRN Pharm 2012:1–7

    Google Scholar 

  • Zomorodian K, Saharkhiz MJ, Rahimi MJ, Shariatifard S, Pakshir K, Khashei R (2013) Chemical composition and antimicrobial activities of essential oil of Nepeta cataria L. against common causes of oral infections. J Dent 10:329–337

    Google Scholar 

Download references

Acknowledgements

We thank the New Jersey Farm Bureau, the New Jersey Agricultural Experiment Station Project NJ12158, the New Jersey Health Foundation and the Deployed Warfighter Protection (DWFP) Program in support of the research project, War FighterProtection from Arthropods Utilizing Naturally Sourced Repellents (Grant W911QY1910007) for their support of our research on Nepeta spp. We also recognize the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) (DOC_PLENO/ proc. n° 88881.129327/2016-01) for providing a Graduate Student Fellowship to the senior author (E. Gomes) as this work is part of his dissertation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, E.N. et al. (2020). Catnip (Nepeta cataria L.): Recent Advances in Botany , Horticulture and Production. In: Máthé, Á. (eds) Medicinal and Aromatic Plants of North America. Medicinal and Aromatic Plants of the World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-44930-8_11

Download citation

Publish with us

Policies and ethics