Skip to main content

Role of Algae–Fungi Relationship in Sustainable Agriculture

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

  • 765 Accesses

Abstract

The key features of sustainable agriculture which include crop improvement, control of pests and diseases, and maintenance of soil fertility have largely been augmented by microbial application. These microorganisms and their consortia have largely been utilized as bioremediative and biocontrol agents as well as natural bioindicators. Algae also help in conserving environment by sequestering carbon dioxide directly from atmosphere and are used in production of biofuels and biorefinery products. Also commercial production and extraction of a large array of bioactive compounds like fatty acids (PUFA, EPA, and DHA), bioflavonoids, carotenoids, polyphenols, asperfumoid, phomoenamide from them have been reported to show antibacterial, antifungal, antiviral, and insecticidal properties besides diverse therapeutic uses. The role of algae–fungal associations and their role in the sustainable agriculture have been elaborated in this chapter. With the advancement of biotechnology, the biostimulatory potential of microbes particularly the algal and fungal communities has been thoroughly studied and manipulated, but more innovative approaches are indeed required for an ecofriendly environment and better tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aboul-Fadl M, Taha EM, Hamissa MR, El-Nawawy AS, Sihoukry A (1967) The effect of the nitrogen fixing blue-green alga, Tolypothrix tenuis on the yield of paddy. J Microbiol UAR 2:241–249

    CAS  Google Scholar 

  • Adam MS (1999) The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol Polon 48:163–171

    CAS  Google Scholar 

  • Agarwal P, Patel K, Das AK, Ghosh A, Agarwal P (2016) Insights into the role of seaweed Kappaphycus alvarezii sap towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. J Appl Phycol 28:2529–2537

    CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824

    CAS  PubMed  Google Scholar 

  • Alalade OA, Iyayi EA (2006) Chemical composition and the feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. Int J Poult Sci 5:137–141

    Google Scholar 

  • Ali O, Ramsubhag A, Jayaraman J (2019) Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a Tropical environment. PLoS One 14:e0216710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammar N, Jabnoun-Khiareddine H, Mejdoub-Trabelsibi B, Nefzi A, Mahjoub MA, Daami Remadi M (2017) Pythium leak control in potato using aqueous and organic extracts from the brown alga Sargassum vulgare (C. Agardh, 1820). Postharvest Biol Technol 130:81–93

    Google Scholar 

  • Anisha C, Jishma P, Bilzamol VS, Radhakrishnan EK (2018) Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatal Agric Biotechnol 14:116–119

    Google Scholar 

  • Arman M, Qader SAU (2012) Structural analysis of kappa-carrageenan isolated from Hypnea musciformis (red algae) and evaluation as an Elicitor of plant defense mechanism. Carbohydr Polym 88:1264–1271

    CAS  Google Scholar 

  • Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1e12

    Google Scholar 

  • Arora A, Saxena S (2005) Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluent. Biomass Bioenerg 29:60–64

    Google Scholar 

  • Arunkumar K, Selvapalam N, Rengasamy R (2005) The antibacterial compound Sulphoglycerolipid 1–0 palmitoyl-3-0 (6-sulpho-aquinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Botanica Mar 40:441–445

    Google Scholar 

  • Asha A, Rathi JM, Patric Raja D, Sahayaraj K (2012) Biocidal activity of two Marine green algal extracts against third instar nymph of Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopest 5:129–134

    Google Scholar 

  • Ashok AK, Ravi V, Saravanan R (2017) Influence of cyanobacterial auxin on sprouting of taro (Colocasia esculenta var. Antiquorum) and corm yield. Indian J Agric Sci 87:1437–1444

    CAS  Google Scholar 

  • Baiyee B, Ito S, Sunpapao A (2019) Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L). Physiol Mol Plant Pathol 106:96–101

    CAS  Google Scholar 

  • Baloch GN, Tariq S, Ehteshamul-Haque S, Athar M, Sultana V, Ara J (2013) Management of root diseases of eggplant and watermelon with the application of Asafoetida and seaweeds. J Appl Bot Food Qual 86:138–142

    Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    CAS  Google Scholar 

  • Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326

    Google Scholar 

  • Beckett RP, Minibayeva FV, Liers C (2013a) On the occurrence peroxidase and laccase activity in lichens. Lichenologist 45:277e283

    Google Scholar 

  • Beckett RP, Zavarzina AG, Liers C (2013b) Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover. Fungal Biol 117:431–438

    CAS  PubMed  Google Scholar 

  • Bhateja P, Mathur T, Pandya M, Fatma T, Rattan A (2006) Activity of blue-green microalgae extracts against in vitro generated Staphylococcus aureus with reduced susceptibility to vancomycin. Fitoterapia 77:233–235

    CAS  PubMed  Google Scholar 

  • Bi F, Iqbal S, Ali A, Arman M, Ul Hassan M (2008) Induction of secondary metabolites In chickpea, carrot and potato tissues in response to elicitor of H. musciformis. Indian J Plant Physiol 13:101–106

    CAS  Google Scholar 

  • Biddington NL, Dearman AS (1983) The involvement of the root apex and cytokinins in the control of lateral root emergence in Lettuce seedlings. Plant Growth Regul 1:183–193

    CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    PubMed  Google Scholar 

  • Candan M, Yilmaz M, Tay T, Erdem M, Türk AO (2007) Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salasinic acid constituent. Z Naturforsch C J Biosci 62:619–621

    CAS  PubMed  Google Scholar 

  • Chithra S, Jasim B, Sachidvanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper Nigrum. Phytomedicine 21:534–540

    CAS  PubMed  Google Scholar 

  • Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod Endemic Med Plants Biotechnol Rep 68:1103–1105

    CAS  Google Scholar 

  • Cooper R (1953) The role of lichens in soil formation and plant succession. Ecology 34:805–807

    Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    CAS  Google Scholar 

  • Crouch IJ, Van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    CAS  Google Scholar 

  • Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides, triterpenes from Chilean Lichen pseudocyphellaria nudata (zahlbr.) Dj galloway. J Chil Chem Soc 53:1624–1625

    CAS  Google Scholar 

  • Dal Grande F, Alors D, Divakar PK, Balint M, Crespo A, Schmitt I (2014a) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60

    PubMed  Google Scholar 

  • Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014b) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis sl. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–5470

    CAS  PubMed  Google Scholar 

  • Davis RA, Andjic V, Kotiw M, Shivas RG (2005) Phomoxins B and C: polyketides from an endophytic fungus of the genus Eupenicillium. Phytochemistry 66:2771–2775

    CAS  PubMed  Google Scholar 

  • Desbois AP, Lebl T, Yan L, Smith V (2008) Isolation and structural characterization of Two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Mar Biotechnol 81:755–764

    CAS  Google Scholar 

  • Du ZY, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. elife 8:e47815

    PubMed  PubMed Central  Google Scholar 

  • Duarte IJ, Hernández SHA, Ibañez AL, Canto AR (2018) Macroalgae as soil conditioners or growth promoters of Pisum sativum (L). ARRB 27:1–8

    Google Scholar 

  • Esserti S, Smaili A, Rifai LA, Koussa T, Makroum K, Belfaiza M, Kabil E, Faize L, Burgos L, Alburquerque N, Faize M (2017) Protective effect of three brown Seaweed extracts against fungal and bacterial diseases of tomato. J Appl Phycol 29:1081–1093

    CAS  Google Scholar 

  • Falk A, Green TK, Barboza P (2008) quantitative determination of secondary metabolites in cladina stellaris and other lichens by micellar electrokinetic chromatography. J Chromatogr 1182:141–144

    CAS  Google Scholar 

  • Featonby-Smith BC, Van Staden J (1983) The effect of seaweed concentrates on the growth of tomato plants in nematode-infested soil. Sci Hortic 20:137–146

    CAS  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoids biology. Science 294:1871–1875

    CAS  PubMed  Google Scholar 

  • Galun M, Bubrick P (1984) Physiological interactions between the partners of the lichen symbiosis. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. Springer, Berlin, pp 362–401

    Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    CAS  Google Scholar 

  • Godinho VM, Furbino E, Santiago F, Pellizzari M, Yokoya NS, Rosa LP d (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in antarctica. ISME J 7:1434–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves P, Valério E, Correia C, de Almeida JMGCF, Sampaio JP (2011) Evidence for divergent evolution of growth temperature preference in sympatric saccharomyces Species. PLoS One 6:e20739

    PubMed  PubMed Central  Google Scholar 

  • Govindarajulu M (2005) Nitrogen transfers in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  • Green TGA, Lange OL (1990) Ecophysiological applications of the Pseudocyphellaria lichens to south temperate rain forests. In: Fourth International Mycological Congress, Regensburg, Germany, 28th August - 3rd September, 1990: Abstracts, p 121

    Google Scholar 

  • Gupta AB, Agarwal PR (1973) Extraction, isolation and bioassay of a gibberellin-like substance from Phormidium foveolarum. Ann Bot 37:737–741

    CAS  Google Scholar 

  • Gutkind GO, Martino V, Coussio JD, Torres RA (1981) Screening of South American plants for biological activities. Antibacterial and antifungal activity. Fitoterapia 52:213

    Google Scholar 

  • Hager A, Brunauer G, Türk R, Stocker-Wörgö Tter E (2008) Production and bioactivity of common lichen metabolites as exemplified by heterodea muelleri (hampe) nyl. J Chem Ecol 34:113–120

    CAS  PubMed  Google Scholar 

  • Halama P, Van HC (2004) Antifungal activity of lichen extracts and Lichenic acids. Biocontrol 49:95–107

    CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219e232

    Google Scholar 

  • Halperin DR, De Cano MS, De Muele MCZ, De Caire GZ (1981) Algae azure fixative atmospheric nitrogen. Cent Invest Biol Mar Contr Tech 3:6

    Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttil AM, Compant S, Campisano A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Dictionary of the fungi. CAB, Wallingford

    Google Scholar 

  • Heide R, Provatoroff N, Taas PC, Valois J, Plasse N, Wobben HJ, Timmer R (1975) Qualitative analysis of the odoriferous fraction of oakmoss (evernia prunastri (l.) Ach). J Agric Food Chem 23:950–957

    Google Scholar 

  • Hirayama T, Fujikawa F, Kasahara T, Otsuka M, Nishida N, Mizuno D (1980) Anti-tumor activities of some lichen products and their degradation products. Yakugaku Zasshi 100:755–759

    CAS  PubMed  Google Scholar 

  • Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273

    Google Scholar 

  • Hom EF, Murray AW (2014) Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science (New York, NY) 345:94–98

    CAS  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    CAS  Google Scholar 

  • Honegger R (1996a) In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 24–36

    Google Scholar 

  • Honegger R (1996b) Structural and functional aspects of mycobiont-photobiont relationships in lichens compared with mycorrhizae and plant pathogenic interactions. In: Nicole M, Gianinazzi-Pearson V (eds) Histology, ultrastructure and molecular cytology of plant-microorganism interactions. Kluwer, Dordrecht, pp 157–176

    Google Scholar 

  • Ibraheem BMI, Hamed SM, Abd Elrhman AA, Farag FM, Abdel-Raouf N (2017) Antimicrobial activities of some brown macroalgae against some soil borne plant pathogens and in vivo management of Solanum melongena root diseases. Aust J Basic Appl Sci 11:157–168

    CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the Endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    CAS  PubMed  Google Scholar 

  • Jayaraj J, Norrie J, Punja ZK (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol 23:353–361

    Google Scholar 

  • Jordan NR, Zhang J, Huerd S (2000) Arbuscular-mycorrhizal fungi: potential roles in Weed management. Weed Res 40:397–410

    Google Scholar 

  • Kannaiyan S, Viswanathan G, Rajeswari N (1983) Influence of green and brown color variation on NPK contents of Azolla pinnata L. Scl Cult 49:251–252

    Google Scholar 

  • Katoch M, Pull S (2017) Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm Biol 5:1528–1535

    Google Scholar 

  • Kerby NW, Niven GW, Rowell P, Stewart WDP (1987) Photoproduction of amino acids by mutant strains of N2-fixing cyanobacteria. Appl Microbiol Biotechnol 25:547–552

    CAS  Google Scholar 

  • Khan W, Rayirath UUP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 56:342–344

    Google Scholar 

  • Khanuja SPS, Tiruppadiripuliyur RSK, Gupta VK, Srivastava SK, Verma SC, Saikia D, Darokar MP, Shasany AK, Pal A (2007) Antimicrobial and anticancer properties of methyl-betaorcinolcarboxylate from lichen (Everniastrum cirrhatum). US patent no. 0099993a1

    Google Scholar 

  • Kinoshita MH, Koyama K, Takahashi K, Youhimura I, Yamamoto Y, Higuchi M, Miura Y, Kinoshita K, Kawai K (1994) New phenolics from Protousnea Species. J Hatt Bot Lab 75:359–364

    Google Scholar 

  • Klein DR, Shulski M (2011) The role of lichens, reindeer, and climate in ecosystem change on a Bering Sea Island. Arctic 64:353–361

    Google Scholar 

  • Koziol L, Bever JD (2016) AMF, phylogeny, and succession: specificity of response to mycorrhizal fungi increases for late-successional plants. Ecosphere 7:e01555

    Google Scholar 

  • Kumar CS, Sarada D, Vl R (2008) Seaweed extracts control the leaf spot disease of the medicinal plant Gymnema sylvestre. Indian J Sci Technol 1:93–94

    Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for Sustainable Environments, vol 3. Springer International Publishing, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar M, Saxena R, Rai PK, Tomar RS, Yadav N, Rana KL et al (2019b) Genetic diversity of methylotrophic yeast and their impact on environments. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 53–71. https://doi.org/10.1007/978-3-030-25506-0_3

    Chapter  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV (2006) Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in suborder Peltigerineae. Ann Bot 98:1035e1042

    Google Scholar 

  • Lawrey JD (1993) Lichens as monitors of pollutant elements at permanent sites in Maryland and Virginia. Bryologist 96:339–341

    CAS  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of the land plants. Am J Bot 91:1535–1556

    PubMed  Google Scholar 

  • Liers C, Ullrich R, Hofrichter M, Minibayeva FV, Beckett RP (2011) Oxidoreductases from lichenized ascomycetes: purification and characterization of a heme-peroxidase from Leptogium Saturninum that oxidizes high-redox potential substrates. Fungal Genet Biol 48:1139e1145

    Google Scholar 

  • Lin X, Cai YJ, Li ZX, Chen Q, Liu ZL, Wang R (2003) Structure Determination, apoptosis induction, and telomerase inhibition of Cfp-2, a novel lichenin from Cladonia furcata. Biochim Biophys Acta 1622:99–108

    CAS  PubMed  Google Scholar 

  • Lindsay DC (1978) The role of lichens in Antarctic ecosystems. Bryologist 81:268–276

    Google Scholar 

  • Liu ZY, Xie LY, Wu ZJ, Lin QY, Xie LH (2005) Purification and characterization of anti-TMV protein from a marine algae Ulva pertusa. Acta Phytopathol Sin 35:256–261

    Google Scholar 

  • Lizzi Y, Coulomb C, Polian C, Coulomb PJ, Coulomb PO (1998) Seaweed and Mildew: what does the future hold? Encouraging laboratory results. Phytoma 508:29–30

    Google Scholar 

  • Luiza F, Sebastianes DS (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces 583 antifungal compounds and induces Root Growth. PLoS One 7:1–10

    Google Scholar 

  • Maass WSG (1975) The phenolic constituents of peltigera Aphthosa. Phytochemistry 14:2487

    CAS  Google Scholar 

  • Maltz MR, Treseder KK, Mcguire KL (2017) Links between plant and fungal diversity in habitat fragments of coastal shrub land. PLoS One 12:e0184991

    PubMed  PubMed Central  Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Natarajapanikkar MV (2009) Biopotentials of seaweeds collected from south West coast of India. J Mar Sci Technol 17:67–73

    Google Scholar 

  • Manojlovic MT, Novakovic M, Stevovic V, Solujic S (2005) Antimicrobial metabolites from three serbian caloplaca. Pharm Biol 43:718–722

    CAS  Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in The lichen lobaria pulmonaria. New Phytol 175:271–282

    CAS  PubMed  Google Scholar 

  • Mendoza-Morales LT, Mendoza-González AC, Mateo Cid LE, Rodríguez-Dorantes A (2019) Comparison of four seaweed extracts on germination and root promotion of Lens esculenta. Int J Curr Res Biosci Plant Biol 6:1–9

    CAS  Google Scholar 

  • Mischenko NP, Maximo Ob B, Oe K, Stepanenko LS (1984) Depsidones and fatty acids of Parmelia Stygia. Phytochemistry 23:180

    Google Scholar 

  • Mohamed AMA (2001) Studies on some factors affecting production of algal biofertilizers, M.Sc. Thesis, Fac. Agric., Al-Azhar Univ., Cairo, Egypt

    Google Scholar 

  • Mottershead D, Lucas G (2000) The role of lichens in inhibiting erosion of a soluble rock. Lichenologist 32:601–609

    Google Scholar 

  • Muggia L, Vancurova L, Skaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli – a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol 85:313–323

    CAS  PubMed  Google Scholar 

  • Nagorskaia VP, Reunov AV, Lapshina LA, Ermak IM, Barabanova AO (2008) Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-ncTobacco leaves. Biol Bull 35:310–314

    Google Scholar 

  • Nash T, Gries C (1991) Lichens as indicators of air pollution. In: Air pollution. Springer, Berlin, pp 1–29

    Google Scholar 

  • Naviner M, Bergé JP, Durand P, Le Bris H (1999) Antibacterial activity of the marine Diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174:15–24

    CAS  Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh P (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soils 40:67–72

    CAS  Google Scholar 

  • Ngala BM, Valdes Y, dos Santos G, Perry RN, Wesemael WML (2016) Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as Control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. J Appl Phycol 28:2073–2082

    CAS  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of below ground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    PubMed  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    CAS  PubMed  Google Scholar 

  • Ola Fsdottir ES, Ingó Lfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:99–208

    Google Scholar 

  • Pan BF, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. Wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221

    CAS  PubMed  Google Scholar 

  • Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17

    CAS  PubMed  Google Scholar 

  • Pardee KI, Ellis P, Bouthillier M, Towers GHN, French CJ (2004) Plant virus inhibitors from marine algae. Can J Bot 82:304–309

    Google Scholar 

  • Park Y-H, Mishra RC, Yoon S, Kim H, Park C, Seo S-T, Bae H (2019) Endophytic trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res 43:408–420

    PubMed  Google Scholar 

  • Patier P, Potin P, Rochas C, Kloareg B, Yvin JC, Liénart Y (1995) Free or silica-bound oligokappa-carrageenans elicit laminarase activity in rubus cells and protoplasts. Plant Sci 110:27–35

    CAS  Google Scholar 

  • Peksa O, Skaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948

    PubMed  Google Scholar 

  • Perry NB, Benn MH, Brennan NJ, Burgess NJ, Ellis D, Dj G, Sd L, Rs T (1999) Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31:627–636

    Google Scholar 

  • Picard KT, Letcher PM, Powell MJ (2013) Evidence for a facultative mutualist nutritional relationship between the green coccoid alga Bracteacoccus sp. (Chlorophyceae) and the zoosporic fungus Rhizidium phycophilum (Chytridiomycota). Fungal Biol 117:319–328

    PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rankovic B, Misic M, Sukdolak S (2007) Evaluation of antimicrobial activity of the lichens slasallia pustulata, parmelia sulcata, Umbilicaria crustulosa, and umbilicaria cylindrica. Mikrobiologiia 76:817–821

    CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge

    Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357–357

    CAS  PubMed  Google Scholar 

  • Rodrigo V, Eberto N (2007) Seasonal changes in periphyton nitrogen fixation in a protected tropical wetland. Biol Fertil Soils 43:367–372

    Google Scholar 

  • Ronga D, Biazzi E, Parati K, Carminati D (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192

    CAS  Google Scholar 

  • Rudolph ED (1977) Antarctic terrestrial ecosystems. In: institute of polar studies. In: A framework for assessing environmental impacts of possible antarctic mineral developments, part 2, appendix. Ohio state university, Columbus, pp d1–d59

    Google Scholar 

  • Sahayaraj K, Kalidas S (2011) Evaluation of nymphicidal and ovicidal effect of Seaweed, Padinapavonica (Linn) (Pheophyceae) on cotton pest, Dysdercus Cingulatus (Fab). Indian J Geo Mar Sci 40:125–129

    CAS  Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhislash PC (2018) Connecting microbial communities with the soil and plant health: options for agricultural sustainability. Ecol Indic 105:601–612

    Google Scholar 

  • Sanmartin A, Negret R, Rovirosa J (1991) Insecticidal and acaricide activity of poly halogenated monoterpenes from Chilean Plocamium cartilagineum. Phytochemistry 30:2165–2169

    CAS  Google Scholar 

  • Sano Y (1999) Antiviral activity of alginate against infection by tobacco mosaic Virus. Carbohydr Polym 38:183–186

    CAS  Google Scholar 

  • Saraswathy A, Rajendiran A, Sarada A, Purushothamam KK (1990) lichen substances of parmelia caperata. Indian Drugs 27:4602

    Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah E (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722

    CAS  PubMed  Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, Rojas De Arias A, Gf F (2007) A new antifungal and antiprotozoal depside from the andean lichen Protousnea poeppigii. Phytother Res 22:349–355

    Google Scholar 

  • Sedelnikova NV, Sedelniko P (2009) The role of lichens in high-mountainous phytocoenoses of Siberia. Contemp Probl Ecol 6:907–916

    Google Scholar 

  • Senn TL (1987) Seaweed and plant growth. Clemson University, Clemson

    Google Scholar 

  • Shah N (2014) Lichens of commercial importance in India. Scitech J 1:32–36

    Google Scholar 

  • Shawuti G, Abbas A (2007) Research progress on biological activities of lichens secondary metabolites. Food Sci J 28:624–627

    Google Scholar 

  • Shen-Rui Z, Shen RZ (1997) A broad spectrum biopesticide type biofertilizer anaerobic fermentation effluent and plant adverse resistance. Acta Agric Shanghai 13:89–96

    Google Scholar 

  • Shukla V, Joshi GP, MSM R (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    CAS  Google Scholar 

  • Simon J, Kósa A, Bóka K, Vági P, Simon-Sarkadi L, Mednyánszky Z, Horváth Áron N, Nyitrai P, Böddi B, Preininger É (2017) Self-supporting artificial system of the green alga Chlamydomonas reinhardtii and the ascomycetous fungus Alternaria infectoria. Symbiosis 71:199–209

    CAS  Google Scholar 

  • Singh RN (1961) Role of Blue-Green Algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi, p 175

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh YV, Singh BV, Pabbi S, Singh P K (2007) Impact of organic farming on yield and quality of basmati rice and soil properties., http://orgprints.org

    Google Scholar 

  • Singh G, Grande FL, Divakar PK, Otte J, Crespo A, Schmitt I (2017) Fungal-algal association patterns in lichen symbiosis linked to macroclimate. New Phytol 214:317–329

    PubMed  Google Scholar 

  • Smith RLL (1972) The vegetation of the south Orkney islands with particular reference to signy island. Sci Rep Brit Antarc Surv 68:1–124

    CAS  Google Scholar 

  • Smith M, Hartnett D, Wilson G (1999) Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tall grass prairie. Oecologia 121:574–582

    CAS  PubMed  Google Scholar 

  • Solomon EI, Chen P, Metz lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed 40:4570e4590

    Google Scholar 

  • Song YC, Li H, Ye Y, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72

    CAS  PubMed  Google Scholar 

  • Srivastava A, Mishra AK (2014) Regulation of nitrogen metabolism in salt tolerant and salt sensitive Frankia strains. Indian J Exper Biol 52:352–358

    CAS  Google Scholar 

  • Stirk WA, Van Staden JJ (1997a) Comparison of cytokinin and auxin like activity in some commercially used seaweed extracts. Appl Phycol 8:503–508

    Google Scholar 

  • Stirk WA, Van Staden JJ (1997b) Isolation and identification of cytokinins in a new commercial seaweed product made from Fucus serratus L. Appl Phycol 9:327–330

    CAS  Google Scholar 

  • Stocker-wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, re synthesis and thallus morphogenesis. Bryologist 104:576–581

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Takai M, Uehara Y, Beisler JA (1979) Usnic acid derivatives as potential antineoplastic agents. J Med Chem 22:1380–1384

    CAS  PubMed  Google Scholar 

  • Talapatra K, Das AR, Saha AK, Das P (2017) In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi. J Appl Biol Biotechnol 5:68–71

    Google Scholar 

  • Tay T, Türk AO, Yılmaz M, Türk H, Kıvanc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (?)-usnic acid, norstictic acid and protocetraric acid constituents. Z Naturforsch C J Biosci 59c:384–388

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19e26

    Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2010) Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. Cubense Race 4. Am J Agric Biol Sci 5:177–182

    CAS  Google Scholar 

  • Tintjer T, Rudgers JA (2006) Grass-herbivore interactions altered by strains of a native Endophyte. New Phytol 170:513–521

    PubMed  Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology (I). CRC Press, Boca Raton, pp 39–92

    Google Scholar 

  • Tuney I, Cadirci BH, Unal D, Sukatar A (2006) Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk J Biol 30:171–175

    Google Scholar 

  • Türk AO, Yılmaza M, Kıvanc M, Türk h (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its Protolichesterinic acid constituent. Z Naturforsch C, 58: 850–854

    Google Scholar 

  • Umali LJ, Duncan JR, Burgess JE (2006) Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnol Lett 28:45–49

    CAS  PubMed  Google Scholar 

  • Vartia KO (1973) antibiotics in lichens. In: Ahmadjiian V, Hale ME (eds) The lichens, 3rd edn. Academic, New York, pp 547–561

    Google Scholar 

  • Venkataraman GS (1981) Blue-green algae for rice production-a manual for its promotion. FAO Soils Bull 46:1–52

    Google Scholar 

  • Venkateswarulu N, Shameer S, Bramhachari PV, Thaslim Basha SK, Nagaraju C, Vijaya T (2018) Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaptalene- 1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic Medicinal plants isolation and characterization of plumbagin producing endophytic fungi. Biotechnol Rep (Amst) 20:e00282

    CAS  Google Scholar 

  • Vera J, Castro J, Contreras RA, González A, Moenne A (2012) Oligocarrageenans Induce a long-term and broad-range protection against Pathogens in tobacco plants (var. Xanthi). Physiol Mol Plant Pathol 79:31–39

    CAS  Google Scholar 

  • Verma A, Johri BN, Prakash A (2014, 2014) Antagonistic evaluation of bioactive metabolite from Endophytic Fungus, Aspergillus flavipes KF671231. J Mycol:3–8

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56

    CAS  PubMed  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy JJ (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63:1692–1695

    CAS  PubMed  Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Google Scholar 

  • Wang S, Zhong FD, Zhang YJ, Wu ZJ, Lin QY, Xie LH (2004) Molecular characterization of a new lectin from the marine algae Ulva pertusa. Acta Biochim Biophys Sin 36:111–117

    PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388e393

    Google Scholar 

  • Whapham CA, Blunden G, Jenkins T, Hankins SD (1993) Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5:231–234

    CAS  Google Scholar 

  • Whiteside MD, Gracia MO, Treseder KK (2012) Amino acid uptake in arbuscular Mycorrhizal plants. PLoS One 7:47643

    Google Scholar 

  • Wu Y, Jenkins T, Blunden G, von Mende N, Hankins SD (1998) Suppression of fecundity of the root-knot nematode, Meloidogyne javanica, in monoxenic cultures of Arabidopsis thaliana treated with an alkaline extract of Ascophyllum Nodosum. J Appl Phycol 10:91–94

    Google Scholar 

  • Wuang SC, Mar CK, Chua QD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64

    Google Scholar 

  • Xie J, Wu Y, Zhang T, Zhang M, Peng F, Lin B (2018) New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax no to ginseng as potential inhibitors of ftsz. Fitoterapia 131:35–43

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    CAS  PubMed  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 3: Perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Google Scholar 

  • Yahr R, Vilgalys R, Depriest P (2004) Strong fungal specifity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378

    CAS  PubMed  Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One 12:1–12

    Google Scholar 

  • Yue Q, Miller CV, White JF, Richardson MD (2000) Isolation and characterization of Fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692

    CAS  PubMed  Google Scholar 

  • Zaccaro MC, Caire G, Cano M, Halperin D (1991) Bioactive compounds from Nostoc muscorum (Cyanobacteria). Cytobios 66:169–172

    Google Scholar 

  • Zaid SAA, Abdel-Wahab KSD, Abed NN, Salah El-Din RA (2016) Screening for antiviral activities of aqueous extracts of some egyptian seaweeds. Egypt J Hosp Med 64:430–435

    Google Scholar 

  • Zambare VP, Christopher LP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50:778–798

    PubMed  Google Scholar 

  • Zayadan BK, Matorin DN, Baimakhanova GB (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83:391–397

    CAS  Google Scholar 

  • Zea L, Devi SI (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. Front Microbiol 8:1–15

    Google Scholar 

  • Zhu C, Tian G, Luo G, Kong Y, Guo J, Wang M, Guo S, Ling N, Shen QR (2018) N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agric Ecosyst Environ 254:191–201

    Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjya, R., Begum, A., Tiwari, A. (2020). Role of Algae–Fungi Relationship in Sustainable Agriculture. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_10

Download citation

Publish with us

Policies and ethics