Skip to main content

Wood Deterioration by Terrestrial Microorganisms

  • Chapter
  • First Online:
Biodeterioration of Wooden Cultural Heritage
  • 545 Accesses

Abstract

In terrestrial ecosystems the microbial decomposition of wood is caused principally by fungi, opposed to aquatic ecosystems where bacteria degradation predominates. This chapter discusses the deterioration of wooden Cultural Heritage caused by terrestrial basidiomycetes and in particular the decay types of brown and white rot.

The various overlapping terms of terrestrial fungal decay, such as “red rot”, “destruction rot”, “wet rot” or “marble rot” are initially clarified. Following, brown- and white-rot fungi are introduced and several examples of their decay on historical and archaeological timbers are given. Elements of their biology are provided and their distinctly different enzyme systems, which had resulted as a consequence of their evolutionary relationships, are described. Their niche is also considered, with special reference to environmental factors influencing decay, such as wood moisture content, oxygen, temperature and pH.

The residual chemistry of rotted wood is also examined and the different decay mechanisms employed by brown- and white-rot fungi are explicated. The two independent systems of brown rotters, the hydrolytic and the oxidative via Fenton reactions are presented, elucidating the selective removal of wood polysaccharides and the pathways of lignin modification. Similarly, the preferential and the simultaneous delignification of wood caused by white rotters are described and the key enzymatic activities of lignin breakdown, involving LiPs, MnPs, VPs and laccases, or of cellulose decomposition, engaging enzymatic and non-enzymatic pathways are explored.

Ultrastructural aspects of decay are also investigated, where hyphae invasion, penetration and spreading via the radial and the longitudinal cell systems of softwoods and hardwoods, and decay progression within the cell wall layers is demonstrated.

Finally macroscopic diagnostic features, like the cubical cracks of brown rot or the fibrous texture and demarcation lines of white rot are provided and microscopic features related to the topochemistry of decayed wood, along with several diagnostic patterns of decay such as loss of cell walls’ birefringence, erosion zones, pits enlargement and bore holes expansion, are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CAZymes (Carbohydrate-Active enZymes) is a collective term designated to enzymes that build and breakdown complex carbohydrates and glycoconjugates. CAZy (www.cazy.org) is a database of CAZymes (Cantarel et al. 2009).

  2. 2.

    Klason lignin is the insoluble residue after the hydrolytic removal of the polysaccharides from extractive-free wood (Sect. 1.6.5).

  3. 3.

    Demethylation and demethoxylation are commonly used interchangeably; however, oxidative demethylation herein means that formaldehyde is formed, whereas demethoxylation means that methanol is formed from the methoxy group (Ander and Eriksson 1985).

  4. 4.

    DP of hardwoods and softwoods cellulose is in the range of 4000–5500 (Hallac and Ragauskas 2011)

  5. 5.

    Brown-rot fungi do not produce cellobiose dehydrogenase CDH with the only known exception of Coniophora puteana (Baldrian and Valášková 2008).

  6. 6.

    Since in most cases of “selective” white rot, cellulose is also degraded in the late stages, the term “preferential” appears more appropriate (Schmidt 2006).

  7. 7.

    The fungus was first isolated from wood chip piles and was given the name Chrysosporium lignorum which was changed later to Sporotrichum pulverulentum for its imperfect stage. Its current name, Phanerochaete chrysosporium has been designated for its perfect state (Eriksson et al. 1990).

  8. 8.

    Heme is a complex of a ferrous iron ion coordinated to protoporphyrin IX.

  9. 9.

    Trametes versicolor is also known as Coriolus versicolor or Polyporus versicolor (Mycobank Database 2019).

References

  • Alfieri, P. V., & Correa, M. V. (2017). Fungi observation in deteriorated wooden heritage: Analysis using different imaging techniques. Revista Argentina de microbiologia, 49(1), 120–122.

    Article  Google Scholar 

  • Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to biodeterioration. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Anagnost, S. E. (1998). Light microscopic diagnosis of wood decay. Iawa Journal, 19(2), 141–167.

    Article  Google Scholar 

  • Ander, P., & Eriksson, K. E. (1985). Methanol formation during lignin degradation by Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 21(1–2), 96–102.

    CAS  Google Scholar 

  • Arantes, V., & Milagres, A. M. F. (2006). Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(3), 413–419.

    Article  CAS  Google Scholar 

  • Arantes, V., Qian, Y., Milagres, A. M., Jellison, J., & Goodell, B. (2009). Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: Implications for brown-rot decay. International Biodeterioration & Biodegradation, 63(4), 478–483.

    Article  CAS  Google Scholar 

  • Arantes, V., Milagres, A. M., Filley, T. R., & Goodell, B. (2011). Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: The relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology & Biotechnology, 38(4), 541–555.

    Article  CAS  Google Scholar 

  • Arantes, V., Jellison, J., & Goodell, B. (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Applied Microbiology and Biotechnology, 94(2), 323–338.

    Article  CAS  Google Scholar 

  • Bai, Z., Ma, Q., Dai, Y., Yuan, H., Ye, J., & Yu, W. (2017). Spatial heterogeneity of SOM concentrations associated with white-rot versus brown-rot wood decay. Scientific reports, 7(1), 13758.

    Article  CAS  Google Scholar 

  • Baldrian, P., & Valášková, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 32(3), 501–521.

    Google Scholar 

  • Bao, W., Fukushima, Y., Jensen, K. A., Jr., Moen, M. A., & Hammel, K. E. (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Letters, 354(3), 297–300.

    Article  CAS  Google Scholar 

  • Bari, E., Nazarnezhad, N., Kazemi, S. M., Ghanbary, M. A. T., Mohebby, B., Schmidt, O., & Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231–237.

    Article  CAS  Google Scholar 

  • Bari, E., Taghiyari, H. R., Naji, H. R., Schmidt, O., Ohno, K. M., Clausen, C. A., & Bakar, E. S. (2016). Assessing the destructive behaviors of two white-rot fungi on beech wood. International Biodeterioration & Biodegradation, 114, 129–140.

    Article  CAS  Google Scholar 

  • Bier, J. E., & Nobles, M. K. (1946). Brown pocket rot of Sitka spruce. Canadian Journal of Research, 24(4), 115–120.

    Article  Google Scholar 

  • Björdal, C. G. (2012). Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage, 13(3), S118–S122.

    Google Scholar 

  • Björdal, C. G., & Nilsson, T. (2002). Waterlogged archaeological wood—A substrate for white rot fungi during drainage of wetlands. International Biodeterioration & Biodegradation, 50(1), 17–23.

    Google Scholar 

  • Björdal, C. G., Nilsson, T., & Daniel, G. (1999). Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. International Biodeterioration & Biodegradation, 43(1–2), 63–73.

    Google Scholar 

  • Blanchette, R. A. (1980). Wood decay: A submicroscopic view. Journal of Forestry, 78(12), 734–737.

    Google Scholar 

  • Blanchette, R. A. (1983). An unusual decay pattern in brown-rotted wood. Mycologia, 75(3), 552–556.

    Article  Google Scholar 

  • Blanchette, R. A. (1984a). Screening wood decayed by white rot fungi for preferential lignin degradation. Applied and Environmental Microbiology, 48(3), 647–653.

    Article  CAS  Google Scholar 

  • Blanchette, R. A. (1984b). Manganese accumulation in wood decayed by white rot fungi. Phytopathology, 74(6), 725–730.

    Article  CAS  Google Scholar 

  • Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 73(S1), 999–1010.

    Article  Google Scholar 

  • Blanchette, R. A. (1998). A guide to wood deterioration caused by microorganisms and insects. In The structural conservation of panel paintings (pp. 55–68). Proceedings of a Symposium at the J. Paul Getty Museum, April 24–28, 1995. Getty Publications.

    Google Scholar 

  • Blanchette, R. A. (2000). A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioration & Biodegradation, 46(3), 189–204.

    Article  Google Scholar 

  • Blanchette, R. A. (2003). Deterioration in historic and archaeological woods from terrestrial sites. Art, biology, and conservation: Biodeterioration of works of art (pp. 328–347). New York: The Metropolitan Museum of Art.

    Google Scholar 

  • Blanchette, R. A. (2019). Wood decay: The action behind the polypores. Fungi, 11(4), 10–19.

    Google Scholar 

  • Blanchette, R. A., Otjen, L., Effland, M. J., & Eslyn, W. E. (1985). Changes in structural and chemical components of wood delignified by fungi. Wood Science and Technology, 19(1), 35–46.

    Article  CAS  Google Scholar 

  • Blanchette, R. A., Nilsson, T., Daniel, G., & Abad, A. R. (1990). Biological degradation of wood. Biological degradation of wood, In R. M. Rowell & R. J. Barbour (Eds.), Archaeological wood properties, chemistry, and preservation, Advances in Chemistry (Vol. 225, pp. 141–174). Washington, DC: American Chemical Society.

    Google Scholar 

  • Blanchette, R. A., Cease, K. R., Abad, A., Koestler, R. J., Simpson, E., & Sams, G. K. (1991). An evaluation of different forms of deterioration found in archaeological wood. International Biodeterioration, 28(1–4), 3–22.

    Article  Google Scholar 

  • Blanchette, R. A., Haight, J. E., Koestler, R. J., Hatchfield, P. B., & Arnold, D. (1994). Assessment of deterioration in archaeological wood from ancient Egypt. Journal of the American Institute for Conservation, 33(1), 55–70.

    Article  Google Scholar 

  • Bravery, A. F. (1975). Micromorphology of decay in preservative treated wood. In W. Liese (Ed.) Biological transformation of wood by microorganisms (pp. 129–142). Berlin: Springer.

    Google Scholar 

  • Broda, P. (1988). Modes of microbial attack on lignin. In D. R. Houghton, R. N. Smith, H. O. W. Eggins (Eds.), Biodeterioration 7 (pp. 347–350). Dordrecht: Springer.

    Google Scholar 

  • Campbell, W. G. (1931). The chemistry of the white rots of wood. II The effect on wood substance of Armillaria mellea (Vahl.) Fr., Polyporus hispidus (Bull.) Fr., and Stereum hirsutum Fr. Biochemical Journal, 25(6), 2021–2027.

    Article  Google Scholar 

  • Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  • Carll, C. G., & Highley, T. L. (1999). Decay of wood and wood-based products above ground in buildings. Journal of Testing and Evaluation, 27(2), 150–158.

    Article  Google Scholar 

  • Clausen, C. A. (2010a). Chapter 14: Biodeterioration of wood. In Wood handbook: Wood as an engineering material (p. 16). General technical report FPL; GTR-190, Forest Products Laboratory. Madison: USDA.

    Google Scholar 

  • Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D., Distel, D. L., Dupree, P., et al. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119.

    Article  CAS  Google Scholar 

  • Daniel, G. (2014). Fungal and bacterial biodegradation: White rots, brown rots, soft rots, and bacteria. In Deterioration and protection of sustainable biomaterials. ACS symposium series (pp. 23–54). Washington, DC: American Chemical Society.

    Google Scholar 

  • Daniel, G. (2016). Chapter 8: Fungal degradation of wood cell walls. In Y. S. Kim, R. Funada, & A. P. Singh (Eds.), Secondary xylem biology: origins, functions, and applications (pp. 131–167). Boston: Academic Press.

    Chapter  Google Scholar 

  • Daniel, G., Volc, J., & Niku-Paavola, M. L. (2004). Cryo-FE-SEM & TEM immuno-techniques reveal new details for understanding white-rot decay of lignocellulose. Comptes Rendus Biologies, 327(9–10), 861–871.

    Article  CAS  Google Scholar 

  • Daniel, G., Volc, J., Filonova, L., Plíhal, O., Kubátová, E., & Halada, P. (2007). Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Applied and Environmental Microbiology, 73(19), 6241–6253.

    Google Scholar 

  • Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060.

    Article  CAS  Google Scholar 

  • Eastwood, D. C. (2014). Evolution of fungal wood decay. In T. P. Schultz, B. Goodell, & D. D. Nicholas (Eds.), Deterioration and protection of sustainable biomaterials. Washington, DC: American Chemical Society.

    Google Scholar 

  • Eastwood, D. C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., et al. (2011). The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science, 333(6043), 762–765.

    Google Scholar 

  • Eaton, R. A., & Hale, M. D. (1993). Wood: Decay, pests and protection. London: Chapman and Hall.

    Google Scholar 

  • Enoki, M., Watanabe, T., Nakagame, S., Koller, K., Messner, K., Honda, Y., & Kuwahara, M. (1999). Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiology Letters, 180(2), 205–211.

    Article  CAS  Google Scholar 

  • Eriksson K.-E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin: Springer, 407 pp.

    Google Scholar 

  • Fackler, K., Stevanic, J. S., Ters, T., Hinterstoisser, B., Schwanninger, M., & Salmén, L. (2011). FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung, 65(3), 411–420.

    Google Scholar 

  • Falkiewicz-Dulik, M., Janda, K., & Wypych, G. (2010). Handbook of material biodegradation, biodeterioration, and biostablization. Amsterdam: Elsevier.

    Google Scholar 

  • Fernandez-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., et al. (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences, 109(14), 5458–5463.

    Google Scholar 

  • Filley, T. R., Cody, G. D., Goodell, B., Jellison, J., Noser, C., & Ostrofsky, A. (2002). Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Organic Geochemistry, 33(2), 111–124.

    Article  CAS  Google Scholar 

  • Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., et al. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089), 1715–1719.

    Article  CAS  Google Scholar 

  • Floudas, D., Held, B. W., Riley, R., Nagy, L. G., Koehler, G., Ransdell, A. S., et al. (2015). Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 76, 78–92.

    Article  CAS  Google Scholar 

  • Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R., & Herrmann, H. J. (2011). Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biology, 115(9), 919–932.

    Google Scholar 

  • Gabriel, J., & Švec, K. (2017). Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biology Reviews, 31(4), 212–217.

    Google Scholar 

  • Gadd, G. M. (1999). Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. In K. P. Robert (Eds.), Advances in microbial physiology (Vol. 41, pp. 47–92). London: Academic Press.

    Google Scholar 

  • Gadd, G. M. (2016). Fungi and industrial pollutants. In I. S. Druzhinina & C. P. Kubicek (Eds.), Environmental and microbial relationships. The mycota. IV (3rd ed., pp. 99–125) Berlin: Springer.

    Google Scholar 

  • Gamauf, C., Metz, B., & Seiboth, B. (2007). Degradation of plant cell wall polymers by fungi. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships. The mycota. IV (2nd ed., pp. 99–125). Berlin: Springer.

    Google Scholar 

  • Genestar, C., & Palou, J. (2006). SEM–FTIR spectroscopic evaluation of deterioration in an historic coffered ceiling. Analytical and Bioanalytical Chemistry, 384(4), 987.

    Google Scholar 

  • Gilbertson, R. L. (1980). Wood-rotting fungi of North America. Mycologia, 72(1), 1–49.

    Article  Google Scholar 

  • Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., et al. (1997). Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. Journal of Biotechnology, 53(2–3), 133–162.

    Article  CAS  Google Scholar 

  • Goodell, B., Zhu, Y., Kim, S., Kafle, K., Eastwood, D., Daniel, G., et al. (2017). Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnology for Biofuels, 10(1), 179.

    Article  CAS  Google Scholar 

  • Greaves, H. (1966). New concepts of the decay of timber by micro-organisms with reference to the long-term of wood from archaeological sites. Ph.D thesis, University of London, Botany and Plant Technology, Imperial College.

    Google Scholar 

  • Green, F., Larsen, M. J., Winandy, J. E., & Highley, T. L. (1991). Role of oxalic acid in incipient brown-rot decay. Material und Organismen, 26(3), 191–213.

    CAS  Google Scholar 

  • Hakala, T. K., Lundell, T., Galkin, S., Maijala, P., Kalkkinen, N., & Hatakka, A. (2005). Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme and Microbial Technology, 36(4), 461–468.

    Article  CAS  Google Scholar 

  • Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5(2), 215–225.

    Article  CAS  Google Scholar 

  • Hartig, R. (1874). Wichtige Krankheiten der Waldbäume: Beiträge zur Mycologie und Phytopathologie für Botaniker und Forstmänner. Berlin: Springer.

    Book  Google Scholar 

  • Hartig, R. (1878). Die Zersetzungserscheinungen des Holzes der Nadelholzbäume und der Eiche in forstlicher, botanischer und chemischer Richtung. Berlin: J. Springer.

    Google Scholar 

  • Hastrup, A. C. S., Green, F., III, Lebow, P. K., & Jensen, B. (2012). Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi. International Biodeterioration & Biodegradation, 75, 109–114.

    Article  CAS  Google Scholar 

  • Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology, 64(5), 1601–1606.

    Article  CAS  Google Scholar 

  • Henningsson, B. O. (1988). The importance of microfungi and bacteria in the deterioration of timber. In D. R. Houghton, R. N. Smith, H. O. W. Eggins (Eds.), Biodeterioration 7 (pp. 703–708). Dordrecht: Springer.

    Google Scholar 

  • Highley, T. L., & Dashek, W. V. (1998). Biotechnology in the study of brown-and white-rot decay. In A. Bruce & J. W. Palfreyman (Eds.), Forest products biotechnology (pp. 15–36). London: Taylor and Francis.

    Google Scholar 

  • Hori, C., Gaskell, J., Igarashi, K., Kersten, P., Mozuch, M., Samejima, M., & Cullen, D. (2014). Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocellulose. Applied and Environmental Microbiology, 80(7), 2062–2070.

    Article  CAS  Google Scholar 

  • Irbe, I., Karadelev, M., Andersone, I., & Andersons, B. (2012). Biodeterioration of external wooden structures of the Latvian cultural heritage. Journal of Cultural Heritage, 13(3), S79–S84.

    Article  Google Scholar 

  • Kaarik, A. A. (1974). Decomposition of wood. In C. H Dickinson & G. J. F. Pugh (Eds.), Biology of plant litter decomposition (Vol. I, pp. 129–174). London: Academic Press.

    Google Scholar 

  • Kang, Y. M., Prewitt, M. L., & Diehl, S. V. (2009). Proteomics for biodeterioration of wood (Pinus taeda L.): Challenging analysis by 2-D PAGE and MALDI-TOF/TOF/MS. International Biodeterioration & Biodegradation, 63(8), 1036–1044.

    Article  CAS  Google Scholar 

  • Karim, M., Daryaei, M. G., Torkaman, J., Oladi, R., Ghanbary, M. A. T., & Bari, E. (2016). In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International biodeterioration & biodegradation, 108, 127–132.

    Article  CAS  Google Scholar 

  • Kim, Y. S., & Singh, A. P. (2000). Micromorphological characteristics of wood biodegradation in wet environments: A review. Iawa Journal, 21(2), 135–155.

    Article  Google Scholar 

  • Kirk, T. K., & Highley, T. L. (1973). Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi. Phytopathology, 63(11), 1338–1342.

    Article  CAS  Google Scholar 

  • Kirk, T. K., & Cullen, D. (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi. In R. A. Young & M. Akhtar (Eds.), Environmentally friendly technologies for the pulp and paper industry (pp. 273–307). New York: Wiley.

    Google Scholar 

  • Kong, W., Chen, H., Lyu, S., Ma, F., Yu, H., & Zhang, X. (2016). Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds. Process Biochemistry, 51(11), 1776–1783.

    Article  CAS  Google Scholar 

  • Krah, F. S., Bässler, C., Heibl, C., Soghigian, J., Schaefer, H., & Hibbett, D. S. (2018). Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evolutionary Biology, 18(1), 119.

    Google Scholar 

  • Kuo, M. L., Stokke, D. D., & McNabb, H. S., Jr. (1988). Microscopy of progressive decay of cottonwood by the brown-rot fungus Gloeophyllum trabeum. Wood and Fiber Science, 20(4), 405.

    Google Scholar 

  • Kuuskeri, J., Häkkinen, M., Laine, P., Smolander, O. P., Tamene, F., Miettinen, S., et al. (2016). Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: Growth on spruce wood and decay effect on lignocellulose. Biotechnology for Biofuels, 9(1), 192.

    Google Scholar 

  • Lehringer, C., Hillebrand, K., Richter, K., Arnold, M., Schwarze, F. W., & Militz, H. (2010). Anatomy of bioincised Norway spruce wood. International Biodeterioration & Biodegradation, 64(5), 346–355.

    Google Scholar 

  • Lehringer, C., Koch, G., Adusumalli, R. B., Mook, W. M., Richter, K., & Militz, H. (2011). Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: Aspects of delignification and surface hardness. Holzforschung, 65(5), 711–719.

    CAS  Google Scholar 

  • Liese, W. (1970). Ultrastructural aspects of woody tissue disintegration. Annual Review of Phytopathology, 8(1), 231–258.

    Article  Google Scholar 

  • Lopez-Real, J. M. (1975). Formation of pseudosclerotia (‘zone lines’) in wood decayed by Armillaria mellea and Stereum hirsutum: I. Morphological aspects. Transactions of the British Mycological Society, 64(3), 465–IN7.

    Article  Google Scholar 

  • Lundell, T. K., Mäkelä, M. R., de Vries, R. P., & Hildén, K. S. (2014). Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. In M. M. Francis (Eds.), Advances in botanical research (Vol. 70, pp. 329–370). London: Academic Press.

    Google Scholar 

  • Mabicka, A., Dumarcay, S., Rouhier, N., Linder, M., Jacquot, J. P., Gérardin, P., & Gelhaye, E. (2005). Synergistic wood preservatives involving EDTA, irganox 1076 and 2-hydroxypyridine-N-oxide. International Biodeterioration & Biodegradation, 55(3), 203–211.

    Google Scholar 

  • Mali, T., Kuuskeri, J., Shah, F., & Lundell, T. K. (2017). Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. PLoS One, 12(9), e0185171.

    Article  CAS  Google Scholar 

  • Mallerman, J., Papinutti, L., & Levin, L. (2015). Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes. Journal of Microbiology and Biotechnology, 25(1), 57–65.

    Google Scholar 

  • Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70(4), 485–498.

    Article  CAS  Google Scholar 

  • Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D. S., Huang, K., Chapman, J., et al. (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology, 22(6), 695.

    Article  CAS  Google Scholar 

  • Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204.

    Google Scholar 

  • Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C. P., et al. (2009). Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences, 106(6), 1954–1959.

    Article  CAS  Google Scholar 

  • Maurice, S., Coroller, L., Debaets, S., Vasseur, V., Le Floch, G., & Barbier, G. (2011). Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans. Journal of Applied Microbiology, 111(6), 1436–1446.

    Article  CAS  Google Scholar 

  • Mester, T., Varela, E., & Tien, M. (2004). Wood degradation by brown-rot and white-rot fungi. In U. Kück (Ed.), Genetics and biotechnology (pp. 355–368). Berlin: Springer.

    Google Scholar 

  • Meyer, L., & Brischke, C. (2015). Fungal decay at different moisture levels of selected European-grown wood species. International Biodeterioration & Biodegradation, 103, 23–29.

    Article  Google Scholar 

  • Mycobank Database. (2019). MYCOBANK database fungal databases, nomenclature & species banks. http://www.mycobank.org/

  • Nagy, L. G., Riley, R., Tritt, A., Adam, C., Daum, C., Floudas, D., et al. (2016). Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Molecular Biology and Evolution, 33(4), 959–970.

    Article  CAS  Google Scholar 

  • Nagy, L. G., Riley, R., Bergmann, P. J., Krizsán, K., Martin, F. M., Grigoriev, I. V., et al. (2017). Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution. Molecular Biology and Evolution, 34(1), 35–44.

    Article  CAS  Google Scholar 

  • Nilsson, T. (1984). Occurrence and importance of various types of fungal and bacterial decay in CCA-treated horticultural pine posts in New Zealand. The International Research Group on Wood Preservation, Document No. IRG/WP/1234.

    Google Scholar 

  • Nilsson, T. (2020). Personal communication.

    Google Scholar 

  • Nilsson, T., & Ginns, J. (1979). Cellulolytic activity and the taxonomic position of selected brown-rot fungi. Mycologia, 71(1), 170–177.

    Article  Google Scholar 

  • Nilsson, T., & Singh, A. P. (1984). Cavitation bacteria. The International Research Group on Wood Preservation, Document No. IRG/WP/1235.

    Google Scholar 

  • Nilsson, T., & Daniel, G. (1987). Influence of variable lignin content on brown rot decay of wood. The International Research Group on Wood Protection, Document No. IRG/WP/1320.

    Google Scholar 

  • O’Hara, I. M., Zhang, Z., Doherty, W. O., & Fellows, C. M. (2012). Lignocellulosics as a renewable feedstock for chemical industry: Chemical hydrolysis and pretreatment processes. In R. Sanghi & V. Singh (Eds.) Green chemistry for environmental remediation (pp. 506–560). Salem, MA: Wiley.

    Google Scholar 

  • Ortiz, R., Párraga, M., Navarrete, J., Carrasco, I., de la Vega, E., Ortiz, M., et al. (2014). Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microbial Ecology, 67(3), 568–575.

    Google Scholar 

  • Pandey, K. K., & Pitman, A. J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 52(3), 151–160.

    Google Scholar 

  • Pilt, K., Oja, J., & Pau, K. (2009). The wood-destroying fungi in buildings in Estonia. Structural Studies, Repairs and Maintenance of Heritage Architecture XI, 109, 243–251.

    Google Scholar 

  • Pollegioni, L., Tonin, F., & Rosini, E. (2015). Lignin-degrading enzymes. The FEBS Journal, 282(7), 1190–1213.

    Article  CAS  Google Scholar 

  • Porse, S. (2005) Photo: White rot in a Birch tree. Accessed at https://en.wikipedia.org/wiki/File:Hvidmuld.JPG

  • Pournou, A., & Bogomolova, E. (2009). Fungal colonization on excavated prehistoric wood: Implications for in-situ display. International Biodeterioration & Biodegradation, 63(4), 371–378.

    Article  Google Scholar 

  • Presley, G. N., & Schilling, J. S. (2017). Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi. Journal of Applied Microbiology, 83(7), e02987–e02916.

    CAS  Google Scholar 

  • Presley, G. N., Panisko, E., Purvine, S. O., & Schilling, J. S. (2018). Coupling secretomics with enzyme activities to compare the temporal processes of wood metabolism among white and brown rot fungi. Journal of Applied Microbiology, 84(16), e00159–e00118.

    CAS  Google Scholar 

  • Ramoni, J., & Seiboth, B. (2016). 6 Degradation of plant cell wall polymers by fungi. In I. S. Druzhinina & C. P. Kubicek (Eds.), Environmental and microbial relationships (pp. 127–148). Berlin: Springer.

    Google Scholar 

  • Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., et al. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences, 111(27), 9923–9928.

    Article  CAS  Google Scholar 

  • Scheffer, T. C. (1986). O2 requirements for growth and survival of wood-decaying and sapwood-staining fungi. Canadian Journal of Botany, 64(9), 1957–1963.

    Article  Google Scholar 

  • Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. Berlin: Springer.

    Google Scholar 

  • Schmidt, O. (2007). Indoor wood-decay basidiomycetes: Damage, causal fungi, physiology, identification and characterization, prevention and control. Mycological Progress, 6(4), 261.

    Article  Google Scholar 

  • Schmidt, O., & Moreth, U. (1996). Biological characterization of Poria indoor brown-rot fungi. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 50(2), 105–110.

    CAS  Google Scholar 

  • Schwarze, F. W. (2007). Wood decay under the microscope. Fungal Biology Reviews, 21(4), 133–170.

    Google Scholar 

  • Schwarze, F. W. M. R., Lonsdale, D., & Fink, S. (1997). An overview of wood degradation patterns and their implications for tree hazard assessment. Arboricultural Journal, 21(1), 1–32.

    Article  Google Scholar 

  • Schwarze, F. W., Engels, J., & Mattheck, C. (2004). Fungal strategies of wood decay in trees (1st ed., 2nd printing). Berlin: Springer.

    Google Scholar 

  • Shimada, M., Akamtsu, Y., Tokimatsu, T., Mii, K., & Hattori, T. (1997). Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology, 53(2-3), 103–113.

    Article  CAS  Google Scholar 

  • Shirkavand, E., Baroutian, S., Gapes, D. J., & Young, B. R. (2017). Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Conversion and Management, 142, 13–19.

    Article  CAS  Google Scholar 

  • Singh, A. P. (2012). A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. Journal of Cultural Heritage, 13(3), S16–S20.

    Article  Google Scholar 

  • Singh, A. P., Kim, Y. S., & Singh, T. (2016). Chapter 9: Bacterial degradation of wood. In Y. S. Kim, R. Funada, & A. P. Singh (Eds.), Secondary xylem biology: Origins, functions, and applications (pp. 131–167). London: Academic Press.

    Google Scholar 

  • Stienen, T., Schmidt, O., & Huckfeldt, T. (2014). Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung, 68(1), 9–15.

    Article  CAS  Google Scholar 

  • Stubblefield, S. P., & Taylor, T. N. (1986). Wood decay in silicified gymnosperms from Antarctica. Botanical Gazette, 147(1), 116–125.

    Article  Google Scholar 

  • Takano, M., Hayashi, N., Nakamura, M., & Yamaguchi, M. (2009). Extracellular peroxidase reaction at hyphal tips of white-rot fungus Phanerochaete crassa WD1694 and in fungal slime. Journal of Wood Science, 55(4), 302–307.

    Article  CAS  Google Scholar 

  • Ten Have, R., & Teunissen, P. J. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3414.

    Article  CAS  Google Scholar 

  • Tudor, D., Robinson, S. C., & Cooper, P. A. (2012). The influence of moisture content variation on fungal pigment formation in spalted wood. AMB Express, 2(1), 69.

    Article  Google Scholar 

  • Unger, A., Schniewind, A., & Unger, W. (2001). Conservation of wood artifacts: A handbook. Berlin: Springer.

    Google Scholar 

  • USDA. (2011). Clemson University—USDA Cooperative Extension Slide Series. Bugwood.org. https://www.forestryimages.org/browse/detail.cfm?imgnum=1436065

  • van Erven, G., Nayan, N., Sonnenberg, A. S., Hendriks, W. H., Cone, J. W., & Kabel, M. A. (2018). Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative 13 C-IS py-GC–MS and whole cell wall HSQC NMR. Biotechnology for Biofuels, 11(1), 262.

    Article  CAS  Google Scholar 

  • Watkinson, S. C., & Eastwood, D. C. (2012). Serpula lacrymans, wood and buildings. In A. I. Laskin, S. Sariaslani, & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 78, pp. 121–149). Burlington: Academic Press.

    Google Scholar 

  • Welch, K. D., Davis, T. Z., & Aust, S. D. (2002). Iron autoxidation and free radical generation: Effects of buffers, ligands, and chelators. Archives of Biochemistry and Biophysics, 397(2), 360–369.

    Article  CAS  Google Scholar 

  • Wilcox, W. W. (1973). Degradation in relation to wood structure. In D. D. Nicholas (Ed.), Wood deterioration and its prevention by preservative treatments (1st ed., pp. 107–148). New York: Syracuse University Press.

    Google Scholar 

  • Wilcox, W. W. (1993a). Comparative morphology of early stages of brown-rot wood decay. Iawa Journal, 14(2), 127–138.

    Article  Google Scholar 

  • Wilcox, W. W. (1993b). Comparison of scanning electron microscopy and light microscopy for the diagnosis of early stages of brown rot wood decay. Iawa Journal, 14(3), 219–226.

    Article  Google Scholar 

  • Willkomm, M. (1867). Die mikroskopischen Feinde des Waldes: Naturwissenschaftliche Beiträge, Zur Kenntniss der Baum- und Holzkrankheiten, für Forstmänner und Botaniker. Dresden: G. Schönfeld’s Buchhandlung.

    Google Scholar 

  • Worrall, J. J., Anagnost, S. E., & Zabel, R. A. (1997). Comparison of wood decay among diverse lignicolous fungi. Mycologia, 199–219.

    Google Scholar 

  • Wu, B., Gaskell, J., Held, B. W., Toapanta, C., Vuong, T., Ahrendt, S., et al. (2018). Substrate-specific differential gene expression and RNA editing in the brown rot fungus Fomitopsis pinicola. Applied and Environmental Microbiology, 84(16), e00991–e00918.

    Article  CAS  Google Scholar 

  • Xu, G., & Goodell, B. (2001). Mechanisms of wood degradation by brown-rot fungi: Chelator-mediated cellulose degradation and binding of iron by cellulose. Journal of Biotechnology, 87(1), 43–57.

    Article  CAS  Google Scholar 

  • Yelle, D. J., Ralph, J., Lu, F., & Hammel, K. E. (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 10(7), 1844–1849.

    Article  CAS  Google Scholar 

  • Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology: Decay and its prevention. London: Academic Press.

    Google Scholar 

  • Zaremski, A., Palanti, S., Mannucci, M., Gastonguay, L., & Le Floch, G. (2011). Molecular diagnosis by PCR-DHPLC technique of wood-decay fungi in historical buildings in Italy. Pro Ligno, 7(4), 92–97.

    Google Scholar 

  • Zhang, J., Presley, G. N., Hammel, K. E., Ryu, J. S., Menke, J. R., Figueroa, M., et al. (2016). Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proceedings of the National Academy of Sciences, 113(39), 10968–10973.

    Article  CAS  Google Scholar 

  • Zhu, Y., Zhuang, L., Goodell, B., Cao, J., & Mahaney, J. (2016). Iron sequestration in brown-rot fungi by oxalate and the production of reactive oxygen species (ROS). International Biodeterioration & Biodegradation, 109, 185–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pournou, A. (2020). Wood Deterioration by Terrestrial Microorganisms. In: Biodeterioration of Wooden Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-46504-9_6

Download citation

Publish with us

Policies and ethics