Skip to main content

Tropical Azonal Vegetation

  • Chapter
  • First Online:
Global Vegetation

Abstract

Of all coastal ecosystems, mangroves are in particular need of conservation and restoration because of their widespread degradation and regional extinction. Mangroves are significant habitats for highly specialized species, and they offer numerous ecosystem services, among others coastal protection. They colonize flat coasts and estuaries, and are subject to the tides. Thus, mangrove trees must be able to cope with the change between high and low tide, high salinity, oxygen deficiency in the soil, and unstable substrates. Their life cycles and physiological characteristics are therefore discussed in detail. Freshwater wetlands include tropical floodplains, which have pronounced flooding dynamics, as seen in the example of the white and black water rivers in the Amazon lowlands, as well as swamplands such as the Pantanal in Brazil and the Okavango Delta in Botswana. Of the tropical mires, forest peatlands are of particular global importance as carbon sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adame, M. F., Neil, D., Wright, S. F., & Lovelock, C. E. (2010). Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science, 86, 21–30.

    Google Scholar 

  • Alho, C. J. R. (2008). Biodiversity of the Pantanal: Response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology, 68, 957–966.

    CAS  Google Scholar 

  • Allaway, W. G., Curran, M., Hollington, L. M., Ricketts, M. C., & Skelton, N. J. (2001). Gas space and oxygen exchange in roots of Avicennia marina (Forssk.) Vierh. var. australasica (Walp.) Moldenke ex. N.C.Duke, the grey mangrove. Wetlands Ecology and Management, 9, 211–218.

    Google Scholar 

  • Alongi, D. M. (2009). The energetics of mangrove forests (216 pp). New York: Springer.

    Google Scholar 

  • Anderson, J. A. R. (1963). The flora of peatswamp forests of Sarawak and Brunei. Gardens Bulletin Singapore, 20, 131–228.

    Google Scholar 

  • Blaschek, W., Ebel, S., Hackenthal, E., Holzgrabe, U., Reichling, J., & Schulz, V. (2006). HagerROM 2006. Hagers Handbuch der Drogen und Arzneistoffe. CD-ROM. Stuttgart: Deutscher Apotheker Verlag.

    Google Scholar 

  • Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelberg, J. J., Rivera-Monroy, V. H., Smith, T. J., III, & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22, GB2013.

    Google Scholar 

  • Brünig, E. F. (1990). Oligotrophic forested wetlands in Borneo. In A. E. Lugo, M. M. Brinson, & S. Brown (Eds.), Forested wetlands (Ecosystems of the World) (Vol. 15, pp. 299–334).

    Google Scholar 

  • Chapman, V. J. (1976). Mangrove vegetation (447 pp). Vaduz: J. Cramer.

    Google Scholar 

  • Clarke, P. J., Kerrigan, R. A., & Westphal, C. J. (2001). Dispersal potential and early growth in 14 tropical mangroves: Do early life history traits correlate with patterns of adult distribution? Journal of Ecology, 89, 648–659.

    Google Scholar 

  • De Simone, O., Müller, E., Junk, W. J., & Schmidt, W. (2002). Adaptions of Central Amazon tree species to prolonged flooding: Root morphology and leaf longevity. Plant Biology, 4, 515–522.

    Google Scholar 

  • Elmqist, T., & Cox, P. A. (1996). The evolution of vivipary in flowering plants. Oikos, 77, 3–9.

    Google Scholar 

  • Evrard, C. (1968). Recherches écologiques sur le peuplement forestier des sols hydromorphes de la Cuvette central congolaise. Publ. Inst. Agron. Congo Belge (INEAC), Ser. Sci. 110.

    Google Scholar 

  • Fraser, L. H., & Keddy, P. A. (Eds.). (2005). The world’s largest wetlands. Ecology and conservation (488 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Furch, K., & Junk, W. J. (1997). Physicochemical conditions in the floodplains. In W. J. Junk (Ed.), The Central Amazon floodplain. Ecology of a pulsing system (Ecological Studies 126) (pp. 69–108). Berlin: Springer.

    Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.

    Google Scholar 

  • Gopal, B. (1987). Water hyacinth (471 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Graham, A. (2011). The age and diversity of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98, 336–351.

    PubMed  Google Scholar 

  • Heywood, V. H., Brummit, R. K., Culham, A., & Seberg, O. (2007). Flowering Plants of the World (p. 424). Ontario, Canada: Firefly Books.

    Google Scholar 

  • Hofstetter, R. H. (1983). Wetlands in the United States. In A. J. P. Gore (Ed.), Mires: Swamp, bog, Fen and moor (Ecosystems of the World 4B) (pp. 201–244). Amsterdam: Elsevier.

    Google Scholar 

  • Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatland in Southeast Asia. Biogeosciences, 7, 1505–1514.

    CAS  Google Scholar 

  • Hueck, K. (1966). Die Wälder Südamerikas (422 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Imbert, D., Bonhême, I., Saur, E., & Bouchon, C. (2000). Floristics and structure of the Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. Journal of Tropical Ecology, 16, 55–68.

    Google Scholar 

  • IUCN. (2010). IUCN Red List of Threatened Species.Version, 2010, 4. http://www.iucnredlist.org/.

  • Jones, M. B., & Humphries, S. W. (2002). Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland. Hydrobiologia, 488, 107–113.

    CAS  Google Scholar 

  • Jones, M. B., & Muthuri, F. M. (1997). Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. Journal of Tropical Ecology, 13, 347–356.

    Google Scholar 

  • Junk, W. J. (Ed.). (1997a). The Central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126, 525 pp.

    Google Scholar 

  • Junk, W. J. (1997b). General aspects of floodplain ecology with special reference to Amazonian floodplains. In W. J. Junk (Ed.), The Central Amazon floodplain. Ecology of a pulsing system (Ecological Studies 126) (pp. 3–20). Berlin: Springer.

    Google Scholar 

  • Junk, W. J., & Nunes da Cunha, C. (2005). Pantanal: A large South American wetland at a crossroads. Ecological Engeneering, 24, 391–401.

    Google Scholar 

  • Junk, W. J., & Piedade, M. T. F. (2005). The Amazon River basin. In L. H. Fraser & P. A. Keddy (Eds.), The world’s largest wetlands. Ecology and conservation (pp. 63–117). Cambridge: Cambridge University Press.

    Google Scholar 

  • Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J., & Parolin, P. (2010). Amazonian floodplain forests. Ecophysiology, biodiversity and sustainable management (Ecological Studies 210) (615 pp). Dordrecht: Springer.

    Google Scholar 

  • Karsten, U. (1995). Mangrovenalgen. Biologie in unserer Zeit, 25, 51–58.

    Google Scholar 

  • Keddy, P. (2000). Wetland ecology (614 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Keel, S. H. K., & Prance, G. T. (1979). Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica, 9, 645–655.

    Google Scholar 

  • Knapp, R. (1973). Die Vegetation von Afrika (626 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Koechlin, J., Guillaumet, J.-L., & Morat, P. (1974). Flore et végétation de Madagascar (687 pp). Vaduz: J. Cramer.

    Google Scholar 

  • Kubitzki, K., & Ziburski, A. (1994). Seed dispersal in flood plain forests of Amazonia. Biotropica, 26, 30–43.

    Google Scholar 

  • Markley, J. L., McMillan, C., & Thompson, G. A. (1982). Latitudinal differentiation in response to chillingtemperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany, 60, 2704–2715.

    CAS  Google Scholar 

  • Lacerda, L. D. (Ed.). (2001). Mangrove Ecosystems. Function and Management (Vol. 292). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Lacerda, L. D., Araújo, D. S. D., & Maciel, N. C. (1993). Dry coastal ecosystems of the tropical Brazilian coast. In E. Van Der Maarel (Ed.), Dry coastal ecosystems (Ecosystem of the World 2B) (pp. 477–493). Amsterdam: Elsevier.

    Google Scholar 

  • Lähteenoja, O., Ruokolainen, K., Schulam, L., & Alvarez, J. (2009). Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena, 79, 140–145.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed., 513 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Lee, D. Y. (2008). Mangrove macrobenthos: Assemblages, services, and linkages. Journal of Sea Research, 59, 16–29.

    Google Scholar 

  • Lieth, H., Garcia Surce, M., & Herzog, B. (Eds.). (2008). Mangroves and halophytes (Tasks of Vegetation Science 43) (pp. 1–220). Dordrecht: Springer.

    Google Scholar 

  • Lind, E. M., & Morrison, M. E. S. (1974). East African vegetation (257 pp). London: Longman Group Ltd..

    Google Scholar 

  • Lourival, R., Drechsler, M., Watts, M. E., Game, E. T., & Possingham, H. P. (2011). Planning for reserve adequacy in dynamic landscapes; maximizing future representation of vegetation communities under flood disturbance in the Pantanal wetland. Diversity and Distributions, 17, 297–310.

    Google Scholar 

  • Lüttge, U. (2008). Physiological ecology of tropical plants (2nd ed., 458 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (3rd ed., 1021 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Page, S., Hoscilo, A., Wösten, H., Jauhiainen, J., Silvius, M., Rieley, J., Ritzema, H., Tansey, K., Graham, L., Vasander, H., & Limin, S. (2009). Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems, 12, 888–905.

    CAS  Google Scholar 

  • Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17, 798–818.

    Google Scholar 

  • Paijmans, K. (1976). New Guinea vegetation (212 pp). Amsterdam/Oxford/New York: Elsevier.

    Google Scholar 

  • Parolin, P., De Simone, O., Haase, K., Waldhoff, D., Rottenberger, S., Kuhn, U., Kesselmeier, J., Kleiss, B., Schmidt, W., Piedade, M. T. F., & Junk, W. J. (2004). Central Amazonian floodplain forests: Tree adaptions in a pulsing system. The Botanical Review, 70, 357–380.

    Google Scholar 

  • Pfadenhauer, J., Schneekloth, H., Schneider, R., & Schneider, S. (1993). Mire distribution. In A. L. Heathwaite & K. Göttlich (Eds.), Mires. Process, exploitation and conservation (pp. 77–121). Chichester: Wiley.

    Google Scholar 

  • Piedade, M. T. F., Junk, W. J., & Long, S. P. (1991). The productivity of the C4 grass Echinochloa polystacha on the Amazon floodplain. Ecology, 72, 1456–1463.

    Google Scholar 

  • Popp, M. (1995). Salt resistance in herbaceous halophytes and mangroves. Progress in Botany, 56, 416–429.

    CAS  Google Scholar 

  • Pott, A., & Pott, V. J. (2004). Features and conservation of the Brazilian Pantanal wetland. Wetlands Ecology and Management, 12, 547–552.

    Google Scholar 

  • Ramberg, L., Hancock, P., Lindholm, M., Meyer, T., Ringrose, S., Sliva, J., Van As, J., & Van der Post, C. (2006). Species diversity of the Okavango Delta, Botswana. Aquatic Sciences, 68, 310–337.

    Google Scholar 

  • Richards, P. W. (1996). The tropical rain forest (2nd ed., 575 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rzóska, J. (1974). The Upper Nile swamps, a tropical wetland study. Freshwater Biology, 4, 1–30.

    Google Scholar 

  • Saenger, P. (2002). Mangrove ecology, silviculture and conservation (360 pp). Dordrecht/Boston/London: Kluwer Academic Publishers.

    Google Scholar 

  • Scarano, F. R. (2002). Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Annals of Botany, 90, 514–524.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2018). Plant ecology (2nd ed., 910 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Simpson, D., & Sanderson, H. (2002). 434. Eichhornia crassipes. Curtis’s Botanical Magazine, 19, 28–34.

    Google Scholar 

  • Sioli, H. (1975). Tropical rivers as expressions of their terrestrial environments. In F. B. Golley & E. Medina (Eds.), Tropical ecological systems. Trends in terrestrial and aquatic research (Ecological Studies 11) (pp. 275–288). Berlin: Springer.

    Google Scholar 

  • Spalding, M., Kainuma, M., & Collins, L. (2010). World atlas of mangroves (336 pp). London: Earthscan.

    Google Scholar 

  • Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M., & Ball, M. C. (2006). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576–583.

    Google Scholar 

  • Thompson, K., & Hamilton, A. C. (1983). Peatlands and swamps of the African continent. In S. J. P. Gore (Ed.), Mires: Swamp, bog, fen and moore (Ecosystems of the World 4B) (pp. 331–374). Amsterdam: Elsevier.

    Google Scholar 

  • Tomlinson, P. B. (1986). The botany of mangroves (413 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Urquhart, G. R. (1999). Long-term persistence of Raphia taedigera Mart. swamps in Nicaragua. Biotropica, 31, 565–569.

    Google Scholar 

  • Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove forests: One of the world’s threatened major tropical environments. Bioscience, 51, 807–815.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1993a). Dry coastal ecosystems. Polar regions and Europe (Ecosystems of the World 2A) (600 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1993b). Dry coastal ecosystems. Regional studies (Ecosystems of the World 2B) (616 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1997). Dry coastal ecosystems. General aspects (Ecosystems of the World 2C) (713 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Vareschi, V. (1980). Vegetationsökologie der Tropen (293 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshwater Biology, 55, 282–298.

    Google Scholar 

  • Waldhoff, D., & Furch, B. (2002). Leaf morphology and anatomy in eleven tree species from Central Amazonian floodplains (Brazil). Amazoniana, 17, 79–94.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (2004). Ökologie der Erde, Vol. 2. Spezielle Ökologie der Tropischen und Subtropischen Zonen (3rd ed., 764 pp). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Whitmore, T. C. (1975). The tropical rain forest of the Far East (282 pp). Oxford: Clarendon Press.

    Google Scholar 

  • Worbes, M. (1997). The forest ecosystems of the floodplains. In Junk, W.J. (ed.), The Central AmazonFloodplain: Ecology of a Pulsing System. Ecological Studies 126, 223–266.

    Google Scholar 

  • Worbes, M. (1986). Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Scripta Geobotanica, 17, 112 S.

    Google Scholar 

  • Yule, C. M. (2010). Loss of biodiversity an ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity and Conservation, 19, 393–409.

    Google Scholar 

  • Zedler, J. B., & Kercher, S. (2005). Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39–74.

    Google Scholar 

  • Zeilhofer, P., & Schessl, M. (1999). Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. Journal of Biogeography, 27, 159–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Tropical Azonal Vegetation. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_4

Download citation

Publish with us

Policies and ethics