Skip to main content

Advances in Systematics, Taxonomy, and Conservation of Trichoderma Species

  • Chapter
  • First Online:
Trichoderma: Agricultural Applications and Beyond

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

  • 744 Accesses

Abstract

Trichoderma is an important genus known for the past nearly 200 years. Till recently, Trichoderma and Hypocrea were treated as separate genera, with several species linked as asexual (anamorph) and sexual (teleomorph) morphs, respectively. As per the revised International Code of Nomenclature for Algae, Fungi and Plants (ICN) any fungi would no longer bear more than one name. Under this new provision of ICN, Trichoderma became valid and supersedes teleomorphic Hypocrea. Biotechnological applications of species of Trichoderma have seen tremendous changes in recent years, which has drawn serious attention toward fundamental taxonomy and systematics. The purpose of this chapter is to compile important information on current status of taxonomy, especially related to morphology, molecular and phylogeny of important species. Considering immense biotechnological importance of several species of this genus, it is pertinent to discuss importance of conservation of its species as it is largely ignored. Biological Resource Centres (BRCs)/Culture Collections play an important role in conserving the mycological resources. In order to reflect biodiversity, selected species of Trichoderma isolated from different natural sources and geographical locations, and already deposited at National Fungal Culture Collection of India (NFCCI) and a few newly isolated ones were reexamined morphologically as well as sequencing of recommended gene regions and their phylogenetic analysis were conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pè ME, Sarrocco S, Vannacci G (2015) Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc 3(3):e00647–e00615

    Article  PubMed  PubMed Central  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Berney C, Pawlowski J, Zaninetti L (2000) Elongation factor 1-alpha sequences do not support an early divergence of the Acoela. Mol Biol Evol 17(7):1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Bisby GR (1939) Trichoderma viride Pers. ex Fries, and notes on Hypocrea. Trans Br Mycol Soc 23(2):149–168

    Article  Google Scholar 

  • Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62(5):924–931

    Article  Google Scholar 

  • Bissett J (1991a) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69(11):2357–2372

    Article  Google Scholar 

  • Bissett J (1991b) A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69(11):2373–2417

    Article  Google Scholar 

  • Bissett J (1991c) A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69(11):2418–2420

    Article  Google Scholar 

  • Bissett J (1992) Trichoderma atroviride. Can J Bot 70(3):639–641

    Article  Google Scholar 

  • Brefeld O, von Tavel F (1891) Untersuchungen aus dem Gesammtgebiete der Mykologie: Ascomyceten II, 10, Heinrich Schöningh, Münster, pp 157–378

    Google Scholar 

  • Brotman Y, Kapuganti JG, Viterbo A (2010) Trichoderma. Curr Biol 20(9):R390–R391

    Article  CAS  PubMed  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22(1):525–564

    Article  Google Scholar 

  • Chang Y-C, Chang Y-C, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (ascomycota, hypocreales, hypocreaceae): species with green ascospores. Stud Mycol 48:1–116

    Google Scholar 

  • Chaverri P, Castlebury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • Chaverri P, Candoussau F, Samuels GJ (2004) Hypocrea phyllostachydis and its Trichoderma anamorph, a new bambusicolous species from France. Mycol Prog 3(1):29–36

    Article  Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3):558–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang Y, Luo XC (2018) Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzym Microb Technol 112:35–42

    Article  CAS  Google Scholar 

  • Dingley JM (1957) Life history studies in the genus Hypocrea Fr. Trans R Soc N Z 84(4):689–693

    Google Scholar 

  • Dodd SL, Lieckfeldt E, Chaverri P, Overton BE, Samuels GJ (2002) Taxonomy and phylogenetic relationships of two species of Hypocrea with Trichoderma anamorphs. Mycol Prog 1(4):409–428

    Article  Google Scholar 

  • Doi Y (1967) Revision of the Hypocreales with cultural observations. III Three species of the genus Podostroma with Trichoderma or Trichoderma-like conidial states. Trans Mycol Soc Jpn 8:54–57

    Google Scholar 

  • Doi Y (1969) Revision of the Hypocreales with cultural observations IV. The genus Hypocrea and its allies in Japan (1) general part. Bull Natl Sci Mus Tokyo 12:693–724

    Google Scholar 

  • Doi Y (1972) Revision of the Hypocreales with cultural observations IV. The genus Hypocrea and its allies in Japan (2). Enumeration of the species. Bull Natl Sci Mus Tokyo 15:649–751

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic Press, London

    Google Scholar 

  • Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 6(2):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42(10):813–828

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Prasun KM, Susanne Z, Igor VG, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49(5):358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etschmann MM, Huth I, Walisko R, Schuster J, Krull R, Holtmann D, Wiltmann C, Schrader J (2015) Improving 2- phenylethanol and 6- pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 32(1):145–157

    CAS  PubMed  Google Scholar 

  • Fanelli F, Liuzzi VC, Logrieco AF, Altomare C (2018) Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genom 19(1):662

    Article  CAS  Google Scholar 

  • Fujimori F, Okuda T (1994) Application of the random amplified polymorphic DNA using the polymerase chain reaction for efficient elimination of duplicate strains in microbial screening. J Antibiot 47(2):173–182

    Article  CAS  Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. App. Environ Microbiol 77(15):5100–5109

    Article  CAS  Google Scholar 

  • Gams W (1971) Cephalosporium-artige schimmelpilze (Hyphomycetes)

    Google Scholar 

  • Geiser DM, Frisvad JC, Taylor JW (1998) Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 90(5):831–845

    CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga ET, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66(5):1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM, Voglmayr H (2014) New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 126(1):143–156

    Article  Google Scholar 

  • Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2006) Hypocrea crystalligena sp. nov., a common European species with a white-spored Trichoderma anamorph. Mycologia 98(3):499–513

    Article  PubMed  Google Scholar 

  • Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H (2013) Disentangling the Trichoderma viridescens complex. Persoonia 31:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jingade P, Sannasi S, Jha CS, Mishra MK (2018) Molecular characterisation of Trichoderma species using SRAP markers. Arch Phytopathol Plant 51(3–4):128–138

    Article  CAS  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3(2):27–30

    Article  Google Scholar 

  • Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 24(3):298–309

    Article  CAS  PubMed  Google Scholar 

  • Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a 525 multiloci database of phylogenetic markers for Trichoderma and Hypocrea powered by 526 sequence diagnosis and similarity search tools. Mycol Res 109:658–660

    Article  PubMed  Google Scholar 

  • Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20(1):485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhls K, Lieckfeldt E, Börner T (1995) PCR-fingerprinting used for comparison of ex type strains of Trichoderma species deposited in different culture collections. Microbiol Res 150(4):363–371

    Article  CAS  PubMed  Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93(15):7755–7760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Meyer W, Kubicek CP, Börner T (1997) Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89(3):442–460

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106(7):757–767

    Article  CAS  Google Scholar 

  • Kumar G, Maharshi A, Patel J, Mukherjee A, Singh HB, Sarma BK (2017) Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra 21:206–218

    Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30(22):3276–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuchtmann A, Petrini O, Samuels GJ (1996) Isozyme subgroups in Trichoderma section Longibrachiatum. Mycologia 88(3):384–394

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10(1):170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieckfeld E, Meyer W, Börner T (1993) Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J Basic Microbiol 33(6):413–425

    Article  Google Scholar 

  • Lieckfeldt E, Yolaine C, Csaba F, Thomas B (2000) Endochitinase gene-based phylogenetic analysis of Trichoderma. Microbiol Res 155(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Druzhinina IS, Fallah P, Chaverri P, Gradinger C, Kubicek CP, Samuels GJ (2004) Hypocrea/Trichoderma species with pachybasium-like conidiophores: teleomorphs for T. minutisporum and T. polysporum and their newly discovered relatives. Mycologia 96(2):310–342

    Article  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Danchin EG (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotech 26(5):553

    Article  CAS  Google Scholar 

  • Meyer RJ (1991) Mitochondrial DNAs and plasmids as taxonomic characteristics in Trichoderma viride. Appl Environ Microbiol 57(8):2269–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer W, Morawetz R, Börner T, Kubicek CP (1992) The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate. Curr Genet 21(1):27–30

    Article  CAS  Google Scholar 

  • Montenecourt B, Eveleigh D (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv Chem Ser 181:289–301

    Article  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013a) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) (2013b) Trichoderma: biology and applications. CABI, Oxford

    Google Scholar 

  • Mukherjee PK, Mukherjee AK, Kranthi S (2013c) Reclassification of Trichoderma viride (TNAU), the most widely used commercial biofungicide in India, as Trichoderma asperelloides. Open Biotechnol J 7:7–9

    Article  CAS  Google Scholar 

  • Muthumeenakshi S, Mills PR, Brownd AE, Seaby DA (1994) Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology 140(4):769–777

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad of Sci USA 95(5):2044–2049

    Article  Google Scholar 

  • Okuda T, Fujiwara A, Fujiwara M (1982) Correlation between species of Trichoderma and production patterns of isonitrile antibiotics. Agric Biol Chem 46(7):1811–1822

    CAS  Google Scholar 

  • Overton BE, Stewart EL, Geiser DM (2006a) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Overton BE, Stewart EL, Geiser DM, Wenner NG (2006b) Systematics of Hypocrea citrina and allied species. Stud Mycol 56:1–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil HJ, Solanki MK (2016) Microbial inoculant: modern era of fertilizers and pesticides. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 319–343

    Chapter  Google Scholar 

  • Persoon CH (1794) Disposita methodica fungorum. Römer’s Neues Mag Bot 1:81–128

    Google Scholar 

  • Qin WT, Zhuang WY (2016) Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 6:27074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW (2016) Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 5(1):1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai S, Solanki MK, Solanki AC, Surapathrudu K (2019) Biocontrol potential of Trichoderma spp.: current understandings and future outlooks on molecular techniques. In: Plant health under biotic stress. Springer, Singapore, pp 129–160

    Chapter  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Rifai MA, Webster J (1966) Culture studies on Hypocrea and Trichoderma: III. H. lactea (= H. citrina) and H. pulvinata. Trans Br Mycol Soc 49(2):297–310

    Article  Google Scholar 

  • Rifai MA, Kramadibat K, Basuki T (1985) The anamorph of Sarawakus succisus. Reinwardtia 10:265–270

    Google Scholar 

  • Rossman AY, Seifert KA, Samuels GJ, Minnis AM, Schroers HJ, Lombard L, Crous PW, Põldmaa K, Cannon PF, Summerbell RC, Geiser DM, Zhuang W-Y, Hirooka Y, Herrera C, Salgado-Salazar C, Chaverri P (2013) Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4(1):41–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  • Samuels GJ, Seifert KA (1987) Taxonomic implications of variation among hypocrealean anamorphs. Kodansha, Tokyo, pp 29–56

    Google Scholar 

  • Samuels GJ, Petrini O, Manguin S (1994) Morphological and macromolecular characterization of Hypocrea schweinitzii and its Trichoderma anamorph. Mycologia 86(3):421–435

    Article  CAS  Google Scholar 

  • Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998) The Hypocrea schweinitzii complex and Trichoderma sect longibrachiatum. Stud Mycol 41:1–54

    Google Scholar 

  • Samuels GJ, Lieckfeldt E, Nirenberg HI (1999) Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. Sydowia 51(1):71–88

    Google Scholar 

  • Samuels GJ, Pardo-schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Costa JC, Bezerra JL (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104(6):760–764

    Article  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170

    Article  PubMed  Google Scholar 

  • Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloe typhina. Genetics 136(4):1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK (2017) Ex situ conservation of fungi: a review. In: Satyanarayana T, Deshmukh SK, Johari BN (eds) Developments in fungal biology and applied mycology. Springer Nature, Singapore, pp 543–562

    Chapter  Google Scholar 

  • Singh SK, Baghela A (2017) Cryopreservation of microorganisms. In: Varma A, Sharma AK (eds) Modern tools and techniques to understand microbes. Springer International Publishing AG, Cham, pp 321–333

    Chapter  Google Scholar 

  • Singh SP, Singh HB, Singh DK (2013) Trichoderma harzianum and Pseudomonas sp. mediated management of Sclerotium rolfsii rot in tomato (Lycopersicon esculentum Mill.). Life Sci 8(3):801–804

    Google Scholar 

  • Singh SK, Singh PN, Gaikwad SB, Maurya DK (2018) Conservation of Fungi: a review on conventional approaches. In: Sharma SK, Varma A (eds) Microbial resource conservation: conventional to modern approaches. Springer, Cham, pp 223–237

    Chapter  Google Scholar 

  • Smith AL (1902) The fungi of germinating farm seeds. Trans Br Mycol Soc 1:182–186

    Article  Google Scholar 

  • Solanki MK, Singh N, Singh RK, Singh P, Srivastava AK, Kumar S, Kashyap Prem L, Arora DK (2011) Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39(5):471

    Article  CAS  Google Scholar 

  • Sriram S, Savitha MJ, Rohini HS, Jalali SK (2013) The most widely used fungal antagonist for plant disease management in India, Trichoderma viride is Trichoderma asperellum as confirmed by oligonucleotide barcode and morphological characters. Curr Sci 104(10):1332–1340

    CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37(1):197–246

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Topolovec-Pintarić S (2019) Trichoderma: invisible partner for visible impact on agriculture. In: Trichoderma—the most widely used fungicide. IntechOpen, London

    Google Scholar 

  • Tulasne L (1860) De quelques sphéries fungicoles, à propos d’un mémoire de M. Antoine de Bary sur les Nyctalis. Ann Sci Nat Bot 13:5–19

    Google Scholar 

  • Tulasne LR, Tulasne C (1865) Selecta fungorum carpologia 3:27–35 (Eng transl by WB Grove)

    Google Scholar 

  • Webster J, Rifai MA (1968) Culture studies on Hypocrea and Trichoderma: IV. Hypocrea pilulifera sp. nov. Trans Br Mycol Soc 51(3–4):511–514

    Article  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocol 18(1):315–322

    Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir D, Chet I (1985) Application of enzyme electrophoresis for the identification of isolates in Trichoderma harzianum. Can J Microbiol 31(6):578–580

    Article  CAS  Google Scholar 

  • Zimand G, Valinsky L, Elad Y, Chet I, Manulis S (1994) Use of the RAPD procedure for the identification of Trichoderma strains. Mycol Res 98(5):531–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Director, MACS’ Agharkar Research Institute, Pune for providing research facility. Shiwali Rana thanks University Grant Commission, New Delhi for the award of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K., Singh, P.N., Maurya, D.K., Rana, S. (2020). Advances in Systematics, Taxonomy, and Conservation of Trichoderma Species. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_1

Download citation

Publish with us

Policies and ethics