Skip to main content

Trichoderma: Boon for Agriculture

  • Chapter
  • First Online:
Trichoderma: Agricultural Applications and Beyond

Part of the book series: Soil Biology ((SOILBIOL,volume 61))

  • 614 Accesses

Abstract

Trichoderma Pers. is one of the important soil fungi growing on diversified habitats. It is represented by more than 100 species. Various species have been identified using morpho-taxonomy and molecular methods. Trichoderma spp. have been reported to grow luxuriantly on different media. The beneficial effects of Trichoderma include its utility as a biocontrol agent of soil-borne, root-borne, foliar, and aerial fungal/bacterial pathogens, and also it has been considered as a plant growth promoter. Trichoderma is also employed as a bioremedial agent and also used in the industry. Trichoderma as a potential biocontrol agent has attracted the attention of researchers all over the world. The present paper reviews diversity, taxonomy, conservation, growth, its utility as a biocontrol agent, plant growth promoter, and other related aspects. In recent times it has also been used as a seed primer to control several diseases. In order to maintain soil health and plant health, Trichoderma seems to be a promising fungus as nature’s gift to boost agriculture besides maintaining soil and plant health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundred Trichoderma species recognized based on molecular phylogeny. In: Mukherjee PK, Singh US, Horwitz BA, Schmoll M, Mukherjee M (eds) Trichoderma: biology and applications. CABI, Nosworthy Way

    Google Scholar 

  • Backman PA, Rodriguez-Kabana R (1975) A system for growth and delivery of biological control agents to the soil. Phytopathology 65:819–821

    Article  Google Scholar 

  • Baker KF (1987) Evolving concept of biological control of plant pathogens. Annu Rev Phytopathol 26:67–85

    Article  Google Scholar 

  • Balasubramanian C, Udaysoorian P, Prabhu C, Kumar GS (2008) Enriched compost for yield and quality enhancement in sugarcane. J Ecobiol 22:173–176

    Google Scholar 

  • Bell DK, Wells HD, Markham CR (1982) In vitro antagonism of Trichoderma species against six fungal pathogens. Phytopathology 72:379–382

    Article  Google Scholar 

  • Bissett J (1991) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372

    Article  Google Scholar 

  • Bissett J (1992) A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417

    Article  Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3):558–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chet I (1987) Trichoderma—application, mode of action and potential as biocontrol agent of soil-borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Connick W, Daigle D, Quimby P (1991) An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol 5:442–444

    Article  CAS  Google Scholar 

  • Cook RJ (1993) The role of biological control in the 21st century. In: Lumsden RD, Vaughn JL (eds) Pest management. Biologically based technologies. American Chemical Society, Washington, DC, pp 1–20

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practices of biological control of plant pathogens. APS Books, St Paul, MN, 539pp

    Google Scholar 

  • Cumagun CJR (2014) Advances in formulation of Trichoderma for biocontrol, vol 31. Elsevier, Dordrecht, pp 1–5

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • Dubey SC, Bhavani R, Singh B (2011) Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani. Pest Manag Sci 67:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Dubey SC, Tripathi A, Singh B (2012) Combination of soil application and seed treatment formulations of Trichoderma species for integrated management of wet root rot caused by Rhizoctonia solani in chickpea. Indian J Agric Sci 82:357–364

    Google Scholar 

  • Fravel DR, Rhodes DJ, Larkin RP (1999) Production and commercialization of biocontrol products. In: Albajes R, Lodovica Gullino M, Van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic, Boston, pp 365–376

    Chapter  Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Harmann GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 3–34

    Google Scholar 

  • Hadar Y, Chet I, Henis Y (1979) Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum. Phytopathology 69:64–68

    Article  CAS  Google Scholar 

  • Harman GE (1991) Seed treatments for biological control of plant disease. Crop Prot 10:166–171

    Article  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium enzymes, biological control and commercial applications, vol 2. Taylor and Francis, London, p 393

    Google Scholar 

  • Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004) Trichoderma species—a opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartley C (1921) Damping-off in forest nurseries. US Depart Agric Bull 934:1–99

    Google Scholar 

  • Herrera-Estrella A, Chet I (2004) The biological control agent Trichoderma from fundamentals to applications. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp 147–156

    Google Scholar 

  • Index Fungorum (2019). http://www.indexfungorum.org/names/Names.asp

  • Jaklitsch WM (2009) European species of Hypocrea. Part I. The green-spored species. Stud Mycol 63:1–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyarajan R (2006) Prospects of indigenous mass production and formulation of Trichroderma. In: Rabindra RJ, Ramanujam B (eds) Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control, Bangalore, pp 74–80, 445

    Google Scholar 

  • Jeyarajan R, Nakkeeran S (2000) Exploitation of microorganisms and viruses as biocontrol agents for crop disease mangement. In: Upadhyay RK et al (eds) Biocontrol potential and their exploitation in sustainable agriculture. Kluwer Academic/Plenum, Boston, pp 95–116

    Chapter  Google Scholar 

  • Jeyarajan R, Ramakrishnan G, Dinakaran D, Sriela R (1994) Development of product of Trichoderma viride and Bacillus subtilis for root rot disease of pulses and oil seeds. J Biol Control 7(1):58–62

    Google Scholar 

  • Jin X, Taylor AG, Harman GE (1996) Development of Media and automated liquid fermentation methods to produce desicacation-tolerant propagules of Trichoderma harzianum. Biol Control 7:267–274

    Article  CAS  Google Scholar 

  • Kiffer E, Morelet M (2000) The deuteromycetes: mitosporic fungi classification and generic keys. Science, Enfield, NH, p 273

    Google Scholar 

  • Kirk PM, Cannon PF, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, p 960

    Google Scholar 

  • Kullnig CM, Szakacs G, Kubicek CP (2000) Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol Res 104:1117–1125

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger C, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  • Kumar A, Marimuthu T (1997) Decomposed coconut coir pith—a conducive medium for colonization of Trichoderma viride. Acta Phytopathol Entomol Hung 32(1–2):51–58

    Google Scholar 

  • Kumar S, Lal M, Singh V (2012) Exploitation of Trichoderma spp. as biocontrol agent for plant disease management. Rashtriya Krishi 7(2):71–73

    Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9(53):3838–3852

    Google Scholar 

  • Kumar G, Maharshi A, Patel J, Mukherjee A, Singh HB, Sarma BK (2017) Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra 21:206–218

    Google Scholar 

  • Lalithakumari D, Mathivanan N (2003) Strain improvement in filamentous fungi by protoplast fusion. In: Mathivanan N, Prabavathy VR, Gomathinayagam S (eds) Innovative methods and techniques for integrated pest and disease management. Centre for Advanced Studies in Botany, University of Madras, Chennai, pp 76–97

    Google Scholar 

  • Lewis JA (1991) Formulation and delivery system of biocontrol agents with emphasis on fungi Beltsville symposia. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Agric Res 14:279–287

    Google Scholar 

  • Lewis JA, Larkin RP, Rogers DL (1998) A formulation of Trichoderma and Gliocladium to reduce damping-off caused by Rhizoctonia solani and saprophytic growth of the pathogen in soilless mix. Plant Dis 82(5):501–506

    Article  CAS  PubMed  Google Scholar 

  • Lieckfeldt E, Seifert KA (2000) An evaluation of the use of ITS sequences in the taxonomy of the Hypocreales. Stud Mycol 45:35–44

    Google Scholar 

  • Lübeck M, Poulsen SK, Lübeck PS, Jensen DF, Thrane U (2000) Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiol Lett 185:129–134

    Article  PubMed  Google Scholar 

  • Mandels M (1975) Microbial sources of cellulase. Biotechnol Bioeng Symp 5:81–105

    CAS  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Article  CAS  PubMed  Google Scholar 

  • Montero-Barrientos M, Cardoza RE, Gutierrez S, Monte E, Hermosa R (2007) The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma viriens, confers thermotolerance to T.harzianum. Curr Genet 52:45–53

    Article  CAS  PubMed  Google Scholar 

  • Moran-Diez ME, Trushina N, Lamdan NL, Rosenfelder L, Mukherjee PK, Kenerley CM, Horwitz BA (2015) Host-specific transcriptomic pattern of Trichoderma viriens during interaction with maize or tomato roots. BMC Genomics 16:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee PK (2011) Genomics of biological control—whole genome sequencing of two mycoparasitic Trichoderma spp. Curr Sci 101:268

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay AN (1996) Recent innovations in plant disease control by ecofriendly biopesticides. In: 83rd Annual Meeting of Indian Science Congress, Patiala, January, pp 1–8

    Google Scholar 

  • Mukhopadhyay AN, Patel GJ, Brahbhatt A (1986) Trichoderma harzianum: a potential biocontrol agent for tobacoo damping-off. Tobacoo Res 12:26–35

    Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soil-borne plant pathogens. FAO Plant Prot Bull 40:21–30

    Google Scholar 

  • Nagamani A, Manoharachary C, Agarwal DK, Chowdhry PN (2002) Monographic contribution on Trichoderma. Elegent Printers, New Delhi, p 47

    Google Scholar 

  • Nagaraju A, Sudhisha J, Murthy SM, Ito S (2012) Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopora halstedii, an incitant of sunflower downy mildew disease. Australas Plant Pathol 1:609–620

    Article  Google Scholar 

  • Nelson EB, Hoitink HAJ (1982) Factors affecting suppression of Rhizoctonia solani in container media. Phytopathology 72:275–279

    Google Scholar 

  • Ngueko RB, Xu T (2002) Anatogonism in vitro of Trichoderma harzianum C184 against the root pathogens of banana and plantain in Cameroon. J Zhejiang Uni (Agril Life Sci) 28:407–410

    Google Scholar 

  • Overton BE, Stewart EL, Geiser DM (2006) Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Stud Mycol 56:39–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Persoon CH (1794) Dispositio methodica fungorum. Römer’s Neues Mag Bot 1:81–128

    Google Scholar 

  • Persoon CH (1801) Synopsis methodica fungorum, pp 1–706

    Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  CAS  PubMed  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Sabalpara AN (2014) Mass multiplication of biopesticides at farm level. J Mycol Plant Pathol 44(1):1–5

    Google Scholar 

  • Samuels G (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ, Petrini O, Kuhls K (1998) The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 41:1–54

    Google Scholar 

  • Sawant IS, Sawant SD (1989) Coffee fruit skin and cherry husk as substrates for mass multiplication of Trichoderma harzianum as antagonist to citrus Phytophthora. Indian Phytopathol 42:336

    Google Scholar 

  • Sawant IS, Sawant SD (1996) A simple method for achieving high cfu of Trichoderma harzianum on organic wastes for field applications. Indian Phytopathol 9:185–187

    Google Scholar 

  • Singh HB (2014) Management of Plant Pathogens with Microorganisms. Proc Indian Natl Sci Acad 80(2):443–454

    Article  Google Scholar 

  • Singh HB, Singh A, Nautiyal CS (2002) Commercialization of biocontrol agents: problem and prospects. In: Rao GP, Manoharachari C, Bhat DJ, Rajak RC, Lakhanpal TN (eds) Frontiers of fungal diversity in India. International Book Distributing Company, India, pp 847–861

    Google Scholar 

  • Sivan A, Elad Y, Chet I (1984) Biological control effects of new isolate of Trichoderma harzianum on Phythium aphanidermatum. Phytopathology 74:498–501

    Article  Google Scholar 

  • Taylor AG, Min T, Harman GE, Jin X (1991) Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum. Biol Control 1:16–22

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Thrane U, Poulsen SB, Nirenberg HI, Lieckfeldt E (2001) Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol Lett 203:249–255

    Article  CAS  PubMed  Google Scholar 

  • von Tubeuf CF (1914) Biologische Bekampfung von Pilzkrankheiten der Pflanzen. Naturwiss Z Forst Landwirtsch 12:11–19

    Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant-Microbe Interact 12:419–429

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(Suppl-1, M4):71–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manoharachary, C., Nagaraju, D. (2020). Trichoderma: Boon for Agriculture. In: Manoharachary, C., Singh, H.B., Varma, A. (eds) Trichoderma: Agricultural Applications and Beyond. Soil Biology, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-030-54758-5_4

Download citation

Publish with us

Policies and ethics