Skip to main content

Progress in the Chemistry of Cytochalasans

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 114

Abstract

Cytochalasans are a group of fungal-derived natural products characterized by a perhydro-isoindolone core fused with a macrocyclic ring, and they exhibit a high structural diversity and a broad spectrum of bioactivities. Cytochalasans have attracted significant attention from the chemical and pharmacological communities and have been reviewed previously from various perspectives in recent years. However, continued interest in the cytochalasans and the number of laboratory investigations on these compounds are both growing rapidly. This contribution provides a general overview of the isolation, structural determination, biological activities, biosynthesis, and total synthesis of cytochalasans. In total, 477 cytochalasans are covered, including “merocytochalasans” that arise by the dimerization or polymerization of one or more cytochalasan molecules with one or more other natural product units. This contribution provides a comprehensive treatment of the cytochalasans, and it is hoped that it may stimulate further work on these interesting natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869

    Article  CAS  PubMed  Google Scholar 

  2. Skellam E (2017) The biosynthesis of cytochalasans. Nat Prod Rep 34:1252

    Article  CAS  PubMed  Google Scholar 

  3. Long X, Ding Y, Wu H, Deng J (2019) Total synthesis of asperchalasine A. Synlett 31:301

    Google Scholar 

  4. Zhu H, Chen C, Tong Q, Yang J, Wei G, Xue Y, Wang J, Luo Z, Zhang Y (2017) Asperflavipine A: a cytochalasan heterotetramer uniquely defined by a highly complex tetradecacyclic ring system from Aspergillus flavipes QCS12. Angew Chem Int Ed 56:5242

    Article  CAS  Google Scholar 

  5. Gebhardt K, Schimana J, Hoeltzel A, Dettner K, Draeger S, Beil W, Rheinheimer J, Fiedler H-P (2004) Aspochalamins A–D and aspochalasin Z produced by the endosymbiotic fungus Aspergillus niveus LU 9575. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 57:707

    Google Scholar 

  6. Hoeltzel A, Schmid DG, Nicholson GJ, Krastel P, Zeeck A, Gebhardt K, Fielder H-P, Jung G (2004) Aspochalamins A–D and aspochalasin Z produced by the endosymbiotic fungus Aspergillus niveus LU 9575. II. Structure elucidation. J Antibiot 57:715

    Article  CAS  Google Scholar 

  7. Li XG, Pan WD, Lou HY, Liu RM, Xiao JH, Zhong JJ (2015) New cytochalasins from medicinal macrofungus Cordyceps taii and their inhibitory activities against human cancer cells. Bioorg Med Chem Lett 25:1823

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Hantke V, Cox RJ, Skellam E (2019) Targeted gene inactivations expose silent cytochalasans in Magnaporthe grisea NI980. Org Lett 21:4163

    Article  CAS  PubMed  Google Scholar 

  9. Ding G, Wang HL, Chen L, Chen AJ, Lan J, Chen XD, Zhang HW, Chen H, Liu XZ, Zou ZM (2012) Cytochalasans with different amino-acid origin from the plant endophytic fungus Trichoderma gamsii. J Antibiot 65:143

    Article  CAS  Google Scholar 

  10. Gao W, Sun W, Li F, Chai C, Wang J, Xue Y, Chen C, Zhu H, He Y, Hu Z, Zhang Y (2018) Armochaetoglasins A-I: cytochalasan alkaloids from fermentation broth of Chaetomium globosum TW1-1 by feeding l-tyrosine. Phytochemistry 156:106

    Article  CAS  PubMed  Google Scholar 

  11. Lin ZJ, Zhang GJ, Zhu TJ, Liu R, Wei HJ, Gu QQ (2009) Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helv Chim Acta 92:1538

    Article  CAS  Google Scholar 

  12. Zhang Y, Tian R, Liu S, Chen X, Liu X, Che Y (2008) Alachalasins A–G, new cytochalasins from the fungus Stachybotrys chartarum. Bioorg Med Chem 16:2627

    Article  CAS  PubMed  Google Scholar 

  13. Aouiche A, Meklat A, Bijani C, Zitouni A, Sabaou N, Mathieu F (2015) Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. Ann Microbiol 65:1351

    Google Scholar 

  14. Chen TS, Doss GA, Hsu A, Hsu A, Lingham RB, White RF, Monaghan RL (1993) L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease. J Nat Prod 56:755

    Google Scholar 

  15. Rothweiler W, Tamm C (1966) Isolation and structure of phomin. Cell Mol Life Sci 22:750

    Article  CAS  Google Scholar 

  16. Aldridge DC, Armstrong JJ, Speake RN, Turner WB (1967) The cytochalasins, a new class of biologically active mould metabolites. Chem Commun 1967:26

    Google Scholar 

  17. Hayakawa S, Matsushima T, Kimura T, Minato H, Katagiri K (1968) Zygosporin A, a new antibiotic from Zygosporium masonii. J Antibiot 21:523

    Article  CAS  Google Scholar 

  18. Tsukuda Y, Matsumoto M, Minato H, Koyama H (1969) Structure of zygosporin A: X-ray analysis of isozygosporin A p-bromobenzoate. J Chem Soc D 1969:41

    Article  Google Scholar 

  19. Aldridge DC, Turner WB (1969) The identity of zygosporin A and cytochalasin D. J Antibiot 22:170

    Article  CAS  Google Scholar 

  20. Minato H, Matsumoto M (1970) Studies on the metabolites of Zygosporium masonii. Part I. Structure of zygosporin A. J Chem Soc C 1970:38

    Google Scholar 

  21. Tsukuda Y, Koyama H (1972) Crystal structure of isozygosporin A p-bromobenzoate. J Chem Soc Perkin Trans 2:739

    Google Scholar 

  22. Aldridge DC, Turner WB (1969) Structures of cytochalasins C and D. J Chem Soc 1969:923

    Google Scholar 

  23. Minato H, Katayama T (1970) Studies on the metabolites of Zygosporium masonii. Part II. Structures of zygosporins D, E, F, and G. J Chem Soc C 1970:45

    Google Scholar 

  24. Beno MA, Christoph GG (1976) X-ray crystal structure of cytochalasin H, a potent new [11] cytochalasan toxin. J Chem Soc Chem Commun 1976:344

    Article  Google Scholar 

  25. Beno MA, Cox RH, Wells JM, Cole RH, Kirksey JW, Christoph GG (1977) Structure of a new [11] cytochalasin, cytochalasin H or kodo-cytochalasin-1. J Am Chem Soc 99:4123

    Article  CAS  PubMed  Google Scholar 

  26. McMillan JA, Chiang CC, Greensley MK, Paul IC, Patwardhan SA, Dev S, Beno MA, Christoph GG (1977) X-ray crystal and molecular structure of kodo-cytochalasin-1. J Chem Soc Chem Commun 1977:105

    Article  Google Scholar 

  27. Tao Y, Zeng X, Mou C, Li J, Cai X, She Z, Zhou S, Lin Y (2008) 1H and 13C NMR assignments of three nitrogen containing compounds from the mangrove endophytic fungus (ZZF08). Magn Reson Chem 46:501

    Article  CAS  PubMed  Google Scholar 

  28. Patwardhan SA, Pandey RC, Dev S, Pendse G (1974) Toxic cytochalasins of Phomopsis paspalli, a pathogen of kodo millet. Phytochemistry 13:1985

    Article  CAS  Google Scholar 

  29. Cole RJ, Wilson DM, Harper JL, Cox RH, Cochran TW, Cutler HG, Bell DK (1982) Isolation and identification of two new [11]cytochalasins from Phomopsis sojae. J Agric Food Chem 30:301

    Article  CAS  Google Scholar 

  30. Tomioka T, Izawa Y, Koyama K, Natori S (1987) Three new 10-phenyl[11]cytochalasans, cytochalasins N, O, and P from Phomopsis sp. Chem Pharm Bull 35:902

    Article  CAS  Google Scholar 

  31. Pedersen EJ, Larsen P, Boll PM (1980) Engleromycin, a new cytochalasan from Engleromyces goetzei Hennings. Tetrahedron Lett 21:5079

    Article  CAS  Google Scholar 

  32. Izawa Y, Hirose T, Shimizu T, Koyama K, Natori S (1989) Six new 10-phenyl-[11]cytochalasans, cytochalasins N–S from Phomopsis sp. Tetrahedron 45:2323

    Article  CAS  Google Scholar 

  33. Edwards RL, Maitland DJ (1989) Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill. J Chem Soc Perkin Trans I 1989:57

    Google Scholar 

  34. Burres NS, Premachandran U, Humphrey PE, Jackson M, Chen RH (1992) A new immunosuppressive cytochalasin isolated from a Pestalotia sp. J Antibiot 45:1367

    Article  CAS  Google Scholar 

  35. Ondeyka J, Hensens OD, Zink D, Ball R, Lingham RB, Bills G, Dombrowski A, Goetz M (1992) L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease. II. Isolation and structure. J Antibiot 45:679

    Article  CAS  Google Scholar 

  36. Dagne E, Gunatilaka AAL, Asmellash S, Abate D, Kingston DGI, Hofmann GA, Johnson RK (1994) Two new cytotoxic cytochalasins from Xylaria obovata. Tetrahedron 50:5615

    Article  CAS  Google Scholar 

  37. Buchanan M, Hashimoto T, Asakawa Y (1995) Five 10-phenyl-[11]-cytochalasans from a Daldinia fungal species. Phytochemistry 40:135

    Article  CAS  Google Scholar 

  38. Buchanan MS, Hashimoto T, Asakawa Y (1996) Cytochalasins from a Daldinia sp. of fungus. Phytochemistry 41:821

    Google Scholar 

  39. Buchanan MS, Hashimoto T, Takaoka S, Kan Y, Asakawa Y (1996) A 10-phenyl-[11]-cytochalasan from a species of Daldinia. Phytochemistry 42:173

    Article  CAS  Google Scholar 

  40. Espada A, Rivera-Sagredo A, Fuente JM, Hueso-Rodríguez JA, Elson SW (1997) New cytochalasins from the fungus Xylaria hypoxylon. Tetrahedron 53:6485

    Article  CAS  Google Scholar 

  41. Kakeya H, Morishita M, Onozawa C, Usami R, Horikoshi K, Kimura K, Yoshihama M, Osada H (1997) RKS-1778, a new mammalian cell-cycle inhibitor and a key intermediate of the [11]cytochalasin group. J Nat Prod 60:669

    Article  CAS  PubMed  Google Scholar 

  42. Fujii Y, Tani H, Ichinoe M, Nakajima H (2000) Zygosporin D and two new cytochalasins produced by the fungus Metarrhizium anisopliae. J Nat Prod 63:132

    Article  CAS  PubMed  Google Scholar 

  43. Stadler M, Quang DN, Tomita A, Hashimoto T, Asakawa Y (2006) Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycol Res 110:811

    Article  CAS  PubMed  Google Scholar 

  44. Kurnia D, Akiyama K, Hayashi H (2007) 10-Phenyl-[11]-cytochalasans from Indonesian mushroom Microporellus subsessilis. Phytochemistry 68:697

    Article  CAS  PubMed  Google Scholar 

  45. Xu S, Ge HM, Song YC, Shen Y, Ding H, Tan RX (2009) Cytotoxic cytochalasin metabolites of endophytic Endothia gyrosa. Chem Biodivers 6:739

    Article  CAS  PubMed  Google Scholar 

  46. Silva GH, Oliveira CM, Teles HL, Bolzani VS, Araujo AR, Pfenning LH, Young MCM, Costa-Neto CM, Haddad R, Eberlin MN (2010) Cytochalasins produced by Xylaria sp., an endophytic fungus from Piper aduncum. Quim Nova 33:2038

    Google Scholar 

  47. Chen Z, Huang H, Chen Y, Wang Z, Ma J, Wang B, Zhang W, Zhang C, Ju J (2011) New cytochalasins from the marine-derived fungus Xylaria sp. SCSIO 156. Helv Chim Acta 94:1671

    Google Scholar 

  48. Li Y, Lu C, Huang Y, Li Y, Shen Y (2012) Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23. Rec Nat Prod 6:121

    Google Scholar 

  49. Shen L, Qian L, Shen ZP, Li LY, Zhang XJ, Wei ZQ, Fu Y, Song YC, Tan RX (2014) A new cytochalasin from endophytic Phomopsis sp. IFB-E060. Chin J Nat Med 12:512

    Google Scholar 

  50. Shang Z, Raju R, Salim AA, Khalil ZG, Capon RJ (2017) Cytochalasins from an Australian marine sediment-derived Phomopsis sp. (CMB-M0042F): acid-mediated intramolecular cycloadditions enhance chemical diversity. J Org Chem 82:9704

    Google Scholar 

  51. Okoye FBC, Nworu, CS, Debbab A, Esimone CO, Proksch P (2015) Two new cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava leaves. Phytochem Lett 14:51

    Google Scholar 

  52. Hsiao Y, Chang HS, Liu TW, Hsieh SY, Yuan GF, Cheng MJ, Chen IS (2016) Secondary metabolites and bioactivity of the endophytic fungus Phomopsis theicola from Taiwanese endemic plant. Rec Nat Prod 10:189

    CAS  Google Scholar 

  53. Luo YF, Zhang M, Dai JG, Pedpradap P, Wang JP, Wu J (2016) Cytochalasins from mangove endophytic fungi Phomopsis spp. xy21 and xy 22. Phytochem Lett 17:162

    Google Scholar 

  54. Yan BC, Wang WG, Hu DB, Sun X, Kong LM, Li XN, Du X, Luo SH, Liu Y, Li Y, Sun HD, Pu JX (2016) Phomopchalasins A and B, two cytochalasans with polycyclic-fused skeletons from the endophytic fungus Phomopsis sp. shj2. Org Lett 18:1108

    Google Scholar 

  55. Wang C, Becker K, Pfuetze S, Kuhnert E, Stadler M, Cox RJ, Skellam E (2019) Investigating the function of cryptic cytochalasan cytochrome P450 monooxygenases using combinatorial biosynthesis. Org Lett 21:8756

    Article  CAS  PubMed  Google Scholar 

  56. Wang WX, Feng T, Li ZH, Li J, Ai HL, Liu JK (2019) Cytochalasins D1 and C1, unique cytochalasans from endophytic fungus Xylaria cf. curta. Tetrahedron Lett 60:150952

    Google Scholar 

  57. Wang WX, Li ZH, He J, Feng T, Li J, Liu JK (2019) Cytotoxic cytochalasans from fungus Xylaria longipes. Fitoterapia 137:104278

    Article  CAS  PubMed  Google Scholar 

  58. Lei CW, Yang ZQ, Zeng YP, Zhou Y, Huang Y, He XS, Li GY, Yuan XH (2018) Xylastriasan A, a new cytochalasan from the fungus Xylaria striata. Nat Prod Res 32:7

    Article  CAS  PubMed  Google Scholar 

  59. Xu GB, Li LM, Yang T, Zhang GL, Li GY (2012) Chaetoconvosins A and B, alkaloids with new skeleton from fungus Chaetomium convolutum. Org Lett 14:6052

    Article  CAS  PubMed  Google Scholar 

  60. Wang WX, Li ZH, Feng T, Li J, Sun H, Huang R, Yuan QX, Ai HL, Liu JK (2018) Curtachalasins A and B, two cytochalasans with a tetracyclic skeleton from the endophytic fungus Xylaria curta E10. Org Lett 20:7758

    Article  CAS  PubMed  Google Scholar 

  61. Wang HH, Li G, Qiao YN, Sun Y, Peng XP, Lou HX (2019) Chamiside A, a cytochalasan with a tricyclic core skeleton from the endophytic fungus Chaetomium nigricolor F5. Org Lett 21:3319

    Article  CAS  PubMed  Google Scholar 

  62. Wang WX, Lei X, Ai HL, Bai X, Li J, He J, Li ZH, Zheng YS, Feng T, Liu JK (2019) Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans. Org Lett 21:1108

    Google Scholar 

  63. Wang WX, Lei X, Yang YL, Li ZH, Ai HL, Li J, Feng T, Liu JK (2019) Xylarichalasin A, a halogenated hexacyclic cytochalasan from the fungus Xylaria cf. curta. Org Lett 21:6957

    Google Scholar 

  64. Fex T (1981) Structures of cytochalasin K, L, and M, isolated from Chalara microspora. Tetrahedron Lett 22:2703

    Article  CAS  Google Scholar 

  65. Binder M, Tamm C (1973) Proxiphomin and protophomin, two new cytochalasans. Helv Chim Acta 56:2387

    Article  CAS  PubMed  Google Scholar 

  66. Binder M, Tamm C (1973) Deoxaphomin, the first [13]cytochalasan, a possible biogenetic precursor of 24-oxa[14]cytochalasan. Helv Chim Acta 56:966

    Article  CAS  PubMed  Google Scholar 

  67. Capasso R, Evidente A, Ritieni A (1988) Ascochalasin, a new cytochalasin from Ascochyta heteromorpha. J Nat Prod 51:567

    Article  CAS  PubMed  Google Scholar 

  68. Kim EL, Li JL, Dang HT, Hong J, Lee CO, Kim DK, Yoon W D, Kim E, Liu Y, Jung JH (2012) Cytotoxic cytochalasins from the endozoic fungus Phoma sp. of the giant jellyfish Nemopilema nomurai. Bioorg Med Chem Lett 22:3126

    Google Scholar 

  69. Evidente A, Lanzetta R, Capasso R, Vurro M, Bottalico A (1992) Cytochalasins U and V, two new cytochalasans, from Phoma exigua var. heteromorpha. Tetrahedron 48:6317

    Google Scholar 

  70. Evidente A, Capasso R, Vurro M, Bottalico A (1996) Cytochalasin W, a new 24-oxa[14]cytochalasan from Phoma exigua var. heteromorpha. Nat Toxins 4:53

    Google Scholar 

  71. Aldridge DC, Burrow BF, Turner WB (1972) The structures of the fungal metabolites cytochalasins E and F. J Chem Soc Chem Commun 1972:148

    Google Scholar 

  72. Aldridge DC, Greatbanks D, Turner WB (1973) Revised structures for cytochalasins E and F. J Chem Soc Chem Commun 1973:551

    Article  Google Scholar 

  73. Capasso R, Evidente A, Vurro M (1991) Cytochalasins from Phoma exigua var. heteromorpha. Phytochemistry 30:3945

    Google Scholar 

  74. Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2002) Cytochalasins Z1, Z2 and Z3, three 24-oxa[14]cytochalasans produced by Pyrenophora semeniperda. Phytochemistry 60:45

    Article  CAS  PubMed  Google Scholar 

  75. Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2003) Cytochalasins Z4, Z5, and Z6, three new 24-oxa[14]cytochalasans produced by Phoma exigua var. heteromorpha. J Nat Prod 66:1540

    Google Scholar 

  76. Kim EL, Wang H, Park JH, Hong J, Choi JS, Im DS, Chung HY, Jung JH (2015) Cytochalasin derivatives from a jellyfish-derived fungus Phoma sp. Bioorg Med Chem Lett 25:2096

    Article  CAS  PubMed  Google Scholar 

  77. Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63:1692

    Article  CAS  PubMed  Google Scholar 

  78. Kimura Y, Nakajima H, Hamasaki T (1989) Structure of rosellichalasin, a new metabolite produced by Rosellinia necatrix. Agric Biol Chem 53:1699

    CAS  Google Scholar 

  79. Zhang HW, Zhang J, Hu S, Zhang ZJ, Zhu CJ, Ng SW, Tan RX (2010) Ardeemins and cytochalasins from Aspergillus terreus residing in Artemisia annua. Planta Med 76:1616

    Article  CAS  PubMed  Google Scholar 

  80. Wang FZ, Wei HJ, Zhu TJ, Li DH, Lin ZJ, Gu QQ (2011) Three new cytochalasins from the marine-derived fungus Spicaria elegans KLA03 by supplementing the cultures with l-and d-tryptophan. Chem Biodivers 8:887

    Google Scholar 

  81. Liu R, Gu Q, Zhu W, Cui C, Fan G, Fang Y, Zhu T, Liu H (2006) 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the marine-derived fungus Spicaria elegans. J Nat Prod 69:871

    Article  CAS  PubMed  Google Scholar 

  82. Zheng CJ, Shao CL, Wu LY, Chen M, Wang KL, Zhao DL, Sun XP, Chen GY, Wang CY (2013) Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans. Mar Drugs 11:2054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang J, Wang Z, Ju Z, Wan J, Liao S, Lin X, Zhang T, Zhou X, Chen H, Tu Z, Liu Y (2015) Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med 81:160

    Article  CAS  PubMed  Google Scholar 

  84. Kajimoto T, Imamura Y, Yamashita M, Takahashi K, Shibata M, Nohara T (1989) Nuclear magnetic resonance studies of cytochalasin E and its decomposition product. Chem Pharm Bull 37:2212

    Article  CAS  Google Scholar 

  85. Steyn PS, Van Heerden FR, Rabie CJ (1982) Cytochalasins E and K, toxic metabolites from Aspergillus clavatus. J Chem Soc Perkin Trans 1:541

    Article  Google Scholar 

  86. Takamatsu S, Zhang Q, Schrader KK, ElSohly HN, Walker LA (2002) Characterization of Mycotypha metabolites found to be inhibitors of cell adhesion molecules. J Antibiot 55:585

    Article  CAS  Google Scholar 

  87. Liu R, Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008) Novel open-chain cytochalasins from the marine-derived fungus Spicaria elegans. J Nat Prod 71:1127

    Article  CAS  PubMed  Google Scholar 

  88. Evidente A, Cimmino A, Andolfi A, Berestetskiy A, Motta A (2011) Phomachalasins A–D, 26-oxa[16] and [15]cytochalasans produced by Phoma exigua var. exigua, a potential mycoherbicide for Cirsium arvense biocontrol. Tetrahedron 67:1557

    Google Scholar 

  89. Nukina M (1987) Pyrichalasin H, a new phytotoxic metabolite belonging to the cytochalasans from Pyricularia grisea (Cooke) Saccardo. Agric Biol Chem 51:2625

    CAS  Google Scholar 

  90. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51:3969

    Google Scholar 

  91. Pornpakakul S, Roengsumran S, Deechangvipart S, Petsom A, Muangsin N, Ngamrojnavanich N, Sriubolmas N, Chaichit N, Ohta T (2007) Diaporthichalasin, a novel CYP3A4 inhibitor from an endophytic Diaporthe sp. Tetrahedron Lett 48:651

    Article  CAS  Google Scholar 

  92. Brown SG, Jansma MJ, Hoye TR (2012) Case study of empirical and computational chemical shift analyses: reassignment of the relative configuration of phomopsichalasin to that of diaporthichalasin. J Nat Prod 75:1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shionozaki N, Iwamura N, Tanaka R, Makino K, Uchiro H (2013) Total synthesis of diaporthichalasin by using the intramolecular Diels-Alder reaction of an α,β-unsaturated γ-hydroxylactam in aqueous media. Chem Asian J 8:1243

    Article  CAS  PubMed  Google Scholar 

  94. Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2014) An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem Lett 10:5

    Google Scholar 

  95. Chen H, Daletos G, Okoye F, Lai D, Dai H, Proksch P (2015) A new cytotoxic cytochalasin from the endophytic fungus Trichoderma harzianum. Nat Prod Commun 10:585

    PubMed  Google Scholar 

  96. Yuyama KT, Wendt L, Surup F, Kretz R, Chepkirui C, Wittstein K, Boonlarppradab C, Wongkanoun S, Luangsa-ard J, Stadler M, Abraham W-R (2018) Cytochalasans act as inhibitors of biofilm formation of Staphylococcus aureus. Biomolecules 8:129

    Article  PubMed Central  CAS  Google Scholar 

  97. Liu JT, Hu B, Gao Y, Zhang JP, Jiao BH, Lu XL, Liu XY (2014) Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem Biodivers 11:800

    Google Scholar 

  98. Zhang Q, Xiao J, Sun QQ, Qin JC, Pescitelli G, Gao JM (2014) Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J Agric Food Chem 62:10962

    Google Scholar 

  99. Qi S, Wang Y, Zheng Z, Xu Q, Deng X (2015) Cytochalasans and sesquiterpenes from Eutypella scoparia 1-15. Nat Prod Commun 10:2027

    PubMed  Google Scholar 

  100. Tomoda H, Namatame I, Tabata N, Kawaguchi K, Si S, Omura S (1999) Structure elucidation of fungal phenochalasins, novel inhibitors of lipid droplet formation in mouse macrophages. J Antibiot 52:857

    Article  CAS  Google Scholar 

  101. Wipapan P, Vatcharin R, Souwalak P, Nattawut R, Jariya S (2006) Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J Nat Prod 69:856

    Article  CAS  Google Scholar 

  102. Kongprapan T, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J (2015) Cytotoxic cytochalasins from the endophytic fungus Eutypella scoparia PSU-H267. Phytochem Lett 13:171

    Article  CAS  Google Scholar 

  103. Sekita S, Yoshihira K, Natori S, Kuwano H (1973) Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett 1973:2109

    Article  Google Scholar 

  104. Silverton JV, Akiyama T, Kabuto C, Sekita S, Yoshihira K, Natori S (1976) X-ray analysis of chaetoglobosin A, an indol-3-yl-[13]-cytochalasan from Chaetomium globosum. Tetrahedron Lett 1976:1349

    Article  Google Scholar 

  105. Silverton JV, Kabuto C, Akiyama T (1978) The structure of chaetoglobosin A: a novel use of quartet invariants. Acta Crystallogr B 34:588

    Article  Google Scholar 

  106. Sekita S, Yoshihira K, Natori S, Udagawa S, Sakabe F, Kurata H, Umeda M (1982) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. I. Production, isolation and some cytological effects of chaetoglobosins A–J. Chem Pharm Bull 30:1609

    Google Scholar 

  107. Sekita S, Yoshihira K, Natori S, Kuwano H (1982) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. II. Structures of chaetoglobosins A, B, and D. Chem Pharm Bull 30:1618

    Google Scholar 

  108. Sekita S, Yoshihira K, Natori S, Kuwano H (1982) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. III. Structures of chaetoglobosins C, E, F, G, and J. Chem Pharm Bull 30:1629

    Google Scholar 

  109. Sekita S, Yoshihira K, Natori S (1983) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. IV. Carbon-13 nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem Pharm Bull 31:490

    Google Scholar 

  110. Umeda M, Ohtsubo K, Saito M, Sekita S, Yoshihira K, Natori S, Udagawa S, Sakabe F, Kurata H (1975) Cytotoxicity of new cytochalasans from Chaetomium globosum. Experientia 31:435

    Article  CAS  PubMed  Google Scholar 

  111. Sekita S, Yoshihira K, Natori S, Kuwano H (1976) Structures of chaetoglobosins C, D, E, and F, cytotoxic indol-3-yl-[13]cytochalasans from Chaetomium globosum. Tetrahedron Lett 17:1351

    Article  Google Scholar 

  112. Springer JP, Clardy J, Wells JM, Cole RJ, Kirksey JW, Macfarlane RD, Torgerson DF (1976) Isolation and structure determination of the mycotoxin chaetoglobosin C, a new [13]cytochalasin. Tetrahedron Lett 17:1355

    Article  Google Scholar 

  113. Sekita S, Yoshihira K, Natori S, Kuwano H (1977) Chaetoglobosins G and J, cytotoxic indol-3-yl[13]-cytochalasans from Chaetomium globosum. Tetrahedron Lett 32:2771

    Article  Google Scholar 

  114. Probst A, Tamm C (1981) 19-O-Acetylchaetoglobosin B and 19-O-acetylchaetoglobosin D, two new metabolites of Chaetomium globosum. Helv Chim Acta 64:2056

    Article  CAS  Google Scholar 

  115. Oikawa H, Murakami Y, Ichihara A (1991) New plausible precursors of chaetoglobosin A accumulated by treatment of Chaetomium subaffine with cytochrome P-450 inhibitors. Tetrahedron Lett 32:4533

    Article  CAS  Google Scholar 

  116. Thohinung S, Kanokmedhakul S, Kanokmedhakul K, Kukongviriyapan V, Tusskorn O, Soytong K (2010) Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Arch Pharmacal Res 33:1135

    Article  CAS  Google Scholar 

  117. Oikawa H, Murakami Y, Ichihara A (1992) Useful approach to find the plausible biosynthetic precursors of secondary metabolites using P-450 inhibitors: postulated intermediates of chaetoglobosin A. J Chem Soc Perkin Trans I:2949

    Google Scholar 

  118. Oikawa H, Murakami Y, Ichihara A (1993) 20-Ketoreductase activity of chaetoglobosin A and prochaetoglobosins in a cell-free system of Chaetomium subaffine and the isolation of new chaetoglobosins. Biosci Biotechnol Biochem 57:628

    Article  CAS  Google Scholar 

  119. Ichihara A, Katayama K, Teshima H, Oikawa H, Sakamura S (1996) Chateoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of alfalfa black rot disease. Biosci Biotechnol Biochem 60:360

    Article  CAS  PubMed  Google Scholar 

  120. Iwamoto C, Yamada T, Ito Y, Minoura K, Numata A (2001) Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 57:2997

    Article  CAS  Google Scholar 

  121. Jiao W, Feng Y, Blunt JW, Cole ALJ, Munro MHG (2004) Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J Nat Prod 67:1722

    Article  CAS  PubMed  Google Scholar 

  122. Cui CM, Li XM, Li CS, Proksch P, Wang BG (2010) Cytoglobosins A–G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73:729

    Article  CAS  PubMed  Google Scholar 

  123. Zheng QC, Kong MZ, Zhao Q, Chen GD, Tian HY, Li XX, Guo LD, Li J, Zheng YZ, Gao H (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126

    Article  CAS  PubMed  Google Scholar 

  124. Chen C, Wang J, Liu J, Zhu H, Sun B, Wang J, Zhang J, Luo Z, Yao G, Xue Y, Zhang Y (2015) Armochaetoglobins A–J: cytochalasan alkaloids from Chaetomium globosum TW1-1, a fungus derived from the terrestrial arthropod Armadillidium vulgare. J Nat Prod 78:1193

    Article  CAS  PubMed  Google Scholar 

  125. Chen C, Tong Q, Zhu H, Tan D, Zhang J, Xue Y, Yao G, Luo Z, Wang J, Wang Y, Zhang Y (2016) Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep 6:18711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, Deng Y, Jiang Z, Shao Z, Zhang L, He F (2016) Cytoglobosins H and I, new antiproliferative cytochalasans from deep-sea-derived fungus Chaetomium globosum. Mar Drugs 14:233

    Article  PubMed Central  CAS  Google Scholar 

  127. Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, Soytong K, Kongsaeree P, Suksamrarn A (2002) Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med 68:834

    Article  CAS  PubMed  Google Scholar 

  128. Wang W, Gong J, Liu X, Dai C, Wang Y, Li XN, Wang J, Luo Z, Zhou Y, Xue Y, Zhu H, Chen C, Zhang Y (2018) Cytochalasans produced by the coculture of Aspergillus flavipes and Chaetomium globosum. J Nat Prod 81:1578

    Article  CAS  PubMed  Google Scholar 

  129. Guo QF, Yin ZH, Zhang JJ, Kang WY, Chen L, Wang XW, Ding G (2019) Chaetomadrasins A and B, two new cytotoxic cytochalasans from desert soil-derived fungus Chaetomium madrasense 375. Molecules 24:3240

    Article  CAS  PubMed Central  Google Scholar 

  130. Gao W, Li F, Chai C, Chen C, Wang J, Zhu H, He Y, Zhang J, Guo J, Hu Z, Zhang Y (2019) Antibacterial activity against drug-resistant microbial pathogens of cytochalasan alkaloids from the arthropod-associated fungus Chaetomium globosum TW1-1. Bioorg Chem 83:98

    Article  CAS  PubMed  Google Scholar 

  131. Cutler HG, Crumley FG, Cox RH, Cole RJ, Dorner JW, Springer JP, Latterell FM, Thean JE, Rossi AE (1980) Chaetoglobosin K: a new plant growth inhibitor and toxin from Diplodia macrospora. J Agric Food Chem 28:139

    Article  CAS  PubMed  Google Scholar 

  132. Springer JP, Cox RH, Cutler HG, Crumley FG (1980) The structure of chaetoglobosin K. Tetrahedron Lett 21:1905

    Article  CAS  Google Scholar 

  133. Probst A, Tamm C (1982) Chaetoglobosin L, a new metabolite of Diplodia macrospora. Helv Chim Acta 65:1543

    Article  CAS  Google Scholar 

  134. Convert O, Jellal A, Correia I, Dardoize F, Menguy L, Cherton JC (1994) A novel mycotoxin: the chaetoglobosin N from infested maize by Phomopsis leptostromiformis. II. Structure elucidation by 1H and 13C NMR. Analysis 22:217

    Google Scholar 

  135. Cherton JC, Jellal A, Lhommet G, Loutelier C, Dardoize F, Lacoste L, Subileau C (1994) Unexpected production of chaetoglobosins from maize incubated by Phomopsis leptostromiformis. I. Isolation and optimization of the production in liquid media by LC monitoring. Analysis 22:210

    Google Scholar 

  136. Donoso R, Rivera-Sagredo A, Hueso-Rodriguez JA, Elson SW (1997) A new chaetoglobosin isolated from a fungus of the genus Discosia. Nat Prod Lett 10:49

    Article  CAS  Google Scholar 

  137. Burlot L, Cherton JC, Convert O, Correia I, Dennetiere B (2003) New chaetoglobosins from maize infested by Phomopsis leptostromiformis fungi. Production, identification, and semi-synthesis. Spectroscopy 17:725

    Google Scholar 

  138. Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomopsis asparagi. J Nat Prod 68:1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Spoendlin C, Tamm C (1988) Chaetoglobosin M, a new metabolite of a mutant of Diplodia macrospora, belonging to the family of (1H-indol-3-yl)-substituted 10,11-diethyl-10,11-dinorcytochalasans. Helv Chim Acta 71:1881

    Article  CAS  Google Scholar 

  140. Ge HM, Yan W, Guo ZK, Luo Q, Feng R, Zang LY, Shen Y, Jiao RH, Xu Q, Tan RX (2011) Precursor-directed fungal generation of novel halogenated chaetoglobosins with more preferable immunosuppressive action. Chem Commun 47:2321

    Article  CAS  Google Scholar 

  141. Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734

    Article  CAS  PubMed  Google Scholar 

  142. Zhang J, Ge HM, Jiao RH, Li J, Peng H, Wang YR, Wu JH, Song YC, Tan RX (2010) Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med 76:1910

    Article  CAS  PubMed  Google Scholar 

  143. Numafa A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga structure determination and solution conformation. J Chem Soc Perkin Trans 1:239

    Google Scholar 

  144. Chen C, Zhu H, Wang J, Yang J, Li XN, Wang J, Chen K, Wang Y, Luo Z, Yao G, Xue Y, Zhang Y (2015) Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur J Org Chem 2015:3086

    Article  CAS  Google Scholar 

  145. Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69:302

    Article  CAS  PubMed  Google Scholar 

  146. Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24:668

    Article  CAS  PubMed  Google Scholar 

  147. Chen C, Zhu H, Li XN, Yang J, Wang J, Li G, Li Y, Tong Q, Yao G, Luo Z, Xue Y Zhang Y (2015) Armochaeglobines A and B, two new indole-based alkaloids from the arthropod-derived fungus Chaetomium globosum. Org Lett 17:644

    Google Scholar 

  148. Wang XY, Yan X, Fang MJ, Wu Z, Wang D, Qiu YK (2017) Two new cytochalasan derivatives from Chaetomium globosum SNSHI-5, a fungus derived from extreme environment. Nat Prod Res 31:1669

    Article  CAS  PubMed  Google Scholar 

  149. Cameron AF, Freer AA, Hesp B, Strawson CJ (1974) Isolation and crystal and molecular structure of cytochalasin G, an [11]cytochalasan containing an indole group. J Chem Soc Perkin Trans 2:1741

    Article  Google Scholar 

  150. Feng Y, Blunt JW, Cole ALJ, Munro MHG (2002) Three novel cytochalasins X, Y, and Z from Pseudeurotium zonatum. J Nat Prod 65:1274

    Article  CAS  PubMed  Google Scholar 

  151. Ruan BH, Yu ZF, Yang XQ, Yang YB, Hu M, Zhang ZX, Zhou QY, Zhou H, Ding ZT (2018) New bioactive compounds from aquatic endophyte Chaetomium globosum. Nat Prod Res 32:1050

    Article  CAS  PubMed  Google Scholar 

  152. Kawahara T, Itoh M, Izumikawa M, Sakata N, Tsuchida T, Shin-ya K (2013) New chaetoglobosin derivatives, MBJ-0038, MBJ-0039 and MBJ-0040, isolated from the fungus Chaetomium sp. f24230. J Antibiot 66:727

    Google Scholar 

  153. Yang MH, Gu ML, Han C, Guo XJ, Yin GP, Yu P, Kong LY (2018) Aureochaeglobosins A–C, three [4 + 2] adducts of chaetoglobosin and aureonitol derivatives from Chaetomium globosum. Org Lett 20:3345

    Article  CAS  PubMed  Google Scholar 

  154. Wang W, Zeng F, Bie Q, Dai C, Chen C, Tong Q, Liu J, Wang J, Zhou Y, Zhu H, Zhang Y (2018) Cytochathiazines A–C: three merocytochalasans with a 2H-1,4-thiazine functionality from coculture of Chaetomium globosum and Aspergillus flavipes. Org Lett 20:6817

    Article  CAS  PubMed  Google Scholar 

  155. Rukachaisirikul V, Khamthong N, Sukpondma Y, Pakawatchai C, Phongpaichit S, Sakayaroj J, Kirtikara K (2009) An [11]cytochalasin derivative from the marine-derived fungus Xylaria sp. PSU-F100. Chem Pharm Bull 57:1409

    Google Scholar 

  156. Keller-Schierlein W, Kupfer E (1979) Metabolites of microorganisms. 186. The aspochalasins A, B, C, and D. Helv Chim Acta 62:1501

    Google Scholar 

  157. Neupert-Laves K, Dobler M (1982) Metabolic products of microorganisms. Part 215. X-ray structural analysis of di-O-acetylaspochalasin C. Helv Chim Acta 65:1426

    Google Scholar 

  158. Tomikawa T, Shin-Ya K, Kinoshita T, Miyajima A, Seto H, Hayakawa Y (2001) Selective cytotoxicity and stereochemistry of aspochalasin D. J Antibiot 54:379

    Article  CAS  Google Scholar 

  159. Naruse N, Yamamoto H, Murata S, Sawada Y, Fukagawa Y, Oki T (1993) Aspochalasin E, a new antibiotic isolated from a fungus. J Antibiot 46:679

    Article  CAS  Google Scholar 

  160. Alvi KA, Nair B, Pu H, Ursino R, Gallo C, Mocek U (1997) Phomacins: three novel antitumor cytochalasan constituents produced by a Phoma sp. J Org Chem 62:2148

    Article  CAS  PubMed  Google Scholar 

  161. Fang F, Ui H, Shiomi K, Masuma R, Yamaguchi Y, Zhang CG, Zhang XW, Tanaka Y, Omura S (1997) Two new components of the aspochalasins produced by Aspergillus sp. J Antibiot 50:919

    Article  CAS  Google Scholar 

  162. Kohno J, Nonaka N, Nishio M, Ohnuki T, Kawano K, Okuda T, Komatsubara S (1999) TMC-169, a new antibiotic of the aspochalasin group produced by Aspergillus flavipes. J Antibiot 52:575

    Article  CAS  Google Scholar 

  163. Tomikawa T, Shin-Ya K, Seto H, Okusa N, Kajiura T, Hayakawa Y (2002) Structure of aspochalasin H, a new member of the aspochalasin family. J Antibiot 55:666

    Article  CAS  Google Scholar 

  164. Zhou GX, Wijeratne EMK, Bigelow D, Pierson LSIII, VanEtten HD, Gunatilaka AAL (2004) Aspochalasins I, J, and K: three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the Sonoran desert. J Nat Prod 67:328

    Article  CAS  PubMed  Google Scholar 

  165. Rochfort S, Ford J, Ovenden S, Wan SS, George S, Wildman H, Tait RM, Meurer-Grimes B, Cox S, Coates J, Rhodes D (2005) A novel aspochalasin with HIV-1 integrase inhibitory activity from Aspergillus flavipes. J Antibiot 58:279

    Article  CAS  Google Scholar 

  166. Lin Z, Zhu T, Wei H, Zhang G, Wang H, Gu Q (2009) Spicochalasin A and new aspochalasins from the marine-derived fungus Spicaria elegans. Eur J Org Chem 2009:3045

    Article  CAS  Google Scholar 

  167. Lin ZJ, Zhu TJ, Chen L, Gu QQ (2010) Three new aspochalasin derivatives from the marine-derived fungus Spicaria elegans. Chin Chem Lett 21:824

    Article  CAS  Google Scholar 

  168. Liu J, Hu Z, Huang H, Zheng Z, Xu Q (2012) Aspochalasin U, a moderate TNF-α inhibitor from Aspergillus sp. J Antibiot 65:49

    Article  CAS  Google Scholar 

  169. Chen L, Liu YT, Song B, Zhang HW, Ding G, Liu XZ, Gu YC, Zou ZM (2014) Stereochemical determination of new cytochalasans from the plant endophytic fungus Trichoderma gamsii. Fitoterapia 96:115

    Article  CAS  PubMed  Google Scholar 

  170. Liu Y, Zhao S, Ding W, Wang P, Yang X, Xu J (2014) Methylthio-aspochalasins from a marine-derived fungus Aspergillus sp. Mar Drugs 12:5124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wei G, Tan D, Chen C, Tong Q, Li XN, Huang J, Liu J, Xue Y, Wang J, Luo Z, Zhu H, Zhang Y (2017) Flavichalasines A–M, cytochalasan alkaloids from Aspergillus flavipes. Sci Rep 7:42434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xu D, Luo M, Liu F, Wang D, Pang X, Zhao T, Xu L, Wu X, Xia M, Yang X (2017) Cytochalasan and tyrosine-derived alkaloids from the marine sediment-derived fungus Westerdykella dispersa and their bioactivities. Sci Rep 7:11956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Li H, Wei H, Hu J, Lacey E, Sobolev AN, Stubbs, KA, Solomon PS, Chooi YH (2020) Genomics-driven discovery of phytotoxic cytochalasans involved in the virulence of the wheat pathogen Parastagonospora nodorum. ACS Chem Biol 226

    Google Scholar 

  174. Ding G, Wang H, Li L, Chen AJ, Chen L, Chen H, Zhang H, Liu X, Zou Z (2012) Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur J Org Chem 2012:2516

    Article  CAS  Google Scholar 

  175. Rukachaisirikul V, Rungsaiwattana N, Klaiklay S, Phongpaichit S, Borwornwiriyapan K, Sakayaroj J (2014) γ-Butyrolactone, cytochalasin, cyclic carbonate, eutypinic acid, and phenalenone derivatives from the soil fungus Aspergillus sp. PSU-RSPG185. J Nat Prod 77:2375

    Google Scholar 

  176. Zhang Y, Wang T, Pei Y, Hua H, Feng B (2002) Aspergillin PZ, a novel isoindole-alkaloid from Aspergillus awamori. J Antibiot 55:693

    Article  CAS  Google Scholar 

  177. Xu D, Zhang X, Shi X, Xian PJ, Hong L, Tao YD, Yang XL (2019) Two new cytochalasans from the marine sediment-derived fungus Westerdykella dispersa and their antibacterial activities. Phytochem Lett 32:52

    Article  CAS  Google Scholar 

  178. Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Liu X, Zou Z (2014) Trichodermone, a spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 77:164

    Article  CAS  PubMed  Google Scholar 

  179. Li X, Zhao Z, Ding W, Ye B, Wang P, Xu J (2017) Aspochalazine A, a novel polycyclic aspochalasin from the fungus Aspergillus sp. Z4. Tetrahedron Lett 58:2405

    Google Scholar 

  180. Zhang X, Yang L, Wang W, Wu Z, Wang J, Sun W, Li XN, Chen C, Zhu H, Zhang Y (2019) Flavipesines A and B and asperchalasines E–H: cytochalasans and merocytochalasans from Aspergillus flavipes. J Nat Prod 82:2994

    Article  CAS  PubMed  Google Scholar 

  181. Atta M, Arragain S, Fontecave M, Mulliez E, Hunt JF, Luff JD, Forouhar F (2012) The methylthiolation reaction mediated by the radical-SAM enzymes. Biochim Biophys Acta 1824:1223

    Article  CAS  PubMed  Google Scholar 

  182. Zhang D, Ge H, Xie D, Chen R, Zou JH, Tao X, Dai J (2013) Periconiasins A–C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15:1674

    Article  CAS  PubMed  Google Scholar 

  183. Liu J, Zhang D, Zhang M, Liu X, Chen R, Zhao J, Li L, Wang N, Dai J (2016) Periconiasins I and J, two new cytochalasans from an endophytic fungus Periconia sp. Tetrahedron Lett 57:5794

    Article  CAS  Google Scholar 

  184. Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J (2015) Pericoannosin A, a polyketide synthase-nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org Lett 17:4304

    Article  CAS  PubMed  Google Scholar 

  185. Zhang D, Tao X, Liu J, Chen R, Zhang M, Li L, Fang X, Yu LY, Dai J (2016) Periconiasin G, a new cytochalasan with unprecedented 7/6/5 tricyclic ring system from the endophytic fungus Periconia sp. Tetrahedron Lett 57:796

    Article  CAS  Google Scholar 

  186. Zaghouani M, Kunz C, Guedon L, Blanchard F, Nay B (2016) First total synthesis, structure revision, and natural history of the smallest cytochalasin: (+)-periconiasin G. Chemistry 22:15257

    Article  CAS  PubMed  Google Scholar 

  187. Si Y, Tang M, Lin S, Chen G, Feng Q, Wang Y, Hua H, Bai J, Wang H, Pei Y (2018) Cytotoxic cytochalasans from Aspergillus flavipes PJ03-11 by OSMAC method. Tetrahedron Lett 59:1767

    Article  CAS  Google Scholar 

  188. Ding G, Chen L, Chen A, Tian X, Chen X, Zhang H, Chen H, Liu XZ, Zhang Y, Zou ZM (2012) Trichalasins C and D from the plant endophytic fungus Trichoderma gamsii. Fitoterapia 83:541

    Article  CAS  PubMed  Google Scholar 

  189. Wu Z, Zhang X, Al Anbari WH, Zhang M, Chen X, Luo Z, Li XN, Chen C, Liu J, Wang J, Zhu H, Zhang Y (2019) Amiaspochalasins A–H, undescribed aspochalasins with a C-21 ester carbonyl from Aspergillus micronesiensis. J Org Chem 84:5483

    Article  CAS  PubMed  Google Scholar 

  190. Kang HH, Zhong MJ, Ma LY, Rong XG, Liu DS, Liu WZ (2019) Iizukines C–E from a saline soil fungus Aspergillus iizukae. Bioorg Chem 91:103167

    Article  CAS  PubMed  Google Scholar 

  191. Wu Z, Zhang X, Al Anbari WH, Zhou Q, Zhou P, Zhang M, Zeng F, Chen C, Tong Q, Wang J, Zhu H, Zhang Y (2019) Cysteine residue containing merocytochalasans and 17,18-seco-aspochalasins from Aspergillus micronesiensis. J Nat Prod 82:2653

    Article  CAS  PubMed  Google Scholar 

  192. Lin Z, Ma X, Wei H, Li D, Gu Q, Zhu T (2015) Spicarins A–D from acetylated extract of fungus Spicaria elegans KLA03. RSC Adv 5:35262

    Article  CAS  Google Scholar 

  193. Zhu H, Chen C, Xue Y, Tong Q, Li XN, Chen X, Wang J, Yao G, Luo Z, Zhang Y (2015) Asperchalasine A, a cytochalasan dimer with an unprecedented decacyclic ring system, from Aspergillus flavipes. Angew Chem Int Ed 54:13374

    Article  CAS  Google Scholar 

  194. Wu Z, Zhang X, Chen C, Zhou P, Zhang M, Gu L, Luo Z, Wang J, Tong Q, Zhu H, Zhang Y (2020) Dimericchalasine A and amichalasines D and E: unexpected cytochalasan homodimer and heterotrimers from Aspergillus micronesiensis PG-1. Org Lett 22:2162

    Article  CAS  PubMed  Google Scholar 

  195. Wu Z, Tong Q, Zhang X, Zhou P, Dai C, Wang J, Chen C, Zhu H, Zhang Y (2019) Amichalasines A–C: three cytochalasan heterotrimers from Aspergillus micronesiensis PG-1. Org Lett 21:1026–1030

    Article  CAS  PubMed  Google Scholar 

  196. Zhu H, Chen C, Tong Q, Li XN, Yang J, Xue Y, Luo Z, Wang J, Yao G, Zhang Y (2016) Epicochalasines A and B: two bioactive merocytochalasans bearing caged epicoccine dimer units from Aspergillus flavipes. Angew Chem Int Ed 55:3486

    Article  CAS  Google Scholar 

  197. Wei G, Chen C, Tong Q, Huang J, Wang W, Wu Z, Yang J, Liu J, Xue Y, Luo Z, Wang J, Zhu H, Zhang Y (2017) Aspergilasines A–D: four merocytochalasans with new carbon skeletons from Aspergillus flavipes QCS12. Org Lett 19:4399

    Article  CAS  PubMed  Google Scholar 

  198. Bao R, Tian C, Zhang H, Wang Z, Dong Z, Li Y, Gao M, Zhang H, Liu G, Tang Y (2018) Total syntheses of asperchalasines A–E. Angew Chem Int Ed 57:14216

    Article  CAS  Google Scholar 

  199. Long X, Ding Y, Deng J (2018) Total synthesis of asperchalasines A, D, E, and H. Angew Chem Int Ed 57:14221

    Article  CAS  Google Scholar 

  200. Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and cells. Cold Spring Harb Perspect Biol 9:a022038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Erickson HP (2017) The discovery of the prokaryotic cytoskeleton: 25th anniversary. Mol Biol Cell 28:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wagstaff J, Löwe J (2018) Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16:187

    Article  CAS  PubMed  Google Scholar 

  203. Weibel GL, Joshi MR, Jerome WG, Bates SR, Yu KJ, Phillips MC, Rothblat GH (2012) Cytoskeleton disruption in J774 macrophages: consequences for lipid droplet formation and cholesterol flux. Biochim Biophys Acta 1821:464

    Article  CAS  PubMed  Google Scholar 

  204. Bräse S, Gläser F, Kramer C, Lindner S, Linsenmeier AM, Masters KS, Meister AC, Ruff BM, Zhong S (2013) The chemistry of mycotoxins. Prog Chem Org Nat Prod 97:207

    Google Scholar 

  205. Nair UB, Joel PB, Wan Q, Lowey S, Rould MA, Trybus KM (2008) Crystal structures of monomeric actin bound to cytochalasin D. J Mol Biol 384:848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kretz R, Wendt L, Wongkanoun S, Luangsa-Ard JJ, Surup F, Helaly SE, Noumeur SR, Stadler M, Stradal TEB (2019) The effect of cytochalasans on the actin cytoskeleton of eukaryotic cells and preliminary structure-activity relationships. Biomolecules 9:73

    Article  CAS  PubMed Central  Google Scholar 

  207. Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261

    Article  CAS  PubMed  Google Scholar 

  208. Rao JY, Hurst RE, Bales WD, Jones PL, Bass RA, Archer LT, Bell PB, Hemstreet GP (1990) Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res 50:2215

    CAS  PubMed  Google Scholar 

  209. Zhu H, Chen C, Tong Q, Yang J, Wei G, Xue Y, Wang J, Luo Z, Zhang Y (2017) Asperflavipine A: a cytochalasan heterotetramer uniquely defined by a highly complex tetradecacyclic ring system from Aspergillus flavipes QCS12. Angew Chem Int Ed Engl 56:5242

    Article  CAS  PubMed  Google Scholar 

  210. Rubtsova SN, Kondratov RV, Kopnin PB, Chumakov PM, Kopnin BP, Vasiliev JM (1998) Disruption of actin microfilaments by cytochalasin D leads to activation of p53. FEBS Lett 430:353

    Article  CAS  PubMed  Google Scholar 

  211. Chang HT, Chou CT, Chen IS, Yu CC, Lu T, Hsu SS, Shieh P, Jan CR, Liang WZ (2016) Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca2+ homeostasis and ROS production in human breast cells. Toxicology 370:1

    Article  CAS  PubMed  Google Scholar 

  212. Knudsen P, Hanna B, Ohl S, Sellner L, Zenz T, Dohner H, Stilgenbauer S, Larsen T, Lichter P, Seiffert M (2014) Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia 28:1289

    Article  CAS  PubMed  Google Scholar 

  213. Ali A, Sidorova TS, Matesic DF (2013) Dual modulation of JNK and Akt signaling pathways by chaetoglobosin K in human lung carcinoma and ras-transformed epithelial cells. Invest New Drugs 31:525

    Article  CAS  PubMed  Google Scholar 

  214. Li B, Gao Y, Rankin GO, Rojanasakul Y, Cutler SJ, Tu Y, Chen YC (2015) Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells. Cancer Lett 356:418

    Article  CAS  PubMed  Google Scholar 

  215. Luo H, Li B, Li Z, Cutler SJ, Rankin GO, Chen YC (2013) Chaetoglobosin K inhibits tumor angiogenesis through downregulation of vascular epithelial growth factor-binding hypoxia-inducible factor 1α. Anti-Cancer Drugs 24:715

    Article  CAS  PubMed  Google Scholar 

  216. Kolber MA, Hill P (1992) Vincristine potentiates cytochalasin B-induced DNA fragmentation in vitro. Cancer Chemother Pharmacol 30:286

    Article  CAS  PubMed  Google Scholar 

  217. Trendowski M, Wong V, Zoino JN, Christen TD, Gadeberg L, Sansky M, Fondy TP (2015) Preferential enlargement of leukemia cells using cytoskeletal-directed agents and cell cycle growth control parameters to induce sensitivity to low frequency ultrasound. Cancer Lett 360:160

    Article  CAS  PubMed  Google Scholar 

  218. Trendowski M, Mitchell JM, Corsette CM, Acquafondata C, Fondy TP (2015) Chemotherapy with cytochalasin congeners in vitro and in vivo against murine models. Invest New Drugs 33:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Trendowski M, Yu GW, Wong V, Acquafondata C, Christen T, Fondy TP (2014) The real deal: using cytochalasin B in sonodynamic therapy to preferentially damage leukemia cells. Anticancer Res 34:2195

    CAS  PubMed  Google Scholar 

  220. Trendowski M, Christen TD, Acquafondata C, Fondy TP (2015) Effects of cytochalasin congeners, microtubule-directed agents, and doxorubicin alone or in combination against human ovarian carcinoma cell lines in vitro. BMC Cancer 15:632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Udagawa T, Yuan J, Panigrahy D, Chang YH, Shah J, D’Amato RJ (2000) Cytochalasin E, an epoxide containing Aspergillus-derived fungal metabolite, inhibits angiogenesis and tumor growth. J Pharmacol Exp Ther 294:421

    CAS  PubMed  Google Scholar 

  222. Stehn JR, Schevzov G, O’Neill GM, Gunning PW (2006) Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr Cancer Drug Targets 6:245

    Article  CAS  PubMed  Google Scholar 

  223. Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19:1572

    Article  CAS  PubMed  Google Scholar 

  224. Shanthiyaa V, Karthikeyan G, Raguchander T (2014) Production of extracellular proteins, cellulases and antifungal metabolites by Chaetomium globosum Kunze ex. Fr. Arch Phytopathol Plant Prot 47:517

    Article  CAS  Google Scholar 

  225. Zhang G, Wang F, Qin J, Wang D, Zhang J, Zhang Y, Zhang S, Pan H (2013) Efficacy assessment of antifungal metabolites from Chaetomium globosum No.05, a new biocontrol agent, against Setosphaeria turcica. Biol Control 64:90

    Google Scholar 

  226. Flewelling AJ, Bishop AI, Johnson JA, Gray CA (2015) Polyketides from an endophytic Aspergillus fumigatus isolate inhibit the growth of Mycobacterium tuberculosis and MRSA. Nat Prod Commun 10:1661

    PubMed  Google Scholar 

  227. Makioka A, Kumagai M, Kobayashi S, Takeuchi T (2004) Different effects of cytochalasins on the growth and differentiation of Entamoeba invadens. Parasitol Res 93:68

    Article  PubMed  Google Scholar 

  228. Mori M, Tsuge S, Fukasawa W, Jeelani G, Nakada-Tsukui K, Nonaka K, Matsumoto A, Omura S, Nozaki T, Shiomi K (2018) Discovery of antiamebic compounds that inhibit cysteine synthase from the enteric parasitic protist Entamoeba histolytica by screening of microbial secondary metabolites. Front Cell Infect Microbiol 8:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Masi M, Cimmino A, Tabanca N, Becnel JJ, Bloomquist JR, Evidente A (2017) A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chem 15:156

    Article  CAS  Google Scholar 

  230. Hu Y, hang W, Zhang P, Ruan W, Zhu X (2013) Nematicidal activity of chaetoglobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J Agric Food Chem 61:41

    Google Scholar 

  231. Dou H, Song Y, Liu X, Gong W, Li E, Tan R, Hou Y (2011) Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34:1864

    Article  CAS  PubMed  Google Scholar 

  232. Sun L, Hua C, Yang Y, Dou H, Li E, Tan R, Hou Y (2012) Chaetoglobosin Fex inhibits poly(I:C)-induced activation of bone marrow-derived dendritic cells. Mol Immunol 51:150

    Article  CAS  PubMed  Google Scholar 

  233. Hua C, Yang Y, Sun L, Dou H, Tan R, Hou Y (2013) Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology 218:292

    Article  CAS  PubMed  Google Scholar 

  234. Jayasuriya H, Herath KB, Ondeyka JG, Polishook JD, Bills GF, Dombrowski AW, Springer MS, Siciliano S, Malkowitz L, Sanchez M, Guan ZQ, Tiwari S, Stevenson DW, Borris RP, Singh SB (2004) Isolation and structure of antagonists of chemokine receptor (CCR5). J Nat Prod 67:1036

    Article  CAS  PubMed  Google Scholar 

  235. Berestetskiy A, Dmitriev A, Mitina G, Lisker I, Andolfi A, Evidente A (2008) Nonenolides and cytochalasins with phytotoxic activity against Cirsium arvense and Sonchus arvensis: a structure-activity relationship study. Phytochemistry 69:953

    Google Scholar 

  236. Cimmino A, Fernandez-Aparicio M, Andolfi A, Basso S, Rubiales D, Evidente A (2014) Effect of fungal and plant metabolites on broomrape (Orobanche and Phelipanche spp.) seed germination and radicle growth. J Agric Food Chem 62:10485

    Google Scholar 

  237. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448

    Article  CAS  PubMed  Google Scholar 

  238. Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Müller T, Siebeneicher H, Stroud RM (2016) Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci USA 113:4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Probst A, Tamm C (1981) Biosynthesis of the cytochalasans. Biosynthetic studies on chaetoglobosin A and 19-O-acetylchaetoglobosin A. Helv Chim Acta 64:2065

    Google Scholar 

  240. Robert JL, Tamm C (1975) Biosynthesis of cytochalasans. 5. Incorporation of deoxaphomin into cytochalasin B (phomin). Helv Chim Acta 58:2501

    Google Scholar 

  241. Binder M, Kiechel JR, Tamm C (1970) Zur Biogenese des Antibioticums Phomin. 1. Teil: die Grundbausteine. Helv Chim Acta 53:1797

    Google Scholar 

  242. Graf W, Robert JL, Vederas JC, Tamm C, Solomon PH, Miura I, Nakanishi N (1974) Biosynthesis of the cytochalasans. Part III. C-NMR of cytochalasin B (phomin) and cytochalasin D. Incorporation of [1-13C]- and [2-13C]-sodium acetate. Helv Chim Acta 57:1801

    Google Scholar 

  243. Vederas JC, Graf W, David L, Tamm C (1975) Biosynthesis of cytochalasans. 4. Mode of incorporation of common naturally-occurring carboxylic acids into cytochalasin D. Helv Chim Acta 58:1886

    Google Scholar 

  244. Vederas JC, Tamm C (1976) Biosynthesis of cytochalasans. Part 6. The mode of incorporation of phenylalanine into cytochalasin D. Helv Chim Acta 59:558

    Google Scholar 

  245. Oikawa H, Murakami Y, Ichihara A (1992) Biosynthetic study of chaetoglobosin A: origins of the oxygen and hydrogen atoms, and indirect evidence for biological Diels-Alder reaction. J Chem Soc Perkin Trans 1:2955

    Article  Google Scholar 

  246. Oikawa H, Murakami Y, Aihara Y, Ichihara A, Sakamura S (1990) Biosynthetic studies using P-450 inhibitors; biosynthesis of chaetoglobosin A and other microbial metabolites. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 32:33

    CAS  Google Scholar 

  247. Oikawa H, Murakami Y, Ichihara A (1992) Useful approach to find the plausible biosynthetic precursors of secondary metabolites using P-450 inhibitors: postulated intermediates of chaetoglobosin A. J Chem Soc Perkin Trans I 1992:2949

    Article  Google Scholar 

  248. Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499

    Google Scholar 

  249. Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Barbisan C, Fudal I, Lebrun MH, Böhnert HU (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179:196

    Article  CAS  PubMed  Google Scholar 

  250. Khaldi N, Collemare J, Lebrun MH, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Song Z, Bakeer W, Marshall JW, Yakasai AA, Khalid RM, Collemare J, Skellam E, Tharreau D, Lebrun MH, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ (2015) Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chem Sci 6:4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Nielsen ML, Isbrandt T, Petersen LM, Mortensen UH, Andersen MR, Hoof JB, Larsen TO (2016) Linker flexibility facilitates module exchange in fungal hybrid PKS-NRPS engineering. PLoS One 11:e0161199/1

    Google Scholar 

  253. Schümann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 129:9564

    Article  PubMed  CAS  Google Scholar 

  254. Song ZS, Cox RJ, Lazarus CM, Simpson TJ (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 5:1196

    Article  CAS  PubMed  Google Scholar 

  255. Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun 2005:186

    Article  CAS  Google Scholar 

  256. Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. ChemBioChem 8:289

    Article  CAS  PubMed  Google Scholar 

  257. Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213

    Article  CAS  PubMed  Google Scholar 

  258. Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Adv 3:18228

    Article  CAS  Google Scholar 

  259. Ishiuchi KI, Nakazawa T, Yagishita F, Mino T, Noguchi H, Hotta K, Watanabe K (2013) Combinatorial generation of complexity by redox enzymes in the chaetoglobosin A biosynthesis. J Am Chem Soc 135:7371

    Article  CAS  PubMed  Google Scholar 

  260. Qiao K, Chooi YH, Tang Y (2011) Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng 13:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Moore GG, Collemare J, Lebrun MH, Bradshaw RE (2014) Natural products, part 2. Evolving pathways, evolutionary mechanisms involved in development of fungal secondary metabolite gene clusters. In: Osbourn A, Goss RJ, Carter GT (eds) Natural products: discourse, diversity, and design. Wiley, Inc., Hoboken, NJ, USA, p 343

    Google Scholar 

  262. Fujii R, Minami A, Gomi K, Oikawa H (2013) Biosynthetic assembly of cytochalasin backbone. Tetrahedron Lett 54:2999

    Article  CAS  Google Scholar 

  263. Thomas EJ (1991) Cytochalasan synthesis: macrocycle formation via intramolecular Diels-Alder reactions. Acc Chem Res 24:229

    Article  CAS  Google Scholar 

  264. Oikawa H, Murakami Y, Ichihara A (1992) Biosynthetic study of chaetoglobosin-A: origins of the oxygen and hydrogen atoms, and indirect evidence for biological Diels-Alder reaction. J Chem Soc Perkin Trans I 1992:2955

    Article  Google Scholar 

  265. Li L, Yu P, Tang MC, Zou Y, Gao SS, Hung YS, Zhao M, Watanabe K, Houk KN, Tang Y (2016) Biochemical characterization of a eukaryotic decalin-forming Diels-Alderase. J Am Chem Soc 138:15837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hantke V, Skellam EJ, Cox RJ (2020) Evidence for enzyme catalysed intramolecular [4 + 2] Diels-Alder cyclization during the biosynthesis of pyrichalasin H. Chem Commun 56:2925

    Article  CAS  Google Scholar 

  267. Hu Y, Dietrich D, Xu W, Patel A, Thuss JAJ, Wang J, Yin WB, Qiao K, Houk KN, Vederas JC, Tang Y (2014) A carbonate-forming Baeyer-Villiger monooxygenase. Nat Chem Biol 10:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Stork G, Nakahara Y, Nakahara Y, Greenlee WJ (1978) Total synthesis of cytochalasin B. J Am Chem Soc 100:7775

    Article  CAS  Google Scholar 

  269. Haidle AM, Myers AG (2004) An enantioselective, modular, and general route to the cytochalasins: synthesis of L-696,474 and cytochalasin B. Proc Natl Acad Sci USA 101:12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Aboujaoude EE, Collignon N, Savignac P (1984) Synthese de phosphonates β-carbonyles: I. Par voie carbanionique. J Organomet Chem 264:9

    Article  CAS  Google Scholar 

  271. Beaulieu PL, Wernic D (1996) Preparation of aminoalkyl chlorohydrin hydrochlorides: key building blocks for hydroxyethylamine-based HIV protease inhibitors. J Org Chem 61:3635

    Article  CAS  PubMed  Google Scholar 

  272. Hungerhoff B, Samanta SS, Roels J, Metz P (2000) Chemoselective oxidative debenzylation of N,N-dibenzylamines. Synlett 2000:77

    Article  Google Scholar 

  273. Reetz MT (1999) Synthesis and diastereoselective reactions of N,N-dibenzylamino aldehydes and related compounds. Chem Rev 99:1121

    Article  CAS  PubMed  Google Scholar 

  274. Barbier P, Benezra C (1986) Allergenic α-methylene-γ-butyrolactones. Study of the capacity of β-acetoxy-and β-hydroxy-α-methylene-γ-butyrolactones to induce allergic contact dermatitis in guinea pigs. J Med Chem 29:868

    Google Scholar 

  275. Shelkov R, Nahmany M, Melman A (2002) Acylation through ketene intermediates. J Org Chem 67:8975

    Article  CAS  PubMed  Google Scholar 

  276. Hungate RW, Chen JL, Starbuck KE, Macaluso SA, Rubino RS (1996) New cytochalasins: synthetic studies of a novel HIV-1 protease inhibitor. Tetrahedron Lett 37:4113

    Article  CAS  Google Scholar 

  277. Tian C, Lei X, Wang Y, Dong Z, Liu G, Tang Y (2016) Total syntheses of periconiasins A–E. Angew Chem Int Ed 55:6992

    Article  CAS  Google Scholar 

  278. Enders D, Geibel G, Osborne S (2000) Diastereo- and enantioselective total synthesis of stigmatellin A. Chem Eur J 6:1302

    Article  CAS  PubMed  Google Scholar 

  279. Carr JM, Snowden TS (2008) Comparative reductive desymmetrization of 2,2-disubstituted-cycloalkane-1,3-diones. Tetrahedron 64:2897

    Article  CAS  Google Scholar 

  280. Phillips EM, Riedrich M, Scheidt KA (2010) N-Heterocyclic carbene-catalyzed conjugate additions of alcohols. J Am Chem Soc 132:13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Mikami K, Shimizu M (1992) Asymmetric ene reactions in organic synthesis. Chem Rev 92:1021

    Article  CAS  Google Scholar 

  282. Canham SM, Overman LE, Tanis PS (2011) Identification of an unexpected 2-oxonia[3,3]sigmatropic rearrangement/aldol pathway in the formation of oxacyclic rings. Total synthesis of (+)-aspergillin PZ. Tetrahedron 67:9837

    Google Scholar 

  283. Reyes JR, Winter N, Spessert L, Trauner D (2018) Biomimetic synthesis of (+)-aspergillin PZ. Angew Chem Int Ed 57:15587

    Article  CAS  Google Scholar 

  284. Ramirez F, Desai NB, McKelvie N (1962) New synthesis of 1,1-dibromoolefins via phosphine-dibromomethylenes. The reaction of triphenylphosphine with carbon tetrabromide. J Am Chem Soc 84:1745

    Google Scholar 

  285. Smrcina M, Majer P, Majerová E, Guerassina TA, Eissenstat MA (1997) Facile stereoselective synthesis of γ-substituted γ-amino acids from the corresponding α-amino acids. Tetrahedron 53:12867

    Article  CAS  Google Scholar 

  286. Hugelshofer CL, Magauer T (2014) High-pressure transformations in natural product synthesis. Synthesis 46:1279

    Article  CAS  Google Scholar 

  287. Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T (1984) Horner-Wadsworth-Emmons reaction: use of lithium chloride and an amine for base-sensitive compounds. Tetrahedron Lett 25:2183

    Article  CAS  Google Scholar 

  288. Picquet M, Bruneau C, Dixneuf PH (1997) Selective isomerisation of prop-2-yn-1-ols into α,β-unsaturated aldehydes catalysed by Ru[η3-CH2C(Me)CH2]2(Ph2PCH2CH2PPh2). Chem Commun 1997:1201

    Article  Google Scholar 

  289. Marth CJ, Gallego GM, Lee JC, Lebold TP, Kulyk S, Kou KGM, Qin J, Lilien R, Sarpong R (2015) Network-analysis-guided synthesis of weisaconitine D and liljestrandinine. Nature 528:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Schotes C, Mezzetti A (2011) Cu(I)- and Cu(II)-catalyzed cyclo- and Michael addition reactions of unsaturated β-ketoesters. J Org Chem 76:5862

    Article  CAS  PubMed  Google Scholar 

  291. Vougioukalakis GC, Grubbs RH (2010) Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem Rev 110:1746

    Article  CAS  PubMed  Google Scholar 

  292. Ellerbrock P, Armanino N, Trauner D (2014) Biomimetic synthesis of the calcineurin phosphatase inhibitor dibefurin. Angew Chem Int Ed 53:13414

    Article  CAS  Google Scholar 

  293. Baisch G, Wagner B, Öhrlein R (2010) An efficient chemo-enzymatic approach towards variably functionalized benzotropolones. Tetrahedron 66:3742

    Article  CAS  Google Scholar 

  294. Kerschensteiner L, Löbermann F, Steglich W, Trauner D (2011) Crocipodin, a benzotropolone pigment from the mushroom Leccinum crocipodium (Boletales). Tetrahedron 67:1536

    Article  CAS  Google Scholar 

  295. Draskovits M, Stanetty C, Baxendale IR, Mihovilovic MD (2018) Indium- and zinc-mediated acyloxyallylation of protected and unprotected aldotetroses—revealing a pronounced diastereodivergence and a fundamental difference in the performance of the mediating metal. J Org Chem 83:2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Deng J, Zhou S, Zhang W, Li J, Li R, Li A (2014) Total synthesis of taiwaniadducts B, C, and D. J Am Chem Soc 136:8185

    Article  CAS  PubMed  Google Scholar 

  297. Larsen BJ, Sun Z, Nagorny P (2013) Synthesis of eukaryotic translation elongation inhibitor lactimidomycin via Zn(II)-mediated Horner-Wadsworth-Emmons macrocyclization. Org Lett 15:2998

    Article  CAS  PubMed  Google Scholar 

  298. Nandhikonda P, Heagy MD (2010) Dual fluorescent N-aryl-2,3-naphthalimides: applications in ratiometric DNA detection and white organic light-emitting devices. Org Lett 12:4796

    Article  CAS  PubMed  Google Scholar 

  299. Smith JG, Dibble PW, Sandborn RE (1986) The preparation and reactions of naphtho[1,2-c]furan and naphtho[2,3-c]furan. J Org Chem 51:3762

    Article  CAS  Google Scholar 

  300. Ellerbrock P, Armanino N, Ilg MK, Webster R, Trauner D (2015) An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat Chem 7:879

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, H. et al. (2021). Progress in the Chemistry of Cytochalasans. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 114. Progress in the Chemistry of Organic Natural Products, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-59444-2_1

Download citation

Publish with us

Policies and ethics