Skip to main content

Identification, Evaluation and Utilization of Resistance to Insect Pests in Grain Legumes: Advancement and Restrictions

  • Chapter
  • First Online:
Genetic Enhancement in Major Food Legumes

Abstract

The 68th session of the UN General Assembly declared 2016 as the International Year of Pulses (IYP 2016), emphasizing the nutritional significance of legumes and their potential role for achieving global food security. Even though the IYP ended with enhanced public awareness about the nutritional aspects, other health benefits, and importance of mitigating climate change, and its role in promoting biodiversity, additional studies are required to increase the global production and trade of pulses. Major food legumes including chickpea, pigeonpea, cowpea, field pea, lentil, faba bean, black gram, green gram and Phaseolus beans play a vital role in food, nutritional security and sustainable crop production. Several insect pests damage grain legumes, of which Helicoverpa armigera; Maruca vitrata; Etiella zinckenella; Spodoptera litura and S. exigua; Melanagromyza obtusa; Ophiomyia phaseoli; Aphis craccivora and Bemisia tabaci; Empoasca spp., Megaleurothrips dorsalis and Caliothrips indicus; Mylabris spp.; and Callosobruchus chinensis cause extensive losses. Appreciable progress has been made in formulating screening techniques to evaluate germplasm, mapping populations and genetically modified crops for resistance to insect pests under field and greenhouse conditions. However, some of these techniques cannot be used for stem flies, pod fly, leafhoppers, thrips and aphids. There is a need to develop rearing protocols for such insects to undertake precise phenotyping studies.

The indiscriminate use of insecticides has resulted in the development of insecticide resistance in pests. Identification and utilization of genetic sources of resistance is one of the eco-friendly approaches for the management of insect pests. There is a need to identify lines with diverse mechanisms of resistance and to develop insect resistant cultivars by diversifying the genetic variability utilizing the wild accessions of chickpea, pigeonpea and cowpea, which can be exploited for introgressions to enhance the levels of resistance to pod borers to build host plant resistance as an viable component of pest management in grain legumes for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaye F, Badiane MD et al (2014) Cowpea. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, India, pp 95–114

    Google Scholar 

  • Abrol DP (1999) Pulse susceptibility to Callosobruchus chinensis (L) (Bruchidae: Coleoptera) under field conditions. Trop Agric 76:150

    Google Scholar 

  • Acharjee S, Sarmah BK, Kumar PA et al (2010) Expression of a sequence-modified cry2Aa gene for resistance to H. armigera in chickpea (Cicer arietinum L.). Pl Sci 178(3):333–339

    Article  CAS  Google Scholar 

  • Adesoye A, Machuka J, Togun A (2008) CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–3210

    CAS  Google Scholar 

  • Asiwe J (2009) Insect mediated out crossing and gene flow in cowpea (Vigna unguiculata (L.) Walp.): implication for seed production and provision of containment structures for genetically transformed cowpea. Afr J Biotechnol 8:226–230

    Google Scholar 

  • Auclair JL (1963) Aphid feeding and nutrition. Annu Rev Entomol 8:439–490

    Article  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S et al (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Pl Cell Rep 30:2281–2292

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Kautz S, Jensen M et al (2011) Genetic and environmental interactions determine plant defences against herbivores. Ecology 99:313–326

    Article  Google Scholar 

  • Bata HD, Singh BB, Singh SR, Ladeinde TAO (1987) Inheritance of resistance to aphid in cowpea 1. Crop Sci 27(5):892–894

    Article  Google Scholar 

  • Benchasri S, Nualsri C, Santipracha Q et al. (2007) Evaluation of aphid (Aphis craccivora Koch) resistance in 24 accessions of yardlong bean and cowpea. In: proceeding of the 1st joint PSU–UNS international conference on bioscience: food, agriculture, and the environment, Songkhla, Thailand, 17–19 Aug, pp 215–222

    Google Scholar 

  • Bhagwat VR, Aherker SK, Satpute VS et al (1995) Screening of chickpea (Cicer arietinum L.) genotypes for resistance to Helicoverpa armigera (Hb.) and its relationship with malic acid in leaf exudates. J Entomol Res 19:249–253

    CAS  Google Scholar 

  • Bhalla S, Kapur ML, Singh C et al (2004) Interception of bruchids in imported lentil (Lens spp) germplasm. Indian J Agric Sci 74:332–333

    Google Scholar 

  • Bhora A, Pandey MK, Jha UC et al (2014) Genomics assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  Google Scholar 

  • Blair MW, Munoz C, Buendia HF et al (2010) Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Borges M, Moraes MCB, Laumann RA et al (2011) Chemical ecology studies in soybean crop in Brazil and their application to pest management. In: Ng T-B (ed) Soybean-biochemistry, chemistry and physiology. InTech Publishing, Rijeka, pp 31–66

    Google Scholar 

  • Bouhssini ME, Sarker A, Erskine W et al (2008) First sources of resistance to Sitona weevil (Sitona crinitus Herbst) in wild Lens species. Genet Resour Crop Evol 55:1–4

    Article  Google Scholar 

  • Brar HS, Singh R (2015) Host plant resistance in chickpea against gram pod borer, Helicoverpa armigera (Hübner) under field and laboratory conditions. Journal of Food Legumes 28(1):69–72

    Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA et al (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Senjuti S, Prithwi G et al (2016) Homologous promoter derived constitutive and chloroplast targeted expression of synthetic cry1Ac in transgenic chickpea confers resistance against Helicoverpa armigera plant cell. Tiss Organ Cult 125:521–535

    Article  CAS  Google Scholar 

  • Channarayappa SG, Muniyappa V, Frist RH (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canad J Bot 70:2184–2192

    Article  Google Scholar 

  • Cheema HK, Singh R, Taggar GK, Sandhu JS, Kooner BS (2010) Screening of chickpea genotypes for resistance against gram pod borer, (Helicoverpa armigera Hübner) under field conditions. J Res Punjab Agric Univ 47(1 & 2):1–3

    Google Scholar 

  • Chen HM, Ku HS, Schafleitner R et al (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216

    Article  Google Scholar 

  • Chhabra KS (1981) Mechanism of insect-pest resistance in pulse crops. In: Gill KS (ed) Breeding methods for the improvement of pulse crops. Kalyani Publishers, Ludhiana, pp 142–160

    Google Scholar 

  • Chhabra KS, Kooner BS, Sharma AK et al. (1988) Sources of resistance in mungbean (Vigna radiata) to insect pests and mungbean yellow mosaic virus in: proceedings of the II international symposium on mungbean, 16-20, Bangkok, pp 308-314

    Google Scholar 

  • Chhabra KS, Sharma AK, Saxena AK et al (1990) Sources of resistance in chickpea: role of biochemical components of the incidence of gram pod borer Helicoverpa armigera (Hubner). Ind J Entomol 52:423–430

    Google Scholar 

  • Chiang HS, Singh SR (1988) Pod hairs as a factor in Vigna vexillata resistance to the pod-sucking bug, Clavigralla tomentosicollis. Entomol Exp Appl 47:195–199

    Article  Google Scholar 

  • Choudhary AK, Raje RS, Datta S et al (2013) Conventional and molecular approaches towards genetic improvement in pigeonpea for insect resistance. Amer J Plant Sci suppl Special issue on bio-interactions and plant health 4(2A):372–385

    Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173

    Article  Google Scholar 

  • Clement SL, McPhee KE, Elberson LR et al (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum and Pisum fulvum interspecific crosses. Pl Breed 128:478–485

    Article  Google Scholar 

  • Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect-resistant crops. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Clement SL, Sharaf El-Din N, Weigand S et al (1994) Research achievement in plant resistance to insect pests of cool season food legumes. Euphytica 73:41–50

    Article  Google Scholar 

  • Clement SL, Wightman JA, Hardie DC et al (2000) Opportunities for integrated management of insect pests of grain legumes. In: Linking research and marketing opportunities for pulses in the 21st century. Kluwer, Dordrecht, pp 467–480

    Chapter  Google Scholar 

  • Clements T, John A, Nielsen K et al (2008) Translinks case study: Tmatboey community-based ecotourism project, Cambodia. Wildlife Conservation Society, New York

    Google Scholar 

  • Cowgill SE, Lateef SS (1996) Identification of antibiotic and antixenotic resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. J Econ Entomol 89(1):224–229

    Article  Google Scholar 

  • Cruz PL, Edson LL, Baldin M d J (2014) Characterization of antibiosis to the silverleaf whitefly Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in cowpea entries. J Pest Sci 87:639–645

    Article  Google Scholar 

  • Das SB, Kataria VP (1999) Relative susceptibility of chickpea genotypes against Helicoverpa armigera (Hubner). Insect Environment 5:68–69

    Google Scholar 

  • Dawoodi JT, Parsana GJ, Jethva DM, Virani VR (2009) Seasonal incidence of pink pod borer, Cydia ptychora (Meyrick) in blackgram. Insect Environ 15:137–138

    Google Scholar 

  • Dawoodi JT, Parsana GJ, Jethva DM et al (2010) Screening of blackgram varieties for resistance against pink pod borer, Cydia ptychora (Meyrick). Legume Res 33:54–56

    Google Scholar 

  • Department of Agriculture, Cooperation & Farmers Welfare (2018) Annual report 2017–2018

    Google Scholar 

  • Deshmukh RB, Patil VJ (1995) Genetic architecture of yield and its components in chickpea. Legume Res 18(2):85–88

    Google Scholar 

  • Deshmukh SG, Sureja BV, Jethva DM, Sonune VR, Joshi MD (2010) Field screening of chickpea germplasms against pod borer, Helicoverpa armigera (Hubner). Legume Res 33(2):150–151

    Google Scholar 

  • Devasthali S, Joshi M (1994) Infestation and varietal preference of insect pests in green gram. Indian Agriculture 38:263–272

    Google Scholar 

  • Devasthali S, Saran RK (1998) Relative susceptibility of new cultivars of green gram (Vigna radiata L. Wilczek) to insect pests at Indore (M.P.). Indian Agriculture 42:261–266

    Google Scholar 

  • Dhaliwal GS, Jindal V, Mohindru B (2015) Crop losses due to insect pests: global and Indian scenario. Indian J Entomol 77(2):165–168

    Article  Google Scholar 

  • Dhar V, Ahmad R (2004) Integrated Pest Management in Chickpea and Pigeonpea. In: integrated Pest Management in Indian Agriculture, Proceedings-11 (Birthal, PS and Sharma OP). National Centre for agricultural economics and policy research (NCAP) New Delhi and National Centre for integrated Pest management (NCIPM) New Delhi, pp 279

    Google Scholar 

  • Sharma HC, Stevenson PC, Simmonds MSJ et al. (2001) Identification of Helicoverpa armigera (Hübner) feeding stimulants and the location of their production on the pod-surface of pigeonpea [Cajanus cajan (L.) Millsp.]. Final technical report. DFID Competitive Research Facility Project [R 7029 (C)]. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, pp 85

    Google Scholar 

  • Dhillon MK, Sharma HC (2012) Paradigm shifts in research on host plant resistance to insect pests. Indian J Pl Prot 40(1):1–11

    Google Scholar 

  • Dixit GP (2015) All India coordinated research project on chickpea. Project Coordinator’s report. Available at: https://www.Aicrpchickpea.res.in/pdf_files/pc_report2014_190915.pdf

    Google Scholar 

  • Dongre TK, Pawar SE, Thakare RG et al (1996) Identification of resistant sources to cowpea weevil (Callosobruchus maculatus F.) in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res 32:201–204

    Article  Google Scholar 

  • Dougherty DE (1976) Pinitol and other soluble carbohydrates in soybean as factors in facultative parasite nutrition. University of Georgia, Tifton, Dissertation

    Google Scholar 

  • Duraimurugan P, Aditya P, Singh SK, Gupta S (2014) Evaluation of screening methods for Bruchid beetle (Callosobruchus chinensis) resistance in Greengram (Vigna radiata) and Blackgram (Vigna mungo) genotypes and influence of seed physical characteristics on its infestation. Vegetos- An International Journal of Plant Research 27(01):60–67

    Article  Google Scholar 

  • Erskine WM, Tufail MC, Russell MM et al (1994) Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73:127–135

    Article  Google Scholar 

  • Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and V. vexillata. In: Fatokun CA, Tarawali SA, Singh BB et al. (ed) challenges and opportunities for enhancing sustainable cowpea production. In: Proceedings of the world cowpea conference III, International Institute of Tropical Agriculture, Ibadan, pp. 4–8

    Google Scholar 

  • FAO (2017). FAOSTAT Statistical Database. [Rome]

    Google Scholar 

  • Fehr WR (1987) Principles of cultivar development. Vol1. Theory and technique. Macmillan, New York

    Google Scholar 

  • Fujii K, Miyazaki S (1987) Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis and its relationship with cytogenetic classification. Appl Entomol Zool 22:229–230

    Article  Google Scholar 

  • Ganguly M, Molla A, Karmakar S et al (2014) Development of pod borer resistant transgenic chickpea using a pod specific and a constitutive promoter driven fused cry1Ab/Ac gene. Theor Appl Genet 127:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47:197–202

    Article  CAS  PubMed  Google Scholar 

  • Gopalaswamy SVS, Sharma HC, Subbaratnam GV et al (2008) Field evaluation of transgenic pigeonpea plants for resistance to Helicoverpa armigera. Indian J Pl Prot 36:228–234

    Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Gore PG, Tripathi K, Chauhan SK, Singh M, Bisht IS, Bhalla S (2016) Searching for resistance in wild lens species against pulse beetle, Callosobruchus chinensis (L.). Legum Res 39(4):630–636

    Google Scholar 

  • Gowda CLL, Lateef SS, Smithson JB et al. (1983) Breeding for resistance to Heliothis armigera in chickpea. In: proceedings of the national seminar on breeding crop plants for resistance to pests and diseases, School of Genetics, Tamil Nadu agricultural university, Coimbatore, 25–27 may, pp 36–39

    Google Scholar 

  • Green PWC, Sharma HC, Stevenson PC et al (2006) Susceptibility of pigeonpea and some of its wild relatives to predation by Helicoverpa armigera: implications for breeding resistant cultivars. Crop Pasture Sci 57:831–836

    Article  Google Scholar 

  • Green PWC, Stevenson PC, Simmonds MSJ et al (2002) Can larvae of the pod-borer, Helicoverpa armigera (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea [Cajanus sp. (Fabaceae)]. Bull Entomol Res 92:45–51

    PubMed  Google Scholar 

  • Green PWC, Stevenson PC, Simmonds MSJ et al (2003) Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. J Chem Ecol 29:811–821

    Article  CAS  PubMed  Google Scholar 

  • Harsulkar AM, Giri AP, Patankar A et al (1999) Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Pl Physiol 121:497–506

    Article  CAS  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, Van Der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109(7):1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Hong MI, Kim KH, Ku JH et al (2015) Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Pl Breed Biotech 3(1):39–46

    Article  Google Scholar 

  • Horber E (1978) Resistance of pests of grain legumes in the USA in: Singh SR, Emden van HF and Taylor JA (eds) pests of grain legumes: ecology and control, Academic Press, London, pp. 281–295

    Google Scholar 

  • Huesing J, Romeis J, Ellstrand N et al (2011) Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: report of the deliberations of an expert panel. GM Crops 2(3):211–214

    Article  PubMed  Google Scholar 

  • Hulburt DJ, Boerma HR, All JN (2004) Effect of pubescence tip on soybean resistance to lepidopteran insects. J Econ Entomol 97:621–627

    Article  PubMed  Google Scholar 

  • Huynh B, Jeffrey DE, Arsenio N et al. (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol breed 35:36

    Google Scholar 

  • Ignacimuthu S, Janarthanan S, Balachandran B (2000) Chemical basis of resistance in pulses to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 36:89–99

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium- mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:33

    Article  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A et al (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. African J Biotechnol 2:211–218

    Article  CAS  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Pl Cell Rep 26:755–763

    Article  CAS  Google Scholar 

  • ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) (1992) The medium-term plan. ICRISAT, Patancheru

    Google Scholar 

  • Ishaaya I, Hirashima A, Yablonski S (1991) Mimosine, a nonprotein amino acid, inhibits growth and enzyme systems in Tribolium castaneum. Pestic Biochemi Physiol 39:35–42

    Article  CAS  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ et al (1996) Bruchid resistance of transgenic azuki bean expressing seeds α-amylase inhibitor of the common bean. Entomol Exp Appl 79:309–315

    Article  CAS  Google Scholar 

  • Ishimoto M, Yamada T, Kaga A (1999) Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L. Biochim Biophys Acta 1432:104–112

    Article  CAS  PubMed  Google Scholar 

  • Jaba J, Agnihotri M, Chakravarty S (2017a) Screening For Host Plant Resistance To Helicoverpa Armigera (Hubner) In Chickpea Using Novel Techniques. Legum Res 40(5):955–958. ISSN 0250-5371

    Google Scholar 

  • Jaba J, Devrani A, Agnihotri M, Chakravarty S (2017b) Screening Of Chickpea Cultivars Against Pod Borer Helicoverpa Armigera (Hubner) Under Unprotected Conditions. J of Experimental Zoology, India 20(2):835–843. ISSN 0972-0030

    Google Scholar 

  • Jackai LEN (1981) Relationship between cowpea crop phenology and field infestation by the legume pod borer, Maruca testulalis. Ann Entomol Soc America 74:402–408

    Article  Google Scholar 

  • Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: a review. In: Singh BB, Mohan Raj DR, Dashiell KE (eds) Advances in cowpea research. International Institute of Tropical Agriculture and Japan International Research Center for Agricultural Sciences, Sayce Publishing, Devon, pp 240–257

    Google Scholar 

  • Jackai LEN, Oghiakhe S (1989) Pod wall trichomes and resistance of two wild cowpea, Vigna vexillata, accessions to Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) and Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). Bull Entomol Res 79:595–605

    Article  Google Scholar 

  • Jadhav DR, Mallikarjuna N, Sharma HC, Saxena KB (2012) Introgression of Helicoverpa armigera resistance from Cajanus acutifolius- a wild relative from secondary Gene Pool of pigeon pea (Cajanus cajan). Asian Journal of Agricultural Sciences 4(4):242–248. ISSN 2041-3890

    Google Scholar 

  • Johnson B (1953) The injurious effects of the hooked epidermal hairs of the French beans (Phaseolus vulgaris L.) on Aphis craccivora Koch. Bull Entomol Res 44:779–788

    Article  Google Scholar 

  • Kalariya GB, Judal GS, Patel GM (1998) Reaction of pigeonpea genotypes against important insect pests. Gujarat Agricultural University Research Journal 23(2):33–38

    Google Scholar 

  • Kamphuis L, Gao L, Singh K (2012) Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Pl Biol 12:101

    Article  Google Scholar 

  • Kamphuis LG, Zulak K, Gao LL et al (2013) Plant–aphid interactions with a focus on legumes. Funct Pl Biol 40:1271–1284

    Article  CAS  Google Scholar 

  • Kang YJ, Kim S, Kim MY et al. (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443. doi:10.1038/ ncomms6443

    Google Scholar 

  • Kar S, Basu D, Das S et al (1997) Expression of CryIA(C) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Karungi J, Adipala E, Nampala P et al (2000) Pest management in cowpea. Part 3. Quantifying the effect of field pests on grain yields in eastern Uganda. Crop Prot 19:343–347

    Article  Google Scholar 

  • Kaur L, Sirari A, Kumar D et al (2013) Harnessing Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol Mediterr 52(1):157–165

    CAS  Google Scholar 

  • Keval R, Kerketta D, Nath P, Singh PS (2010) Population fluctuations of pod fly on some varieties of pigeonpea. J Food Legumes 23(2):164–165

    Google Scholar 

  • Khan ZR, Ward JT, Norris DM (1986) Role of trichomes in soybean resistance to cabbage looper, Trichoplusiani. Entomol Exp Applic 42:109–117

    Article  Google Scholar 

  • Kitsanachandee R, Somta P, Chatchawankanphanich O et al (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan M (1994) Plant resistance in pest management. Introduction to insect pest management 3:73–118

    Google Scholar 

  • Kooner BS, Cheema HK (2006) Evaluation of pigeonpea genotypes for resistance to pod borer complex. Indian J Crop Sci 1(1–2):194–196

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK et al. (2011) Towards marker-assisted selection in pulses: a review Pl Breeding 130:297–313

    Google Scholar 

  • Kumari DA, Reddy DJ, Sharma HC (2006) Antixenosis mechanism of resistance in pigeonpea to the pod borer, Helicoverpa armigera. J Appl Entomol 130(1):10–14

    Article  Google Scholar 

  • Kumari DA, Reddy DJ, Sharma HC (2010b) Stability of resistance to pod borer, Helicoverpa armigera in pigeonpea. Indian J Pl Protect 38(1):6–12

    Google Scholar 

  • Kumari DA, Sharma HC, Reddy DJ (2010a) Incorporation of lyophilized leaves and pods into artificial diet to assess antibiosis component of resistance to pod borer in pigeonpea. J Fd Leg 23(1):57–65

    Google Scholar 

  • Kushida A, Tazawa A, Aoyama S (2013) Novel sources of resistance to the soybean cyst nematode (Heterodera glycines) found in wild relatives of azuki bean (Vigna angularis) and their characteristics of resistance. Genetic Resour Crop Evol 60(3):985–994

    Article  Google Scholar 

  • Lakshmi Narayanamma L, Sriramulu M, CLL G, Ghaffar MA, Sharma HC (2007a) Tolerance to Helicoverpa armigera damage in chickpea genotypes under natural infestation. Indian J Pl Protec 35(2):227–231

    Google Scholar 

  • Lakshmi Narayanamma VL, Sharma HC, Gowda CLL (2007b) Mechanisms of resistance to Helicoverpa armigera and introgression of resistance genes into F1 hybrids in chickpea. Arthropod-Pl Interact 1(4):263–270

    Google Scholar 

  • Lakshminarayan S, Singh PS, Mishra DS (2008) Relationship between whitefly population, YMV disease and morphological parameters of green gram germplasm. Envirn Ecol 26:978–982

    Google Scholar 

  • Lal SS, Rathore YS (1999) Host plant resistance to pod fly (Melanagromyza obtusa) in pigeonpea (Cajanus cajan). Indian J Agril Sci 71(8):531–534

    Google Scholar 

  • Lale NES, Kolo AA (1998) Susceptibility of eight genetically improved local cultivars of cowpea to Callosobruchus maculatus F. (Coleoptera: Bruchidae) in Nigeria. Int J Pest Manag 44:25–27

    Article  Google Scholar 

  • Lambrides CJ, Imrie BC (2000) Susceptibility of mungbean varieties to the bruchid species Callosobruchus maculatus, C. phaseoli, C. chinensis and Acanthoscelides obtectus. Aust J Agric Res 51:85–89

    Article  Google Scholar 

  • Lateef SS (1985) Gram pod borer (Heliothis armigera hub.) resistance in chickpea. Agric Ecosyst Environ 14:95–102

    Article  Google Scholar 

  • Lateef SS, Bhagwat VR, Reed W (1981) Screening of chickpea cultivars for borer (Heliothis armigera) susceptibility in pesticide free conditions at ICRISAT center ICN 5 Dec 1981:13-14

    Google Scholar 

  • Lateef SS, Pimbert MP (1990) The search for host plant resistance of Helicoverpa armigera in chickpea and pigeonpea at ICRISAT. In: proceedings of the consultative group meeting on the host selection behaviour of Helicoverpa armigera, ICRISAT, Hyderabad, 5–7 march, pp 185–192

    Google Scholar 

  • Lateef SS, Sachan JN (1990) Host plant resistance to Helicoverpa armigera in different agroecological context. In: chickpea in the nineties. Proc. 2nd Int. workshop on chickpea improvement. 4-8, ICRISAT, India, pp. 181–189

    Google Scholar 

  • Lawlor HJ, Siddique KHM, Sedgley RH (1998) Improving cold tolerance and insect resistance in chickpea and the use of AFLPs for the identification of molecular markers for these traits. Acta Hortic 461:185–192

    Article  CAS  Google Scholar 

  • Lüthia C, Alvarez-Alfagemea F, Ehlersa JD et al (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103(04):373–381

    Google Scholar 

  • Macfoy CA, Dabrowski ZT, Okech S (1983) Studies on the legume pod borer, Maruca testulalis (Geyer)- 4. Cowpea resistance to oviposition and larval feeding. Insect Sci Applic 4:147–152

    Google Scholar 

  • Mallikarjuna J, Ashok Kumar CT, Roshmi MA (2009) Studies on relationship of morphological characters with pod borer damage in Dolichos bean, Lablab purpureas L. Insect Environ 15:108–109

    Google Scholar 

  • Mallikarjuna N, Senapathy S, Jadhav DR et al (2011) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 30:507–514

    Article  CAS  Google Scholar 

  • Maurya RP, Ujagir R, Ahmad T (2007) Evaluation of chickpea (Cicer arietinum L.) germplasm for the resistance to gram pod borer, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). J Ent Res 31(3):181–186

    Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I et al (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    Article  CAS  Google Scholar 

  • Mendesil E, Rämert B, Marttila S et al (2016) Oviposition preference of pea weevil. Bruchus pisorum L among host and non-host plants and its implication for pest management Frontiers Pl Sci 6. https://doi.org/10.3389/fpls.2015.01186

  • Mishra MK, Singh RP, Sharma RC (2012) Identification of pigeonpea superior lines against pod fly. Indian J Entomol 74(4):326–328

    Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS et al (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97:3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moudgal RK, Lakra RK, Dahiya B et al (2008) Physico-chemical traits of Cajanus cajan (L.) Millsp. Pod wall affecting Melanagromyza obtusa (Malloch) damage. Euphytica 161(3):429–436

    Article  CAS  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breed 25:47–56

    Article  PubMed  Google Scholar 

  • Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L.) Walp. Euphytica 91:181–187

    Article  CAS  Google Scholar 

  • Obadofin AA (2014) Screening of some cowpea varieties for resistance to Callosobruchus maculatus. Internat J Pure Appl Sci Technol 22(1):9–17

    Google Scholar 

  • Oghiakhe S (1995) Effect of pubescence in cowpea resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae). Crop Prot 14:379–387

    Article  Google Scholar 

  • Ombakho GA, Tyagi AP, Pathak RS (1987) Inheritance of resistance to the cowpea aphid in cowpea. Theor Appl Genet 74:817–819

    Article  CAS  PubMed  Google Scholar 

  • Onyishi GC, Harriman JC, Ngwuta AA et al (2013) Efficacy of some cowpea genotypes against major insect pests in southeastern agro-ecology of Nigeria. Middle-East J Scientific Res 15(1):114–121

    Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants, vol 72. Macmillan, New York, p 481

    Google Scholar 

  • Painter RH (1958) Resistance of plants to insects. Annu Rev Entomol 3(1):267–290

    Article  Google Scholar 

  • Pandey V, Srivastava CP (2006) Mechanism of resistance in long duration pigeonpea against pod fly (Melanagromyza obtusa). Ann Pl Protec Sci 20(2):290–293

    Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donor. Electron J Pl Breed 1(4):600–610

    Google Scholar 

  • Parade VD, Sharma HC, Kachole MS (2012) Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer, Helicoverpa armigera. Amer J Pl Sci 3:627–635

    Article  CAS  Google Scholar 

  • Parmar BS, Walia S (2001) Prospects and problems of phytochemical biopesticides. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Harwood, Amsterdam, pp 133–210

    Google Scholar 

  • Parsai SK (1996) Studies on pod fly and pod borer damage in certain medium/late maturing varieties of pigeonpea. Bharatiya Krishi Anusandhan Patrika 11(2):117–120

    Google Scholar 

  • Patankar AG, Harsulkar AM, Giri A et al (1999) Diversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and its wild relatives. Theor Appl Genet 99:719–726

    Article  CAS  PubMed  Google Scholar 

  • Pathak RS (1988) Genetics of resistance to aphid in cowpea. Crop Sci 28:474–476

    Article  Google Scholar 

  • Peter AJ, Shanower TG, Romeis J (1995) The role of plant trichomes in insect resistance: a selective review. Phytophaga 7:41–64

    Google Scholar 

  • Pillemer EA, Tingey WM (1978) Hooked trichomes and resistance of Phaseolus vulgaris to Empoasca fabae (Harris). Entomol Exp Applic 24:83–94

    Article  Google Scholar 

  • Ponnusamy D, Pratap A, Singh SK et al (2014) Evaluation of screening methods for bruchid beetle (Callosobruchus chinensis) resistance in greengram (Vigna radiata) and blackgram (Vigna mungo) genotypes and influence of seed physical characteristics on its infestation. VEGETOS 27(1):60–67

    Article  Google Scholar 

  • Popelka JC, Gollasch S, Moore A et al (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Pl Cell Rep 25:304–312

    Article  CAS  Google Scholar 

  • Rai R, Ramujagir (2005) Screening of chickpea (Cicer arietinum) genotypes for resistance to gram pod-borer (Helicoverpa armigera). Indian J Agric Sci 75(2):120–122

    Google Scholar 

  • Ramegowda GK, Rachappa V, Patil RK, Lingappa S (2007) Field screening of chickpea genotypes against Helicoverpa armigera (Hübner). J Ent Res 31(1):23–27

    Google Scholar 

  • Redden RJ, Dobie P, Gatehouse AMR (1983) The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analyses of parental, F1, F2, F3 and backcross seed generations. Aust J Agric Res 34:681–695

    Article  Google Scholar 

  • Ruiz IL, Pascual MM, Omar SM et al. (2012) Screening and selection of lentil (Lens miller) germplasm resistant to seed bruchids (Bruchus spp.) Euphytica 188:153–162

    Google Scholar 

  • Sandhu JS, Arasakesary SJ, Singh P (2005) Evaluation of chickpea (Cicer arietinum L) genotypes for cold tolerance. Indian J Pulses Res 18:171–174

    Google Scholar 

  • Sarkar S, Bhattacharyya S (2015) Screening of green gram genotypes for Bruchid (Callosobruchus chinensis L.) resistance and selection of parental lines for hybridization programme. Legum Res 38(5):704–706

    Google Scholar 

  • Sarmah BK, Moore A, Tate W et al (2004) Transgenic chickpea seeds expressing high levels of amylase inhibitor. Mol Breeding 14:73–82

    Article  CAS  Google Scholar 

  • Saxena KB, Chandrasena GDSN, Hettiarachchi K et al (2002) Evaluation of pigeon pea accessions and selected lines for reaction to Maruca. Crop Sci 42:615–618

    Google Scholar 

  • Saxena KB, Reddy MV, Bhagwat VR, Sharma SB (1996) Preliminary studies on the incidence of major diseases and insects in CAJANUS PLATYCARPUS germplasm at ICRISAT Asia Centre. Intl Chickpea Pigeonpea Newsl 3:51–52

    Google Scholar 

  • Schroeder HE, Gollasch S, Moore A et al (1995) Bean alpha-amylase inhibitor confers resistance to pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Pl Physiol 107:1233–1239

    Article  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo J et al (1994) Transgenic pea seeds expressing a-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796

    CAS  Google Scholar 

  • Shaheen FA, Khaliq A, Aslam M (2006) Resistance of chickpea (Cicer arietinum L) cultivars against pulse beetles. Pak J Bot 38:1224–1244

    Google Scholar 

  • Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer Maruca vitrata - a review. Crop Protect 17:373–386

    Article  Google Scholar 

  • Sharma HC (2001) Crop protection compendium: Helicoverpa armigera. Electronic compendium for crop protection. Commonwealth agricultural Bureaux international, Wallingford. Available at: www.cabi.org/c&c/about/ contributors-p-s1

  • Sharma HC (2005) Strategies for Heliothis/Helicoverpa management: emerging trends and strategies for future research. Oxford and IBH, New Delhi

    Google Scholar 

  • Sharma HC (2009) Applications of biotechnology in pest management and ecological sustainability. CRC Press, Taylor and Francis, Boca Raton pp 526

    Google Scholar 

  • Sharma HC, Jaba J, Vashisth S (2017) Distinguishing proof and utilization of resistance of insect pests in grain legumes: Progress and limitations. In: Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 131–170. ISBN 978-981-10-6055-7

    Chapter  Google Scholar 

  • Sharma HC, Ortiz R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. J Environ Biol 23:11–35

    Google Scholar 

  • Sharma HC, Bhagwart MP, Pampapathy G et al (2006) Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Resourc Crop Evol 53:131–138

    Article  Google Scholar 

  • Sharma HC, Bhagwat VR, Saxena KB (1997) Biology and Management of Spotted pod Borer, Maruca vitrata (Geyer). International crops research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Sharma HC, Norris DM (1991) Chemical basis of resistance in soybean to cabbage looper, Trichoplusia ni. J Sci Fd Agric 55:353–364

    Article  CAS  Google Scholar 

  • Sharma HC, Norris DM (1994a) Phagostimulant activity of sucrose, sterols and soybean leaf extractables to the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Insect Sci Applic 15:281–288

    CAS  Google Scholar 

  • Sharma HC, Norris DM (1994b) Biochemical mechanisms of resistance to insects in soybean: extraction and fractionation of antifeedants. Insect Sci Applic 15:31–38

    CAS  Google Scholar 

  • Sharma HC, Pampapathy G (2004) Effect of natural plant products, Brassinolide and host plant resistance in combination with insecticides on Helicoverpa armigera (Hubner) damages in pigeonpea. Indian J Pl Protect 32(2):40–44

    CAS  Google Scholar 

  • Sharma HC, Pampapathy G, Lanka S, Ridsdill-Smith T (2005) Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142(1):107–117

    Article  Google Scholar 

  • Sharma HC, Pampapathy G, Lanka SK et al (2005c) Potential for exploitation of wild relative of chickpea, Cicer reticulatum for imparting resistance to Helicoverpa armigera. J Econ Entomol 98:2246–2253

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Pampapathy G, Lanka SK et al (2005d) Antibiosis mechanism of resistance to legume pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142:107–117

    Article  Google Scholar 

  • Sharma HC, Pampapathy G, Reddy LJ (2003) Wild relatives of pigeonpea as a source of resistance to the pod fly (Melanagromyza obtuse Malloch) and pod wasp (Tanaostigmodes cajaninae La Salle). Genet Resour Crop Evol 50:817–824

    Article  Google Scholar 

  • Sharma HC, Pampapathy G, Reddy LJ (2003a) Wild relatives of pigeonpea as a source of resistance to the pod fly (Melanagromyza obtusa Malloch) and pod wasp (Tenaostigmodes cajaninae La Salle). Genet Resour Crop Evol 50:817–882

    Article  Google Scholar 

  • Sharma HC, Saxena KB, Bhagwat VR (1999) Legume pod borer, Maruca vitrata: bionomics and management. Information bulletin 55, international crops research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Pl Interact 3(3):151–161

    Article  Google Scholar 

  • Sharma OP, Gopali JB, Yelshetty S et al (2010) Pests of pigeonpea and their management, National Centre for integrated Pest management. IARI Campus, New Delhi

    Google Scholar 

  • Sharma S, Thakur DR (2014) Biochemical basis of bruchid resistance in cowpea, chickpea and soybean genotypes. Amer J Fd Technol 9(6):318–324

    Article  CAS  Google Scholar 

  • Sharanabasappa, Goud KB (2004) The pest status of Apion amplum (Faust) on greengram. Karnataka J Agric Sci 17(1):600–601

    Google Scholar 

  • Silva AGD, Boiça Junior AL, Farias Paulo RS et al (2014) Non-preference for oviposition and antibiosis in bean cultivars to Bemisia tabaci biotype B (Hemiptera: Aleyrodidae). Revista Colombiana Entomolog 40(1):7–14

    Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27:965–977

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Weigand S (1994) Identification of resistant sources in Cicer species to Liriomyza cicerina. Genet Resour Crop Evol 41(2):75–79

    Article  Google Scholar 

  • Singh S (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J et al (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Pl Cell Rep 27:1841–1850

    Article  CAS  Google Scholar 

  • Somta C, Somta P, Tomooka N et al (2008) Characterization of new sources of mungbean (Vigna radiata (L) Wilczek) resistance to bruchids, Callosobruchus spp (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321

    Article  Google Scholar 

  • Somta P, Talekar NS, Srinives P (2006) Characterization of Callosobruchus chinensis (L.) resistance in Vigna umbellata (Thunb.) Ohwi & Ohashi. J Stored Prod Res 42:313–327

    Article  Google Scholar 

  • Soundararajan RP, Chitra N, Geetha S (2013) Host plant resistance to insect pests of grain legumes - a review. Agri Rev 34(3):176–187

    Article  Google Scholar 

  • Soundararajan, RP, Chitra N, Ramasamy M (2010) Host Plant Resistance to insect pests of urd bean and mungbean. In: National workshop on paradigm shifts in research on crop resistance to pests, Annamalai University, Annamalai Nagar, March 4–5 Mar pp 57–58

    Google Scholar 

  • Sousamajer MJD, Hardie DC, Turner NC (2007) Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1422

    Article  Google Scholar 

  • Srivastava CP, Joshi N (2011) Insect pest management in pigeonpea in Indian scenario: a critical review. Indian Journal of Entomology 73:63–75

    Google Scholar 

  • Srivastava CP, Srivastava RP (1989) Screening for resistance to gram pod borer, Heliothis armigera (Hubner) in chickpea (Cicer arietinum L.) genotypes and observations on its mechanism of resistance in India. Insect Sci Applic 10:255–258

    Google Scholar 

  • Stevenson PC, Green PWC, Simmonds MSJ et al. (2005) Physical and chemical mechanisms of plant resistance to Helicoverpa: recent research on chickpea and pigeonpea. In: Sharma H (ed) Helicoverpa/Heliothis management: emerging trends and strategies for the future research Sharma HC (ed.). Oxford & IBH, New Delhi, pp. 215–228

    Google Scholar 

  • Sudha M, Karthikeyan A, Anusuya P et al (2013) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in inter and intra specific crosses of mungbean (Vigna radiata). Amer J Pl Sci 4:1924–1927

    Article  Google Scholar 

  • Sujana G, Sharma HC, Manohar Rao D (2008) Antixenosis and antibiosis components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Internat J Trop Insect Sci 28(4):191–200

    Google Scholar 

  • Sujana G, Sharma HC, Manohar Rao D (2012) Pod surface exudates of wild relatives of pigeonpea influence the feeding preference of the pod borer, Helicoverpa armigera. Arthropod Pl Interact 6(2):231–239

    Article  Google Scholar 

  • Taggar GK, Gill RS (2012) Preference of whitefly, Bemisia tabaci, towards black gram genotypes: role of morphological leaf characteristics. Phytoparasitica 40(5):461–474

    Article  Google Scholar 

  • Talekar NS, Lin CL (1992) Characterization of Callosobruchus chinensis (Coleoptera: bruchidae) resistance in mungbean. J Econ Entomol 85:1150–1153

    Article  Google Scholar 

  • Taran B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean (Phaseolus vulgaris L.). Crop Sci 42:544–446

    Article  CAS  Google Scholar 

  • Tarver MR, Shade RE, Shukle RH et al (2007) Pyramiding of insecticidal compounds for control of the cowpea bruchid (Callosobruchus maculatus F.). Pest Manag Sci 63:440–446

    Article  CAS  PubMed  Google Scholar 

  • Teshome A, Mendesil E, Geleta M et al. 2015. Screening the primary gene pool of field pea (Pisum sativum L. subsp. sativum) in Ethiopia for resistance against pea weevil (Bruchus pisorum L.) genet Resour crop Evol (2015) 62:525–538

    Google Scholar 

  • Thu TT, Mai TTX, Dewaele E et al (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp.]. Mol Breeding 11:159–168

    Article  CAS  Google Scholar 

  • Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 227–258

    Chapter  Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice as a mechanism of defence. Acta Physiol Pl 32:695–701

    Article  CAS  Google Scholar 

  • Venugopal KJ, Janarthanan S, Ignacimuthu S (2000) Resistance of legume seeds to the bruchid, Callosobruchus maculatus: metabolites relationship. Indian J Exp Biol 38:471–476

    CAS  PubMed  Google Scholar 

  • Weigand S, Lateef SS, El Din SN et al (1994) Integrated control of insect pests of cool season food legumes. In: Muehlbauer EJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer, Dordrecht, pp 679–694

    Chapter  Google Scholar 

  • Williams CB, Chambliss OL (1980) Out crossing in southern pea. Hortic Sci 15:179

    Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1995) Mechanism of resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea: role of oxalic acid in leaf exudates as an antibiotic factor. J Econ Entomol 88(6):1783–1786

    Article  CAS  Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1997) Roles of oxalic and malic acids in chickpea trichome exudates in host-plant resistance to Helicoverpa armigera. J Chem Ecol 23(4):1195–1210

    Article  CAS  Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D et al (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet 84:839–844

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Jaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaba, J., Bhandi, S., Deshmukh, S., Pallipparambil, G.R., Mishra, S.P., Arora, N. (2021). Identification, Evaluation and Utilization of Resistance to Insect Pests in Grain Legumes: Advancement and Restrictions. In: Saxena, K.B., Saxena, R.K., Varshney, R.K. (eds) Genetic Enhancement in Major Food Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-64500-7_7

Download citation

Publish with us

Policies and ethics