Skip to main content

Biodiversity and Industrial Applications of Genus Chaetomium

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Abstract

When Gustav Kunze introduced genus Chaetomium, as a new genus to the science, in Mykologische Hefte (Leipzig) in 1817, the new taxon attracted the interest of the researchers in every place in the world. Genus Chaetomium is a very diverse taxon colonizing various substrates rich in cellulose such as soils, textiles, plant tissues, agricultural wastes, and seeds. The genus Chaetomium is considered one of the largest genera in saprobic ascomycetes, which belongs to order Sordariales and family Chaetomiaceae. Until now more than 500 compounds with a wide range of bioactive effects have been isolated from Chaetomium spp., but compared with its richness of species, more bioactive secondary metabolites might be found in this member of fungi. Therefore, together with its ubiquitous nature, these species have great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. The goal of this chapter is to shed the light on the biodiversity of Chaetomium in different ecological habitats with its application in different industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott SP, Sigler L, McAleer R, McGough DA, Rinaldi MG, Mizell G (1995) Fatal cerebral mycoses caused by the ascomycete Chaetomium strumarium. J Clin Microbiol 33:2692–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Azeem AM (1991) Effect of overgrazing on vegetation, microbes and soil in Ismailia-desert habitat. In: Pineda FD, Casado MA, de Miguel JM, Montalvo J (eds) Diversidad Biológica/biological diversity. Centro de Estudios Ramón Areces S.A, Madrid, Spain, pp 241–246

    Google Scholar 

  • Abdel-Azeem AM (2003) Ecological and taxonomical studies on ascospore-producing fungi in Egypt. Ph.D Thesis, Faculty of Science, Suez Canal University

    Google Scholar 

  • Abdel-Azeem AM (2009) Operation Wallacea in Egypt. I – A preliminary study on diversity of fungi in the world heritage site of Saint Katherine. Egypt Assiut Univ J Bot 38(1):29–54

    Google Scholar 

  • Abdel-Azeem AM (2020) Taxonomy and biodiversity of the genus Chaetomium in different habitats. In: Abdel-Azeems AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 3–77

    Chapter  Google Scholar 

  • Abdel-Azeem AM, Ibrahim ME (2004) Diversity of terrophilous mycobiota of Sinai. Egypt J Biol 6:21–31

    Google Scholar 

  • Abdel-Azeem AM, Salem FM (2012) Biodiversity of laccase producing fungi in Egypt. Mycosphere 3(5):900–920

    Article  Google Scholar 

  • Abdel-Azeem AM, Salem FM (2015) Fungi fimicola Aegyptiaci: I. recent investigations and conservation in arid South Sinai. Mycosphere 6(2):174–194

    Article  Google Scholar 

  • Abdel-Azeem AM, Sheir DH (2020) Bioconversion of lignocellulosic residues into single-cell protein (SCP) by Chaetomium. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 343–375

    Chapter  Google Scholar 

  • Abdel-Azeem AM, Gherbawy YA, Sabry AM (2016a) Enzyme profiles and genotyping of Chaetomium globosum isolates from various substrates. Plant Biosystems 150(3):420–428

    Article  Google Scholar 

  • Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016b) Biodiversity of the genus Aspergillus in different habitats. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications. Elsevier, Amsterdam, pp 3–40. https://doi.org/10.1016/B978-0-444-63505-1.00001-4

    Chapter  Google Scholar 

  • Abdel-Azeem AM, Zaki SM, Khalil WF, Makhlouf NA, Farghaly LM (2016c) Anti-rheumatoid activity of secondary metabolites produced by endophytic Chaetomium globosum. Front Microbiol 7(1477):1–11

    Google Scholar 

  • Abdel-Azeem AM, Omran MA, Mohamed RA (2018a) Evaluation of the curative probability of bioactive metabolites from endophytic fungi isolated from some medicinal plants against paracetamol-induced liver injury in mice. LAPLAMBERT Academic Publishing. isbn:978-613-9-89820-6

    Google Scholar 

  • Abdel-Azeem AM, Blanchette RA, Held BW (2018b) New record of Chaetomium grande Asgari & Zare (Chaetomiaceae) for the Egyptian and African mycobiota. Phytotaxa 343(3):283–288

    Article  Google Scholar 

  • Abdel-Azeem AM, Held BW, Richards JE, Davis SL, Blanchette RA (2019) Assessment of biodegradation in ancient archaeological wood from the middle cemetery at Abydos, Egypt. PLoS One 4(3):e0213753

    Article  CAS  Google Scholar 

  • Abdel-Hafez S (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75:75e80

    Article  Google Scholar 

  • Abdel-Hafez SI (1982a) Survey of microflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8

    Article  Google Scholar 

  • Abdel-Hafez SI (1982b) Osmophilic fungi of desert soils in Saudi Arabia. Mycopathologia 80:9–14

    Article  Google Scholar 

  • Abdel-Hafez SII, El-Maghraby OMO (1993) Thermophilic and thermotolerant fungi of Wadi-Bir-El-Ain soils. Eastern desert, Egypt. Abhath Al-Yarmouk. Pure Sci Eng 2:55–66

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989a) Keratinophilic and cycloheximide-resistant fungi in soils of Sinai Governorate, Egypt. Cryptogam Mycol 10(3):265–275

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989b) Some ecological studies of osmophilic and halophilic soil fungi of Sinai Peninsula, Egypt. J Sohag Pure Appl Sci Bull Faculty Sci 5:67–83

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1990) Glycophilic and cellulose-decomposing fungi from soils of Sinai Peninsula, Egypt. Arab Gulf J Sci Res 8(1):153–168

    Google Scholar 

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400

    Article  CAS  Google Scholar 

  • Abdel-Rahim IR, Nafady NA, Bagy MMK, Abd-Alla MH, Abd-Alkader AM (2018) Fungi-induced paint deterioration and air contamination in the Assiut university hospital. Egypt Indoor Built Environ 28(3):384–400

    Article  Google Scholar 

  • Abdel-Sater MA (1990) Studies on the mycoflora of the New Valley area, Western Desert, Egypt. Ph.D. Thesis, Faculty of Science, Assiut University

    Google Scholar 

  • Abdel-Sater MA (2000) Soil fungi of the New Valley area, Western desert, Egypt. Bull Fac Sci 29(2-D):255–271

    Google Scholar 

  • Abu-Elsaoud AM, Abdel-Azeem AM (2020) Light, electromagnetic Spectrum, and Photostimulation of microorganisms with special reference to Chaetomium. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 377–393

    Chapter  Google Scholar 

  • Abu-Elsaoud AM, Abdel-Azeem AM, Mousa SA, Hassan SS (2015) Biosynthesis, optimisation and photostimulation of α-NADPH-dependent nitrate reductase-mediated silver nanoparticles by Egyptian endophytic fungi. Adv Environ Biol 9(24):259–269

    Google Scholar 

  • Abo Nahas, H. (2019). Endophytic fungi: A gold mine of antioxidants, Microbial Biosystems, 4(1), pp. 58-79. doi: 10.21608/mb.2019.41030

    Google Scholar 

  • Adametz L (1886) Untersuchungen über die niederen Pilze der Ackerkrume. Inaug Diss, 1–78.Leipzig

    Google Scholar 

  • Adams MWW, Kelly RM (1998) Finding and using hyperthermophilic enzymes. TIBTECH 16:329–332

    Article  CAS  Google Scholar 

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, a. (2006) Diversity and distribution of Victoria land biota. Soil Biol Biochem 38:3003e3018

    Article  CAS  Google Scholar 

  • Aggarwal R, Tewari AK, Srivastava KD, Singh DV (2004) Role of antibiosis in the biological control of spot blotch (Cochliobolus sativus) of wheat by Chaetomium globosum. Mycopathologia 157(4):369–377

    Google Scholar 

  • Ali MI (1977) Studies on the fungal flora of Saudi Arabia. 1-Wadi Hanif. Bull Fac Sci Riyadh Univ 8:7–20

    Google Scholar 

  • Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI (2013) Study of airborne fungus spores by viable and non-viable methods in Havana. Cuba Grana 52(4):289–298

    Article  Google Scholar 

  • Alponti JS, Maldonado RF, Ward RJ (2016) Thermostabilization of Bacillus subtilis GH11 xylanase by surface charge engineering. Int J Biol Macromol 87:522–528

    Google Scholar 

  • Al-Sadi AM, Al-Khatri B, Nasehi A, Al-Shihi M, Al-Mahmooli IH, Maharachchikumbura SSN (2017) High fungal diversity and dominance by Ascomycota in dam reservoir soils of arid climates. Int J Agric Biol 19(4):682–688

    Article  CAS  Google Scholar 

  • Alvarez TM, Paiva JH, Ruiz DM, Cairo JPLF, Pereira IO, Paixão DAA et al (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8(12):1–9. https://doi.org/10.1371/journal.pone.0083635

    Google Scholar 

  • Ames LM (1963) A monograph of the Chaetomiaceae. US Army Res Dev Ser 2:1–65

    Google Scholar 

  • Amin EE, Abdalla MH (1980) Survey of soil fungi from the Sudan Gezira. Mycopathologia 71:131–136

    Article  Google Scholar 

  • Anandi V et al (1989) Cerebral phaeohyphomycosis caused by Chaetomium globosum in a renal transplant recipient. J Clin Microbiol 27:2226–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 35–53

    Chapter  Google Scholar 

  • Aru A, Munk-Nielsen L, Federspiel BH (1997) The soil fungus Chaetomium in the human paranasal sinuses. Eur Arch Otorhinolaryngol 254:350–352

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi S, Helaly S, Schroers HJ, Stadler M, Richert-Poeggeler KR et al (2017) Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi. PLoS One 12(7):e0180032. https://doi.org/10.1371/journal.pone.0180032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attia EA, Singh BP, Dashora K, Abdel-Azeem AM (2020) A potential antimicrobial, extracellular enzymes, and antioxidants resource: endophytic fungi associated with medicinal plants. Int J Biosci 17(1):119–132

    CAS  Google Scholar 

  • Aue R, Muller E (1967) Vergleichende Untersuchungen an einigen Chaetomium arten. In Ber Schweiz Bot Ges 77:187–207

    Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broadscale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bahkali AH, Khiyami MA (1996) Cellulose-decomposing fungi from Saudi Arabian soils. Qatar Univ Sci J 16(1):77–80

    CAS  Google Scholar 

  • Balbool BA, Abdel-Azeem A (2020) Diversity of the culturable endophytic fungi producing L-asparaginase in arid Sinai, Egypt. Italian J Mycol 49:8–24

    Google Scholar 

  • Baramee S, Teeravivattanakit T, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C (2017) A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation. Appl Microbiol Biotechnol 101:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Barron MA et al (2003) Invasive mycotic infections caused by Chaetomium perlucidum, a new agent of cerebral phaeohyphomycosis. J Clin Microbiol 41:5302–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhassine S, Kacem CN, Destain J (2016) Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the east of Algeria. Afr J Biotechnol 15(7):207–213

    Article  Google Scholar 

  • Besada WH, Yusef HM (1968) On the mycoflora of UAR soil. Proc Egypt Acad Sci 21:103–109

    Google Scholar 

  • Besada WH, Yusef HM (1969a) Chaetomium mareoticum sp. nov. transactions of the British.

    Google Scholar 

  • Besada WH, Yusef HM (1969b) Chaetomium mareoticum sp. nov. Trans Br Mycol Soc 52:502–504.

    Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Biswas SK, Aggarwal R, Srivastava KD, Gupta S, Dureja P (2012) Characterization of antifungal metabolites of Chaetomium globosum Kunze and their antagonism against fungal plant patho- gens. J Biol Cont 26(1):70–74

    Google Scholar 

  • Blanchette RA, Held BW, Abdel-Azeem AM (2017) New record of Chaetomium iranianum MF787598 (Chaetomiaceae) for the Egyptian and African mycobiota. Microb Biosyst J 2(2):6–9

    Article  Google Scholar 

  • Bock T, Chen WH, Ori A, Malik N, Silva-Martin N, Huerta-Cepas J (2014) An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Res 42:13525–13533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges WS, Mancilla G, Guimar-aes DO, Duran-Patron R, Collado IG, Pupo MT (2011) Azaphilones from the endophyte Chaetomium globosum. J Nat Prod 74:1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Taylor A (1978) The production of toxic metabolites by Chaetomium spp. isolated from soils of permanent pasture. Can J Microbiol 24:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Jerram WA, Taylor A (1968) Production of cochliodinol and a related metabolite by Chaetomium species. Can J Microbial 14:861–866

    Article  CAS  Google Scholar 

  • Brewer D, Jerram WA, Meiler TA (1970) The toxicity of cochliodinol, and antibiotic metabolite of Chaetomium spp. Can J Microbiol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Duncan JM, Jerram WA, Leach CK, Safe S, Taylor A, Vining LC, Archibald RM, Stevenson RG, Mirocha CJ, Christensen CM (1972) Ovine ill-thrift in Nova Scotia. 5. The production and toxicology of chetomin, a metabolite of Chaetomium spp. Can J Microbiol 18:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem. Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Burlot L, Cherton J, Convert O, Correia I, Dennetière B (2003) New chaetoglobosins from maize infested by Phomopsis leptostromiformis fungi. Production, identification, and semi-synthesis. Spectroscopy 17:725–734

    Article  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33:404–417

    Article  PubMed  Google Scholar 

  • Cannon PF (1986) A revision of Achaetomium, Achaetomiella and Subramaniula, and some similar species of Chaetomium. Trans Br Mycol Soc 87:45–76. https://doi.org/10.1016/S0007-1536(86)80004-3

    Article  Google Scholar 

  • Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110(8):962–970

    Article  CAS  PubMed  Google Scholar 

  • Carter A (1982) A taxonomic study of the ascomycete genus Chaetomium Kunze [doctoral dissertation]. Department of Botany, University of Toronto, Toronto.

    Google Scholar 

  • Castagnoli E, Andersson MA, Mikkola R, Kredics L, Marik T, Kurnitski J, Salonen H (2017) Indoor Chaetomium-like isolates: resistance to chemicals, fluorescence and mycotoxin production. In: Säteri J, Ahola M (eds) Sisäilmastoseminaari 2017, Helsinki, 15.03.2017, vol 35. (SIY raportti 35). Sisäilmayhdistysry, Helsinki, pp 227–232

    Google Scholar 

  • Chahal DS, Hawksworth DL (1976) Chaetomium cellulolyticum, a new thermotolerant and cellulolytic Chaetomium. I. Isolation, description and growth rate. Mycologia 68(3):600–610

    Article  Google Scholar 

  • Chahal DS, Moo-Young M, Vlach D (1981) Effect of physical and physicochemical pretreatments of wood for SCP production with Chaetomium. Biotechnol Bioeng 23:2417–2420

    Article  Google Scholar 

  • Chen KT (1973) Some new species of Chaetomium and Septaria. Acta Microbiol Sin 13:124–128

    Google Scholar 

  • Chen J, Li DC, Zhang YQ, Zhou QX (2005) Purification and characterization of a thermostable glucoamylase from Chaetomium thermophilum. J Gen Appl Microbiol 51:175–181

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wang J, Liu J, Zhu H, Sun B, Wang J, Zhang J, Luo Z, Yao G, Xue Y, Zhang Y (2015a) Armochaetoglobins A-J: cytochalasan alkaloids from Chaetomium globosum TW1-1, a fungus derived from the terrestrial arthropod Armadillidium vulgare. J Nat Prod 78(6):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhu H, Wang J et al (2015b) Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur J Org Chem 14:3086–3094

    Article  CAS  Google Scholar 

  • Chen C, Tong Q, Zhu H et al (2016) Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep 6:18711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen J, Geng Z, Wang M, Liu N, Li D (2018) Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Biotechnol Biofuels 11(1):1–16.

    Google Scholar 

  • Chen J, Zhang W, Guo Q, Yu W, Zhang Y, He B (2020) Bioactivities and future perspectives of Chaetoglobosins. Evid Based Complement Alternat Med 2020:8574084. https://doi.org/10.1155/2020/8574084

    Article  PubMed  PubMed Central  Google Scholar 

  • Chourasia HK (1995) Mycobiota and mycotoxins in herbal drugs of Indian pharmaceutical industries. Mycol Res 99:697–703

    Article  CAS  Google Scholar 

  • Christensen M (1981) A synoptic key and evaluation of species in the Aspergillus flavus group. Mycologia 73:1056–1084

    Article  Google Scholar 

  • Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J Nat Prod 68(11):1592–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coolbear T, Daniel RM, Morgan HW (1992) The enzymes from extreme thermophiles: bacterial sources, thermo stabilities and industrial relevance. Adv Biochem Eng Biotechnol 45:57–67

    CAS  PubMed  Google Scholar 

  • Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M (2018) Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Corrêa TLR, dos Santos LV, Pereira GAG (2016) AA9 and AA10: from enigmatic to essential enzymes. Appl Microbiol Biotechnol 100(1):9–16. https://doi.org/10.1007/s00253-015-7040-0

    Article  CAS  PubMed  Google Scholar 

  • Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. TIBTECH 15:349–352

    Article  CAS  Google Scholar 

  • Cullen D, Andrews JH (1984) Evidences for the role of antibiosis in the antagonism of Chaetomium globosum to the apple scab pathogen Venturia inaequalis. Can J Bot 62:1819–1823

    Article  Google Scholar 

  • da Pinheiro ACMS (2014) Fungal communities in archives: assessment strategies and impact on paper conservation and human health. Universidade Nova de Lisboa

    Google Scholar 

  • Darwish AMG, Abdel-Azeem AM (2020) Chaetomium enzymes and their applications. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 241–249

    Chapter  Google Scholar 

  • Darwish AMG, Abdelmotilib NM, Abdel-Azeem AM, Abo Nahas HH, Mohesien MT (2020) Applications of Chaetomium functional metabolites with special reference to antioxidants. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 227–240

    Chapter  Google Scholar 

  • de Paiva Carvalho H, Mesquita N, Trovão J, Fernández Rodríguez S, Pinheiro AC, Gomes V, Alcoforado A, Gil F, Portugal A (2018) Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: are current norms and reference values adequate? (Acknowledged Proofreader and Translator). J Cult Herit 34:268–276. https://doi.org/10.1016/j.culher.2018.05.001

    Article  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Dhingra OD, Mizubuti ESG, Santana FM (2003) Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil surface soybean stubble in field conditions. Biol Control 26:302–310

    Google Scholar 

  • Di Pietro A, Gut-Rella M, Pachlatko JP, Schwin FJ (1992) Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping off. Phytopathology 82:131–135

    Article  Google Scholar 

  • Dissanayake RK, Ratnaweera PB, Williams DE, Wijayarathne CD, Wijesundera RLC, Andersen RJ, de Silva ED (2016) Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology 7(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev VV, Gilichinsky DA, Faizutdinova RN, Shershunov IN, Golubev WI, Duda VI (1997a) Occurrence of viable yeasts in 3-million-year-old permafrost in Siberia. Mikrobiologiya 66:655–660. https://doi.org/10.1002/jobm.201700517

    Article  CAS  Google Scholar 

  • Dmitriev VV, Gilichinsky DA, Faizutdinova RN, Ostroumova NV, Golubev WI, Duda VI (1997b) Yeasts in late Pleistocene-early Pleistocene Siberian permafrost. Cryosphere Earth 1:67–70

    Google Scholar 

  • Donoso R, Rivera-sagredo A, Hueso-Rodríguez JA, Elson SW (1997) A new Chaetoglobosin isolated from A fungus of the genus Discosia. Nat Prod Let 10(1):49–54

    Article  CAS  Google Scholar 

  • Dou H, Song Y, Liu X, Gong W, Li E, Tan R, Hou Y (2011) Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34(12):1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Doveri F (2004) Fungi Fimicoli Italici. In: Trento AMB (ed) Fondazione Studi Micologici, 1104 p

    Google Scholar 

  • Doveri F (2008) Aggiornamento sul genere Chaetomium con descrizione di alcune specie coprofile, nuove per l’Italia – an update on the genus Chaetomium with descriptions of some cop- rophilous species, new to Italy. Pagine di Micologia 29:1–60

    Google Scholar 

  • Doveri F (2011) Additions to “fungi Fimicoli Italici”: an update on the occurrence of coprophilous basidiomycetes and ascomycetes in Italy with new records and descriptions. Mycosphere 2(4):331–427

    Google Scholar 

  • Doveri F (2013) An additional update on the genus Chaetomium with descriptions of two coprophilous species, new to Italy. Mycosphere 4:820–846

    Article  Google Scholar 

  • Doveri F (2016) Description of Chaetomium aureum, Corynascus sepedonium and Coniochaeta hansenii newly recorded from Italy and a key to coprophilous Chaetomiaceae and Coniochaetaceae. Ascomycete.org 8(1):7–24

  • Doveri F (2018) On a new species of Chaetomidium, C. vicugnae, with a cephalothecoid peridium and its relationships with Chaetomiaceae (Sordariales). Ascomycete.org 10(2):86–96. https://doi.org/10.25664/ART-0231

  • Dreyfuss M (1975) Taxonomische Untersuchungen innerhalb der Gattung Chaetomium. Sydowia 28:50–133

    Google Scholar 

  • El-Buni AM, Rattan SS (1981) Check list of Libyan fungi. Al Faateh University, Department of Botany, Tripoli, Libya, 169 pp

    Google Scholar 

  • El-Said AHM, Saleem A (2008) Ecological and physiological studies on soil fungi at western region, Libya. Mycobiology 36:109

    Article  Google Scholar 

  • Erhardt FA, Jördening HJ (2007) Immobilization of dextranase from Chaetomium erraticum. J Biotechnol 131(4):440–447. https://doi.org/10.1016/j.jbiotec.2007.07.946

    Article  CAS  PubMed  Google Scholar 

  • Eriksen J, Goksoyr J (1977) Cellulases from Chaetomium thermophile var. dissitum. Eur J Biochem 77:445–450

    Article  CAS  PubMed  Google Scholar 

  • Feldman D (1985) Wood—chemistry, ultrastructure, reactions. J Polym Sci 23:601–602

    Google Scholar 

  • Ford C (1999) Improving operating performance of glucoamylase by mutagenesis. Curr Opin Biotechnol 10:352–357

    Article  Google Scholar 

  • Freire FCO, Kozakiewicz Z, Paterson RRM (1999) Mycoflora and mycotoxins of Brazilian cashew kernels. Mycopathologia 145:95–103

    Article  CAS  PubMed  Google Scholar 

  • Friedman AH (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen – Chaetomium atrobrunneum: case report-comment. Neurosurgery 43:1469

    Article  Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2. https://doi.org/10.1128/genomeA.01593-16

    Article  Google Scholar 

  • Gao W, He Y, Li F, Chai C, Zhang J, Guo J, Chen C, Wang J, Zhu H, Hu Z, Zhang Y (2019) Antibacterial activity against drug-resistant microbial pathogens of cytochalasan alkaloids from the arthropod-associated fungus Chaetomium globosum TW1-1. Bioorg Chem 83:98–104

    Article  CAS  PubMed  Google Scholar 

  • Gashgari RM, Elhariry HM, GherbawyYA (2013) Molecular detection of mycobiota in drinking water at four different sampling points of water distribution system of Jeddah City (Saudi Arabia). Geomicrobiol J 30:29–35

    Article  Google Scholar 

  • Gonçalves AB, Paterson RRM, Lima N (2006) Survey and significance of filamentous fungi from tap water. Int J Hyg Environ Health 209:257–264

    Article  PubMed  Google Scholar 

  • Göttlich E, Van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming H-C, De Hoog GS (2002a) Fungal flora in groundwater-derived public drinking water. Int J Hyg Environ Health 205:269–279

    Google Scholar 

  • Göttlich E et al (2002b) Fungal flora in groundwater-derived public drinking water. Int J Hyg 205:269–279

    Google Scholar 

  • Grishkan I (2018) Thermotolerant mycobiota of Israeli soils. J Basic Microbiol 58:30–40

    Article  CAS  PubMed  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, Central Negev desert, Israel. Fungal Ecol 3:326e337

    Article  Google Scholar 

  • Grishkan I, Nevo E, Wasser SP (2003) Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Progress 2:19–28

    Article  Google Scholar 

  • Guarro J, Soler L, Rinaldi MG (1995) Pathogenicity and antifungal susceptibility of Chaetomium species. Eur J Clin Microbiol Infect Dis 14:613–618

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Wu J, Han T, Cao T, Rahman K, Qin L (2008) Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme. Molecules 13:2114–2125. https://doi.org/10.3390/molecules13092114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guppy KH, Chinnamma T, Kurian T, Douglas A (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—Chaetomium atrobrunneum: case report. Neurosurgery 43:1463–1468

    CAS  PubMed  Google Scholar 

  • Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72:7586–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

    Google Scholar 

  • Halwagy R, Moustafa AF, Kamel SM (1982) Ecology of the soil mycoflora in the desert of Kuwait. J Arid Environ 5:109–125

    Article  Google Scholar 

  • Hamed SR, Abo Elsoud MM, Mahmoud MG, Asker MMS (2016) Isolation, screening and statistical optimizing of L-methioninase production by Chaetomium globosum. Afr J Microbiol Res 10(36):1513–1523

    Article  CAS  Google Scholar 

  • Hamed SR, Abdel-Azeem AM, Dar PM (2020) Recent advancements on the role of biologically active secondary metabolites from Chaetomium. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 177–204

    Chapter  Google Scholar 

  • Han C, Li W, Hua C, Sun F, Bi P, Wang Q (2018) Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis. Int J Biol Macromol 116:691–697

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Wells H (1973) Ornamentation on the terminal hairs in Chaetomium Kunze ex Fr. and some allied genera. Mycol Pap 134:1–24

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

    Chapter  Google Scholar 

  • Hess WM, Müller E, Aue R (1967) Germpores of Chaetomium ascospores. Naturwissenschaften 19:521–522. https://doi.org/10.1007/BF01129384

    Article  Google Scholar 

  • Hoppin EC, McCoy EL, Rinaldi MG (1983) Opportunistic mycotic infection caused by Chaetomium in a patient with acute leukemia. Cancer 53:555–556

    Article  Google Scholar 

  • Hu Y, Hao X, Chen L, Akhberdi O, Yu X, Liu Y, Zhu X (2018) Gα-cAMP/PKA pathway positively regulates pigmentation, chaetoglobosin a biosynthesis and sexual development in Chaetomium globosum. PLoS One 13(4):1–18. https://doi.org/10.1371/journal.pone.0195553

    Article  CAS  Google Scholar 

  • Hua C, Yang Y, Sun L, Dou H, Tan R, Hou Y (2013) Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology 218(3):292–302

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Chen H, Li W, Zhu X, Ding W, Li C (2016) Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar Drugs 14(10):172. https://doi.org/10.3390/md14100172

  • Hubka V (2015) Chaetomium. In: Paterson RRM, Lima NMVS (eds) Molecular biology of food and water borne mycotoxigenic and mycotic fungi of humans. CRC Press, Boca Raton, pp 211–228

    Google Scholar 

  • Ichihara A, Katayama K, Teshima H, Oikawa H, Sakamura S (1996) Chaetoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of alfalfa black rot disease. Biosci Biotechnol Biochem 60(2):360–361

    Article  CAS  PubMed  Google Scholar 

  • Ismail ME, Abdalla HM (2005) The fungus Chaetomium globosum a new pathogen to pear fruits in Egypt. Assiut J Agri Sci 36:177–188

    Google Scholar 

  • Ivanushkina NE, Kochkina GA, Ozerskaya SM (2005) Fungi in ancient permafrost sediments of the Arctic and Antarctic regions. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 127–139

    Chapter  Google Scholar 

  • Ivarson KC (1965) The microbiology of some permafrost soils in the McKenzie Valley, N.W.T. Arctic 18:256–260

    Article  Google Scholar 

  • Iwamoto C, Yamada T, Ito Y, Minoura K, Numata A (2001) Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 57(15):2997–3004

    Article  CAS  Google Scholar 

  • Jiang T, Wang M, Li L, Si J, Song B, Zhou C, Yu M, Wang X, Zhang Y, Ding G, Zou Z (2016) Overexpression of the global regulator LaeA in Chaetomium globosum leads to the bio-synthesis of chaetoglobosin Z. J Nat Prod 79(10):2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Jiao W, Feng Y, Blunt JW, Cole AL, Munro MH (2004) Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J Nat Prod 67(10):1722–1725. https://doi.org/10.1021/np030460g

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Liu F, Sun W, Zhang F, Karuppiah V, Li Z (2014) Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria. FEMS Microbiol Ecol 90:935–945. https://doi.org/10.1111/1574-6941.12446

    Article  CAS  PubMed  Google Scholar 

  • Kaur T, Devi R, Kour D, Yadav N, Prasad S, Singh A et al (2020) Advances in microbial bioresources for sustainable biofuels production: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production – sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 371–387. https://doi.org/10.1007/978-3-030-53933-7_17

    Chapter  Google Scholar 

  • Khushal B, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzyme Res 2010:1

    Google Scholar 

  • Kikuchi T, Kadota S, Suehara H, Nishi A, Tsubaki K (1981) Odorous metabolites of a fungus, Chaetomium globosum Kunze ex Fr.: identification of geosmin, a musty-smelling compound. Chem Pharm Bull 29:1782–1784

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production. pp 321–372. https://doi.org/10.1002/9781119434436.ch16

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kowalik R, Sadurska I (1973) Microflora of papyrus from samples of Cairo Museum. Stud Conserv 18:1–24

    Google Scholar 

  • Kristjansson JK (1989) Thermophilic organisms as sources of thermostable enzymes. TIBTECH 7:349–353

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011(1):1–10

    Article  CAS  Google Scholar 

  • Kumar S, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255

    Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Kurek E, Korniłłowicz-Kowalska T, Słomka A, Melke AJ (2007) Characteristics of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Pol Polar Res 28:57–73

    Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):26–29

    Article  CAS  Google Scholar 

  • Lee CR, Sung BH, Lim KM, Kim MJ, Sohn MJ, Bae JH, Sohn JH (2017) Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci Rep 7(1):4428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesire V, Hazouard E, Dequin P et al (1999) Possible role of Chaetomium globosum in infection after autologous bone marrow transplantation. Intensive Care Med 25:124–125

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen J, Li A, Li DC (2007) Purification and partial characterization of β-1,3-glucanase from Chaetomium thermophilum. World J Microbiol Biotechnol 23(9):1297–1303

    Article  CAS  Google Scholar 

  • Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734–3741

    Article  CAS  PubMed  Google Scholar 

  • Maharachchikumbura SSN, Al-Sadi AM, Al-Kharousi M, AlSaady NA, Hyde KD (2016) A checklist of fungi in Oman. Phytotaxa 273:219–261

    Article  Google Scholar 

  • Mahmoud SAZ, Abou E-FM, El-Mofty M (1964) Studied on the rhizosphere microflora of a desert plants. Folia Microbiol 9:1–8

    Article  Google Scholar 

  • Mandeel Q (2002) Microfungal community with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain. J Arid Environ 50:665–681

    Article  Google Scholar 

  • Manoharachary C, Kunwar IK, Tilak KV (2013) Diversity and characterization of fungi and its relevance. Indian Phytopath 66(1):10–13

    Google Scholar 

  • Mansour AMA (2010) Contribution to knowledge of some soil fungi in eastern region, in Libya. J Product Develop (Agri Res) 15(3):395–404

    Google Scholar 

  • Mäntylä A, Paloheimo M, Hakola S, Lindberg E, Leskinen S, Kallio J, Vehmaanperä J, Lantto R, Suominen P (2007) Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of Kraft pulp. Appl Microbiol Biotechnol 76:377–386

    Article  PubMed  CAS  Google Scholar 

  • Matesic DF, Villio KN, Folse SL et al (2006) Inhibition of cytokinesis and akt phosphorylation by chaetoglobosin K in ras-transformed epithelial cells. Cancer Chemother Pharmacol 57:741–754

    Article  CAS  PubMed  Google Scholar 

  • Millner PD, Motta JJ, Lentz PL (1977) Ascospores, germ pores, ultrastructure and thermophilism of Chaetomium. Mycologia 69:720–733. https://doi.org/10.2307/3758862

    Article  Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956a) Development of soil microflora under Zygophyllum album L. and Zygophyllum coccineum L. Ain Shams Sci Bull 1:9–22

    Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956b) Development of soil microflora in relation to vegetation along a transect line at yellow hills, North Cairo. Ain Shams Sci Bull 1:23–32

    Google Scholar 

  • Mori M, Tsuge S, Fukasawa W, Jeelani G, Nakada-Tsukui K, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K (2018) Discovery of Antiamebic compounds that inhibit cysteine synthase from the enteric parasitic Protist Entamoeba histolytica by screening of microbial secondary metabolites. Front Cell Infect Microbiol 5(8):409. https://doi.org/10.3389/fcimb.2018.00409

    Article  CAS  Google Scholar 

  • Moubasher AH, Al-Subai AAT (1987) Soil fungi in State of Qatar. Publications of Sientific and applied research Centre. University of Qatar, Doha, Qatar

    Google Scholar 

  • Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Br Mycol 54:45–51

    Google Scholar 

  • Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Br Mycol Soc 54:35–44

    Article  Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1985) Studies on soil mycoflora of Wadi Bir- El- Ain, Eastern Desert, Egypt. Cryptogam Mycol 6:129–143

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1988) Seasonal fluctuations of soil and air borne fungi of Wadi Bir-El-Ain in Eastern Desert of Egypt. Nat Monspel Ser Bot 52:57–70

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Sater MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Acta Mycol 27:65–81

    Google Scholar 

  • Mouchacca J (1971) Pseudeurotium desertorum sp. nov. Revue de Mycologie 36:123–127

    Google Scholar 

  • Mouchacca J (1973a) Deux Alternaria des sols arides d’Egypte: A. chlamydospora sp. nov. et A. phragmospora van Emden. Mycopathol Mycol Appl 50:217–225

    Article  Google Scholar 

  • Mouchacca J (1973b) Les Thielavia des sols arides: espèces nouvelles et analyse générique. Bulletin de la Société Mycologique de France 89:295–311

    Google Scholar 

  • Mouchacca J (1977) Sur un nouveau Discomycetes Ascobolus egyptiacus. Travaux dédiès à G. Viennot-Bourgin, Société Francaise de Phytopathologoie, Paris, pp 236–267

    Google Scholar 

  • Mouchacca J (1982) Etude analytique de la mycoflore de quelques sols de régions arides de l’Egypte. Thèse de Doctorat d’Etat, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie (Paris VI), 247 pp

    Google Scholar 

  • Mouchacca J (1995) Check-list of novel fungi from the Middle East described mainly from soil since 1930. Sydowia 47:240–257

    Google Scholar 

  • Mouchacca J, Joly P (1976) Etude de la mycoflore des sols arides de l’Egypte. II. Le genre Aspergillus. Revue d’Ecologie et de Biologie du Sol 13:293–313

    Google Scholar 

  • Mouchacca J, Nicot J (1973) Les Fusariella des sols arides. Revue de Mycologie 37:168–182

    Google Scholar 

  • Mouchacca J, Joly P (1974) Etude de la mycoflore des sols arides de l’Egypte. I. Le genre Penicillium. Revue d’Ecologie et de Biologie du Sol 11:67–88

    Google Scholar 

  • Mourão JL, Ponte PIP, Prates JAM, Centeno MSJ, Ferreira LMA, Soares MAC, Fontes CMGA (2006) Use of β-glucanases and β-1,4-xylanases to supplement diets containing alfalfa and rye for laying hens: effects on bird performance and egg quality. J Appl Poult Res 15(2):256–265

    Article  Google Scholar 

  • Moustafa AF, Abdel-Azeem AM (2005) The genus Chaetomium in Egypt. El-Minia Sci Bull 16:235–256

    Google Scholar 

  • Moustafa AF, Abdel-Azeem AM (2011) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt. J Basic Appl Mycol 2:1–27

    Google Scholar 

  • Moustafa AF, Ess El-Din EK (1989) Chaetomium sinaiense sp. nov., a new soil ascomycete from Egypt. Can J Bot 67:3417–3419

    Article  Google Scholar 

  • Mtibaà R, de Eugenio L, Ghariani B et al (2017) A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3 Biotech 7:329. https://doi.org/10.1007/s13205-017-0973-5

  • Murgia M, Fiamma M, Barac AM, Deligios M, Mazzarello V, Paglietti B, Cappuccinelli PA, Al-Qahtani A, Squartini A, Rubino S, Al-Ahdal MN (2018) Biodiversity of fungi in hot desert sands. MicrobiologyOpen. https://doi.org/10.1002/mbo3.595

  • Mustafa AI, Abdel-Azeem AM, Salem FM (2013) Surveying and exploitation of some taxa for extracellular biosynthesis of silver nanoparticles. Third international congress on fungal conservation, Akyaka, Mugla, Turkey, 11–15 November 2013. Abstract book: 44

    Google Scholar 

  • Naguib AI, Mouchacca J (1970–1971) The mycoflora of Egyptian desert soils. Bulletin de l’Institut d’Egypte 52:37–61

    Google Scholar 

  • Naim MS (1967a) Contribution to the knowledge of soil fungi in Libya. I. Rhizosphere and soil fungi of Artemisia herba alba in Tripoli. Mycopath Mycol Appl 31:296–299

    Article  Google Scholar 

  • Naim MS (1967b) Contribution to the knowledge of soil fungi in Libya. II. Fungus flora under Citrus trees in Libya. Mycopath Mycol Appl 31:300–304

    Article  Google Scholar 

  • Nassar MSM (1998) Soil mycoflora of Wadi Abu-Subayrah at Aswan region at Eastern Desert of Egypt. Egypt J Bot 38(1–2):21–46

    Google Scholar 

  • Nasser LA (2004) Incidence of terrestrial fungi in drinking water collected from different schools in Riyadh region, Saudi Arabia. Pak J Biolog Sci 7:1927–1932

    Article  Google Scholar 

  • Natori S (1977) Toxic cytochalasins. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Park Forest South, Illinois, pp 559–581

    Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, NY, pp 343–412

    Google Scholar 

  • Nour MA (1956) A preliminary survey of fungi in some Sudan soils. Trans Br Mycol Soc 39:357–360

    Article  Google Scholar 

  • Numata A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) “Penochalasins”, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation. J Chem Soc Perkin Trans 1:239–245

    Article  Google Scholar 

  • Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-β-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41(6):777–783

    Article  CAS  PubMed  Google Scholar 

  • Oikawa H, Murakami Y, Ichihara A (1992) Useful approach to find the plausible biosynthetic precursors of secondary metabolites using P-450 inhibitors: postulated intermediates of chaetoglobosin A. J Chem Soc Perkin Trans 1(21):2949–2953

    Article  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237. https://doi.org/10.1016/j.pss.2003.08.019

    Article  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ouyang J, Mao Z, Guo H, Xie Y, Cui Z, Sun JWH, Wen X, Wang J, Shan T (2018) Mollicellins O–R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10. Molecules 23:3218

    Google Scholar 

  • Ozerskaya SM, Kochkina GA, Ivanushkina NE, Knyazeva EV, Gilichinskii DA (2008) The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology 77:482–489

    Article  CAS  Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils. Soil biology, vol 16. Springer, Cham, pp 85–95

    Chapter  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2009) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  PubMed  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Fokkema NJ, van den Heuvel J (eds) Microbial ecology of the leaves. Cambridge University Press, Cambridge, pp 185–187

    Google Scholar 

  • Pimentel M, Lembo A, Chey W et al (2011) Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 364:22–32

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Pitt JI et al (1993) The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int J Food Microbiol 20:211–226

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI et al (1994) The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int J Food Microbiol 23:35–53

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI et al (1998) The mycoflora of food commodities from Indonesia. J Food Mycol 1:41–60

    Google Scholar 

  • Prasad S, Yadav AN, Singh A (2020) Impact of climate change on sustainable biofuel production. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production – sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 79–97. https://doi.org/10.1007/978-3-030-53933-7_5

    Chapter  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

    Chapter  Google Scholar 

  • Probst A, Tamm C (1981) 19-O-acetylchaetoglobosin B and 19-O-acetylchaetoglobosin D, two new metabolites of Chaetomium globosum. Helv Chim Acta 64(7):2056–2064. https://doi.org/10.1002/hlca.19810640710

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in White biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Reeve JN, Christner BC, Kvitko BH, Mosley-Thompson E, Thompson LG (2002) Life in glacial ice (Abstract). In: Rossi M, Bartolucci S, Ciaramella M, Moracci M (eds) “Extremophiles 2002,” 4th International Congress on Extremophiles, 22–26 September 2002, Naples, Italy, p 27

    Google Scholar 

  • Reilly PJ (1999) Protein engineering of glucoamylase to improve industrial properties. A review. Starch-Starke 51:269–274

    Article  CAS  Google Scholar 

  • Rivkina EN, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock JP (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—Chaetomium atrobrunneum: case report—comment. Neurosurgery 43:1469

    Article  Google Scholar 

  • Rogers RE, Wheeler HG, Humfeld H (1940) Physical and chemical changes produced in bleached cotton duck by Chaetomium globosum and Spirochaeta cytophaga. Technical bulletin, United States Department of Agriculture, Washington, DC, no.726.

    Google Scholar 

  • Rogers KD, Cannistra JC, Gloer JB, Wicklow DT (2014) Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Mycotoxin Res 30(2):61–70

    Article  CAS  PubMed  Google Scholar 

  • Ruan BH, Yu ZF, Yang XQ, Yang YB, Hu M, Zhang ZX, Zhou QY, Zhou H, Ding ZT (2018) New bioactive compounds from aquatic endophyte Chaetomium globosum. Nat Prod Res 32(9):1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Rule D, Cheeptham N (2013) The effects of UV light on the antimicrobial activities of cave actinomycetes. Int J Speleol 42:147–153

    Article  Google Scholar 

  • Saadabi AMA (2006) On the fungal flora of Saudi Arabian soils. Res J Microbiol 1:280–284

    Article  Google Scholar 

  • Sabet YS (1935) A preliminary study of Egyptian soil fungi. Bulletin of the Faculty of Science, Egyptian University, Cairo 5: 1–29

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Article  Google Scholar 

  • Saito M, Singh RB, Saite M (1976) Reports on study of mycotoxins in foods in relation to liver diseases in Malaysia and Thailand. University of Tokyo, Tokyo, p 85

    Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. Journal of Nutrition and Food Sciences 6:461–474

    Google Scholar 

  • Salama AM, Elbatanoni K, Ali MI (1971) Studies on the fungal flora of Egyptian soils. I Western Mediterranean coast and Libyan Desert. United Arab Republic J Bot 14(1):99–114

    Google Scholar 

  • Salem FM, Abdel-Azeem AM (2014) Screening of anticancer metabolites produced by endophytic fungi. LAP LAMBERT Academic Publishing. ISBN 978-3-659-53697

    Google Scholar 

  • Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40:121–131

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Mouchacca J (1975) Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek 41:343–351

    Article  CAS  PubMed  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Article  Google Scholar 

  • Sekita S, Yoshihira K, Natori S (1980) Chaetochromin, a bis(naphthodihydropyran-4-one) mycotoxin from Chaetomium thielavioideum: application of 13C-IH long-range coupling to the structure elucidation. Chem Pharm Bull 28:2428–2435

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Udagawa S, Muroi T, Sugiyama Y, Kurata H, Umeda M (1981) Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27:766–772

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Onofri S, Zucconi L, Isola D, Rottigni M, Ghiglione C, Piazza P, Alvaro MC, Schiaparelli S (2015) Distributional records of Antarctic fungi based on strains preserved in the culture collection of fungi from extreme environments (CCFEE) mycological section associated with the Italian National Antarctic Museum (MNA). MycoKeys 9:57–71. https://doi.org/10.3897/mycokeys.10.5343

  • Seth HK (1970) A monograph of the genus Chaetomium. Beih Nova Hedwig 37:1–133

    Google Scholar 

  • Sharma R, Kulkarni G, Sonawane MS, Shouche YS (2013) A new endophytic species of Chaetomium from Jatropha podagrica. Mycotaxon 124:117–126

    Article  Google Scholar 

  • Sharma B, Singh S, Kanwar SS (2014) L-Methionase: a therapeutic enzyme to treat malignancies. Biomed Res Int 2014:1–13

    Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

    Chapter  Google Scholar 

  • Shen L, Zhu L, Wei ZQ, Li XW, Li M, Song YC (2015) Chemical constituents from endophyte Chaetomium globosum in Imperata cylindrical. Zhongguo Zhong Yao Za Zhi 40(23):4645–4649

    CAS  PubMed  Google Scholar 

  • Shinohara C, Chikanishi T, Nakashima S, Hashimoto A, Hamanaka A, Endo A, Hasumi K (2000) Enhancement of fibrinolytic activity of vascular endothelial cells by chaetoglobosin A, crinipellin B, geodin and triticone B. J Antibiot (Tokyo) 53(3):262–268

    Article  CAS  Google Scholar 

  • Shraddha SR, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011:1–11

    Article  CAS  Google Scholar 

  • Shternshis M, Tomilova O, Shpatova T, Soytong K (2005) Evaluation of Ketomium-mycofungicide on Siberian isolates of phytopathogenic fungi. J Agri Tech 1(2):247–254

    Google Scholar 

  • Simões Calaça FJ, Xavier-Santos S, Abdel-Azeem AM (2020) Recent advances on occurrence of genus Chaetomium on dung. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 143–159

    Chapter  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R et al (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somrithipol S (2004) Coprophilous fungi. In: Jones EBG, Tanticharoen M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 119–128

    Google Scholar 

  • Somrithipol S, Hywel-Jones NL, Jones EBG (2004) Seed fungi. In: Jones EBG, Tanticharoen M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 129–140

    Google Scholar 

  • Soni SK, Soni R (2010) Regulation of cellulase synthesis in Chaetomium erraticum. Bioresources 5(1):81–98

    CAS  Google Scholar 

  • Sonnleitner B, Fiechter A (1983) Advantages of using thermophiles in biotechnological process: expectations and reality. TIBTCH 1:74–80

    Article  Google Scholar 

  • Sörgel G (1960) Zum problem der Trennung von Arten bei Pilzen, dargestellt am Beispiel der Ascomycetengattung Chaetomium. Arch Mikrobiol 36:51–66. https://doi.org/10.1007/BF00405942

    Article  Google Scholar 

  • Soytong K (1992a) Antagonism of Chaetomium cupreum to Pyricularia oryzae. J Plant Protect Tropics 9:17–24

    Google Scholar 

  • Soytong K (1992b) Biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici using Chaetomium cupreum. Kasetsart J (Nat Sci) 26:310–313

    Google Scholar 

  • Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in plant endophyte concentration. Ann Bot 98(2):379–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridhar KR (2009) Mangrove fungi of the Indian peninsula. In: Sridhar KR (ed) Frontiers in fungal ecology, diversity and metabolites. IK International Publishing House Pvt. Ltd, New Delhi, pp 28–50

    Google Scholar 

  • Stakhov V, Gubin S, Maksimovich S, Rebrikov D, Savilova A, Kochkina G, Ozerskaya S, Ivanushkina N, Vorobyova E (2008) Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77:348–355

    Article  CAS  Google Scholar 

  • Stark AA, Kobbe B, Matsuo D, Buchi G, Wogan GN, Demain AL (1978) Mollicellins: mutagenic and antibacterial mycotoxins. Appl Environ Microbiol 36:412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Stiller MJ, Rosenthal S, Summerbell RC, Pollack J, Chan A (1992) Onychomycosis of the toenails caused by Chaetomium globosum. J Am Acad Dermatol 26:775–776

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(04):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Knighton B, Ren Y et al (2008) The production of mycodiesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Suganya K, Govindan K, Prabha P, Murugan M (2017) An extensive review on L-methioninase and its potential applications. Biocatal Agric Biotechnol 12:104–115

    Article  Google Scholar 

  • Suleiman MK, Dixon K, Commander L, Nevill P, Quoreshi AM, Bhat NR, Manuvel AJ, Sivadasan MT (2019) Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait Desert. Front Microbiol 10:63. https://doi.org/10.3389/fmicb.2019.00063.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumalan R, Alexa E, Pop G, Dehelean C, Sumalan R (2011) The biodiversity and dissemination of mycotoxin-producing fungi in cereals and cereal products. In: Proceedings of the 46th Croatian and 6th International symposium on agriculture. Opatija, Croatia, pp 770–773

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives, vol 1. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 8(3):189–196. https://doi.org/10.1080/21501203.2017.1352048

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano Y, Kobayashi K, Marumo K, Ishikawa Y (2004) Biochemical indicators and enzymatic activity below permafrost environment. In: Extremophiles 2004, 5th International conference on extremophiles, 19–23 Sep. Cambridge, Maryland. Abstract p 84

    Google Scholar 

  • Thohinung S, Kanokmedhakul S, Kanokmedhakul K et al (2010) Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Arch Pharm Res 33:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Thom C, Humfeld H, Holman HP (1934) Laboratory tests for mildew resistance of outdoor cotton fabrics. Amer Dyestuff Rptr Illus 23(581):586

    Google Scholar 

  • Thomas C, Mileusnic D, Carey RB, Kampert M, Anderson D (1999) Fatal Chaetomium cerebritis in a bone marrow transplant patient. Hum Pathol 30:874–879

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Heu T, Shaghasi T, Benyamino R, Jones A, Friis EP (2012) Structure of the catalytic core module of the Chaetomium thermophilum family GH6 cellobiohydrolase Cel6A. Acta Crystallogr D 68:875–882

    Article  CAS  PubMed  Google Scholar 

  • Tomita T (2003) Amylin in pancreatic islets and pancreatic endocrine neoplasms. Pathol Int 53(9):591–595

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187

    Article  Google Scholar 

  • Turunen O, Etuaho K, Fenel F, Vehmaanperä J, Wu X, Rouvinen J et al (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. J Biotechnol 88:37–46

    Article  CAS  PubMed  Google Scholar 

  • Udagawa S (1980) New or noteworthy ascomycetes from southeast Asian soil. 1. Trans Mycol Soc Jpn 21:17–34

    Google Scholar 

  • Udagawa S, Muroi T (1981) Notes on some Japanese ascomycetes XVI. Trans Mycol Soc Jpn 22(1):11–26

    Google Scholar 

  • Udagawa S, Mouri T, Kurata H, Sekita S, Yoshihira K, Natori S, Umeda M (1979) The production of chaetoglobosins, sterigmatocystin, O-methylsterigmatocystin, and chaetocin by Chaetomium spp. and related fungi. Can J Microbiol 25:170–177

    Article  CAS  PubMed  Google Scholar 

  • Uma Maheswar Rao JL, Boorgula GDY, Leitão AL (2011) Fungal enzymes: present scenario and future perspectives. In: Leitão AL (ed) Mycofactories. Bentham Science Publishers Ltd, pp 1–27. https://doi.org/10.2174/97816080522331110101

  • Umikalsom MS, Ariff AB, Shamsuddin ZH, Tong CC, Hassan MA, Karim MIA (1997) Production of cellulase by a wild strain of Chaetomium globosum using delignified oil palm empty-fruit-bunch fibre as substrate. Appl Microbiol Biotechnol 47(5):590–595

    Google Scholar 

  • Umikalsom MS, Ariff AB, Hassan MA, Karim MIA (1998) Kinetics of cellulase production by Chaetomium globosum at different levels of dissolved oxygen tension using oil palm empty fruit bunch fibre as substrate. World J Microbiol Biotechnol 14(4):491–498

    Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Vega FE, Posada F, Aime MC et al (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol 371218: 5 p. https://doi.org/10.1155/2014/371218.

  • Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 297–342

    Google Scholar 

  • Vishniac HS, Onofri S (2003) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica Anton. Leeuw Int JG Mol Microbiol 83:231–233

    CAS  Google Scholar 

  • Volz PA, Ellanskaya IA, Wasser SP, Nevo E, Grishkan I (2001) Soil microfungi of Israel. In: Subramanian CV, Wasser SP (eds) Biodiversity of cyanoprocaryotes, algae and fungi of Israel. A. P. A. Gantner Verlag, Ruggel/Liechtenstein

    Google Scholar 

  • von Arx JA (1970) The genera of fungi sporulating in pure culture. 288: 134 Figs. Ed. J. Cramer, Germany

    Google Scholar 

  • Von Arx JA, Guarro J, Figueras MJ (1986) The ascomycete genus Chaetomium. Beih Nova Hedwig 84:1–162

    Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanperä J, Koivula A (2008) Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101(3):515–528

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Ngo ST (2018) Copper active site in polysaccharide monooxygenases. Coord Chem Rev 368:134–157. https://doi.org/10.1016/j.ccr.2018.04.005

    Article  CAS  Google Scholar 

  • Wallenstein MW, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctictundra tussock and shrub soils. FEMS Microbiol Ecol. https://doi.org/10.1111/j.1574-6941.2006.00260.x

  • Walther D, Gindrat D (1988) Biological control of damping off of sugar beet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. Can J Microbiol 34:631–637

    Article  Google Scholar 

  • Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, Proksch P, Wang BG (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69(11):1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Qian C, Zhang X-Z, Liu N, Liu N, Yan X, Zhou Z (2012) Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzym Microb Technol 51:319–324

    Article  CAS  Google Scholar 

  • Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224. https://doi.org/10.1016/j.simyco.2016.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Jiang J, Hu S, Ma H, Zhu H, Tong Q, Zhang Y (2017) Secondary metabolites from endophytic fungus Chaetomium sp. induce colon cancer cell apoptotic death. Fitoterapia 121(2016):86–93. https://doi.org/10.1016/j.fitote.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gong J, Liu X, Dai C, Wang Y, Li XN, Wang J, Luo Z, Zhou Y, Xue Y, Zhu H, Chen C, Zhang Y (2018) Cytochalasans produced by the coculture of Aspergillus flavipes and Chaetomium globosum. J Nat Prod 81(7):1578–1587. https://doi.org/10.1021/acs.jnatprod.8b00110

    Article  CAS  PubMed  Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16(1):1–12

    Article  CAS  Google Scholar 

  • Watanabe T (2002) Pictorial atlas of soil and seed fungi, morphologies of cultured fungi and key to species, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Webb TA, Mundt JO (1978) Molds on vegetables at the time of harvest. Appl Environ Microbiol 35:655–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenbörner M (2001) Pumpkin seeds—the mycobiota and potential mycotoxins. Eur Food Res Technol 212:279–281

    Google Scholar 

  • Wildman HG (2003) The rise and fall of natural products screening for drug discovery. Fungal Divers 13:221–231

    Google Scholar 

  • Xie T, Song B, Yue Y, Chao Y, Qian S (2014) Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1. J Biotechnol 170:10–16

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24(8):668–674

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Switzerland

    Google Scholar 

  • Yadav LS, Bagool RG (2015) Original research article isolation and screening of cellulolytic Chaetomium sp. from deteriorated paper samples. Int J Curr Microbiol Appl Sci 4(8):629–635

    CAS  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. https://doi.org/10.1038/srep12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019a) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS et al (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019c) Recent advancement in White biotechnology through fungi. Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019d) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Article  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Gupta VK, Yadav N (2020d) Microbial biotechnology approaches to monuments of cultural heritage. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020e) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Gaur R (2020f) Biofuels production – sustainability and advances in microbial bioresources. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020g) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Yamamoto Y, Kiriyama N, Shimizu S, Koshimura S (1976) Antitumor activity of asterriquinone – metabolic product from Aspergillus terreus. Gann 67(4):623–624

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Moriyama K, Jinnouchi H, Yagishita K (1980) Studies on terreic acid. Jpn J Antibiot 33:320–328. https://doi.org/10.11553/antibiotics1968b.33.320

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Cao LL, Zhang YY, Zhao R, Zhao SS, Khan B, Ye YH (2018) New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 23(11):2873. https://doi.org/10.3390/molecules23112873

    Article  CAS  PubMed Central  Google Scholar 

  • Yang M-H, Gu M-L, Han C, Guo X-J, Yin G-P, Yu P, Kong L-Y (2018) Aureochaeglobosins A-C, three [4 + 2] adducts of chaetoglobosin and aureonitol derivatives from Chaetomium globosum. Org Lett 20(11):3345–3348

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M, Liu J (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol 97(16):7131–7139. https://doi.org/10.1007/s00253-013-5013-8

    Article  CAS  PubMed  Google Scholar 

  • Yeghen T et al (1996) Chaetomium pneumonia in patient with acute myeloid leukaemia. J Clin Pathol 49:184–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yew DT, Lam ST, Chan YW (1982) Effect of low dose laser on the chorioallantoic culture of retinal pigment cells. Acta Radiol Oncol 21(6):433–438

    Article  CAS  PubMed  Google Scholar 

  • Youssef YA (1974) On the fungal flora of Libyan soils. Arch Microbiol 99:167–171

    Article  Google Scholar 

  • Zhang J, Ge HM, Jiao RH, Li J, Peng H, Wang YR, Wu JH, Song YC, Tan RX (2010) Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med 76(16):1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang Y, Qin J, Qu X, Liu J, Li X, Pan H (2013) Antifungal metabolites produced by Chaetomium globosum no. 04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53(2):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Luo J, Zhuang WY (2011) DNA barcoding of the fungal genus Neonectria and the discovery of two new species. Sci China Life Sci 54:664–674

    Article  CAS  PubMed  Google Scholar 

  • Zheng QC, Kong MZ, Zhao Q, Chen GD, Tian HY, Li XX, Guo LD, Li J, Zheng YZ, Gao H (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126–131

    Article  CAS  PubMed  Google Scholar 

  • Zhou QZ, Jia JC, Ji P, Han C (2017) A novel application potential of GH6 cellobiohydrolase ctcel6 from thermophilic Chaetomium thermophilum for gene cloning, heterologous expression and biological characterization. Int J Agric Biol 19:355–362

    Article  CAS  Google Scholar 

  • Zhu X, Zhou D, Liang F, Wu Z, She Z, Li C (2017) Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi-synthesis. Fitoterapia 123:23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our deep thanks and appreciation to the authors of the literatures used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Abdel-Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M. et al. (2021). Biodiversity and Industrial Applications of Genus Chaetomium. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_5

Download citation

Publish with us

Policies and ethics