Skip to main content
  • 1447 Accesses

Abstract

Proteins are the major effectors of cell functions. Protein-coding genes evolve from ancestral genes by gene duplication, recombination, retrotransposition or exon shuffling, and fixation of new DNA variants. Although the exon coding sequence of total protein-coding genes corresponds to a small fraction of the genome from multicellular invertebrate and vertebrate Metazoan organisms, gene intron mean length partially correlates to genome size increase along the animal phylogenetic scale. Additionally, species with increasing phenotypic complexity in the evolutionary scale present more diverse regulatory mechanisms of gene expression. The study of gene and epigenetic elements regulating transcription and pre-mRNA processing in specific cell types and developmental stages is key to understand how a ‘limited’ number of protein-coding genes may generate enormous phenotypic diversity. Remarkably, genetic and epigenetic alterations affecting such conserved elements and, consequently, impairing the gene products and associated cell mechanisms may lead to cell and organ dysfunction, and disease. In this chapter we review the concepts of and relationship among those cis elements within or associated with protein-coding genes, and provide a few examples of how loss-of-function and gain-of-function DNA variants may affect the gene products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961;47:1588–602.

    Article  CAS  Google Scholar 

  2. Lander ES, Linton EM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  Google Scholar 

  3. Dufner-Almeida LG, do Carmo RT, Masotti C, Haddad LA. Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. Adv Genet. 2019;103:39–90.

    Article  CAS  Google Scholar 

  4. Soutorina J. Transcription regulation by the mediator complex. Nat Rev Mol Cel Biol. 2018;19(4):262–74.

    Article  Google Scholar 

  5. Suzuki Y, Tsunoda T, Sese J, et al. Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res. 2001;11(5):677–84.

    Article  CAS  Google Scholar 

  6. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;14(12):1141–63.

    Article  Google Scholar 

  7. Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet. 2020;21:71–87.

    Article  CAS  Google Scholar 

  8. Oldfield AJ, Henriques T, Kumar D, et al. NF-Y controls fidelity of transcription initiation at gene promoters through maintenance of the nucleosome-depleted region. Nat Commun. 2019;10:3072.

    Article  Google Scholar 

  9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblast by defined factors. Cell. 2007;131:861–72.

    Article  CAS  Google Scholar 

  10. Pang B, Snyder MP. Systematic identification of silencers in human cells. Nat Genet. 2020;52(3):254–63.

    Article  CAS  Google Scholar 

  11. Tolsma TO, Hansen JC. Post-translational modifications and chromatin dynamics. Essays Biochem. 2019;63:89–96.

    Article  CAS  Google Scholar 

  12. Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–48.

    Article  CAS  Google Scholar 

  13. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2020;12:61–76.

    Article  Google Scholar 

  14. Moxley AH, Reisman D. Context is key: understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct. 2020:1–13.

    Google Scholar 

  15. Khan D, Sharathchandra A, Ponnuswamy A, Grover R, Das S. Effect of a natural mutation in the 5′ untranslated region on the translational control of p53 mRNA. Oncogene. 2013;32:4148–59.

    Article  CAS  Google Scholar 

  16. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci. 1971;68:820–3.

    Article  Google Scholar 

  17. Piovesan A, Antonaros F, Vitale L, et al. Human protein-coding genes and gene feature statistics in 2019. BMC Res Notes. 2019;12:315–20.

    Article  Google Scholar 

  18. Brunet MA, Levesque SA, Hunting DJ, Cohen AA, Roucou X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res. 2018;28:609–24.

    Article  CAS  Google Scholar 

  19. Gehring NH, Roignant JY. Anything but ordinary–emerging splicing mechanisms in eukaryotic gene regulation. Trends in Genet. 2020;14

    Google Scholar 

  20. Singh RN, Ottensen EW, Singh NN. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci Insights. 2020;15:1–11.

    Article  Google Scholar 

  21. The ENCODE Project Consortium, Snyder MP, Gingeras TR, Moore JE, et al. Perspectives on ENCODE. Nature. 2020;583:693–8.

    Article  Google Scholar 

  22. Sisu C, Peia B, Lenga J, Frankishc A, Zhanga Y, et al. Comparative analysis of pseudogenes across three phyla. Proc Natl Acad Si USA. 2014;111(37):13361–6.

    Article  CAS  Google Scholar 

  23. Cheetham GSW, Faulkner J, Dinger ME. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat Rev Genet. 2020;21:191–201.

    Article  CAS  Google Scholar 

  24. Forslund SK, Kaduk M, ELL S. Evolution of protein domain architectures. In: Anisimova M, editor. Evolutionary genomics. Methods in Molecular Biology, vol. 1910. New York, NY: Humana; 2019.

    Google Scholar 

  25. Pischik E, Kauppinen R. An update of clinical management of acute intermittent porphyria. Appl Clin Genet. 2015;8:201–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Amaral Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haddad, L.A. (2021). Protein-Coding Genes. In: Haddad, L.A. (eds) Human Genome Structure, Function and Clinical Considerations. Springer, Cham. https://doi.org/10.1007/978-3-030-73151-9_4

Download citation

Publish with us

Policies and ethics