Skip to main content

California Ultramafic Vegetation: A Phytosociological Update

  • Chapter
  • First Online:
Tools for Landscape-Scale Geobotany and Conservation

Part of the book series: Geobotany Studies ((GEOBOT))

Abstract

The vegetation of ultramafics soils throughout the California state landscapes are summarized. Most important features related with the biogeographical distribution, structure, dynamics, floristic composition and related data of the main vegetation types are given and considered. Two appendices (taxonomic and syntaxonomic) complete this contribution; taxonomic appendix includes some nomenclatural proposals for the California flora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of Western North America: geology, soils, and vegetation. Oxford University Press, New York, p 512

    Book  Google Scholar 

  2. Anderson RC, Fralish JS, Baskin JM (eds) (2007) Savannas, barrens, and rock outcrop plant communities of North America. Cambridge University Press, New York, p 484

    Google Scholar 

  3. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  4. Armstrong WP (1977) Natural plant hybrids in San Diego County. Env South 477:14–16

    Google Scholar 

  5. Baldwin BG, Goldman DH, Keil DJ, Petterson R, Rosetti TJ, Wilken DH (2012) The Jepson manual. Vascular plants of California, 2nd edn. California University Press, Berkeley, p 1568

    Book  Google Scholar 

  6. Barbour MG, Keeler-Wolf T, Schoenherr AA (2007) Terrestrial vegetation of California, 3rd edn. University of California Press, Berkeley, p 730

    Google Scholar 

  7. Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer-Verlag and RG Landes Co., Berlin, p 324

    Google Scholar 

  8. Bates RL, Jackson JA (eds) (1984) Dictionary of geological terms (rocks, minerals and gemstones), 3rd edn. American Geological Institute. Anchor Books, Doubleday, New York, p 576

    Google Scholar 

  9. Callaham RZ (1956) Needle oils of three pine species and species hybrids. Forest Sci 2(2):101–105

    CAS  Google Scholar 

  10. Coleman RG (1977) Ophiolites. Springer, Berlin, p 229

    Book  Google Scholar 

  11. Coleman RG, Jove C (1992) geological origin of serpentinites. In: Baker AJM et al (eds) The Vegetation of Ultramafic (Serpentine) Soils. Intercept, Andover, pp 1–17, p 509

    Google Scholar 

  12. Harrison S, Safford HD, Grace JB, Viers JH, Davies KF (2006) Regional and local species richness in an insular environment: serpentine plants in California. Ecol Mon 76:41–56

    Article  Google Scholar 

  13. Hidalgo-Triana N, Pérez Latorre AV (2018) Plant functional traits and groups in a California serpentine chaparral. Ecol Res 33:525–535

    Article  Google Scholar 

  14. Keeley JE, Davis FW (2007) Chaparral. In: Barbour MF et al (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, pp 339–366, p 730

    Google Scholar 

  15. Keeley JE, Soderstrom TJ (1986) Postfire recovery of chaparral along an elevational gradient in Southern California. Southw Nat 31:177–184

    Article  Google Scholar 

  16. Kruckeberg AR (1951) Intraspecific variability in the response of certain native plant species to serpentine soil. Am J Bot 38:408–419

    Article  CAS  Google Scholar 

  17. Kruckeberg AR (1954) Plant species in relation with serpentine soils. In: Whittaker RH (ed) The ecology of serpentine soils: a symposium. Ecology, vol 35, pp 267–274

    Google Scholar 

  18. Kruckeberg AR (1984) California serpentines: flora, vegetation, geology soils, and management problems, vol 78. University of California Publications in Botany. University of California Press, Berkeley, p 180

    Google Scholar 

  19. Kruckeberg AR (2002) Geology and Plant Life. The Effects of Landforms and Rock Types on Plants. University of Washington Press, p 362

    Google Scholar 

  20. Mason HL (1946) The edaphic factor in narrow endemism. I. The nature of environmental influences. Madroño 8:209–226

    Google Scholar 

  21. Mason HL (1946) The edaphic factor in narrow endemism. II. The geographic occu rrence of plants of highly restricted patterns of distribution. Madroño 8:241–257

    Google Scholar 

  22. McCarten N (1988) Serpentine plant communities of San Francisco Bay Region. In: Elias TS (ed) Conservation and management of rare and endangered plants. Proceedings of a California conference on the conservation and management of rare and endangered plants (1986). California Native Plant Society, Sacramento, p 630

    Google Scholar 

  23. Rajakaruna N (2018) Lessons on evolution from the study of edaphic specialization. Bot Rev 84:39–78

    Article  Google Scholar 

  24. Rivas-Martínez S, Sánchez-Mata D (1997) Calocedro decurrentis-Pinetea jeffreyi. In: Rivas- Martínez S (ed) Syntaxonomical synopsis of the potential natural plant communities of North America, I. Itinera Geobot, vol 10, pp 54–90

    Google Scholar 

  25. Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American boreal and western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobot 12:5–316

    Google Scholar 

  26. Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American new phytosociological classes. Itinera Geobot 13:349–352

    Google Scholar 

  27. Rivas-Martínez S, Penas A, del Río S, Díaz González TE, Rivas Sáenz S (2017) Bioclimatology of the Iberian penisnula and the Balearic Islands. In: Loidi L (ed) The vegetation of the Iberian Peninsula, vol 1. Plant and Vegetation 12. Springer, pp 29–80, p 676

    Google Scholar 

  28. Rodríguez-Rojo MP, Sánchez-Mata D, Gavilán RG, Rivas-Martínez S, Barbour MG (2001) Typology and ecology of Californian serpentine annual grasslands. J Veg Sci 12:687–698

    Article  Google Scholar 

  29. Rodríguez-Rojo MP, Sánchez-Mata D, Rivas-Martínez S, Barbour MG (2001) Syntaxonomical approach for classification of the Californian serpentine annual grasslands. Lazaroa 22:83–94

    Google Scholar 

  30. Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinities. Madroño 52(4):222–257

    Article  Google Scholar 

  31. Sánchez-Mata D, Rodríguez-Rojo MP, Barbour MG (2004) California ultramafic vegetation: biodiversity and phytosociological survey. In: Boyd RS et al (ed) Ultramafics rocks: their soils, vegetation and fauna (Rocas ultramáficas: sus suelos, vegetación y fauna), Proceedings of the fourth international conference on serpentine ecology, St Albans (UK), pp 177–181, p 347

    Google Scholar 

  32. Sánchez-Mata D (2007) Ultramafic vegetation. Chapter 3: California soils and examples of ultramafic vegetation (A. T. O’Geen, R. A. Dahlgren, and D. Sánchez-Mata). In: Barbour MG et al (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, pp 93–(71)–106, p 730

    Google Scholar 

  33. Sánchez-Mata D (2012) Overview of the forest vegetation of the Sierra Nevada Range (California, USA). Berich RT-Gesells 24:141–153

    Google Scholar 

  34. Sánchez-Mata D, Rodríguez-Rojo MP (2016) Mediterranean ultramafic (serpentine) chaparrals of California (USA): a geobotanical overview. In: Box EO (ed) Vegetation structure and function at multiple spatial, temporal and conceptual scales. Geobotany Studies, Springer, pp 285–312, p 578

    Google Scholar 

  35. Sánchez-Mata D (2018) Studies on California ultramafic (serpentine) vegetation: riparian woody formations. Berich RT-Gesells 30:175–190

    Google Scholar 

  36. Sawyer JO, Thornburgh DA, Bowman WF (1970) Extension of the range of Abies lasiocarpa into California. Madroño 20:413–415

    Google Scholar 

  37. Walker RB (1948) Molybdenum deficiency in serpentine barren soils. Science 108:473–475

    Article  CAS  Google Scholar 

  38. Walker RB (1954) Factors affecting plant growth on serpentine soils. In: Whittaker RH (ed) The ecology of serpentine soils: a symposium. Ecology, vol 35, pp 258–266

    Google Scholar 

  39. Walker RB, Walker HM, Ashworth PR (1955) Calcium-magnesium nutrition with special reference to serpentine soils. Plant Phys 30:214–221

    Article  CAS  Google Scholar 

  40. Waring RH, Emmingham WH, Running SW (1975) Environmental limits of an endemic spruce, Picea breweriana. Canad J Bot 53:1599–1613

    Article  Google Scholar 

  41. Theurillat J-P, Willner W, Fernández-González F, Bultmnan H, Carni A, Gigante D, Mucina L, Weber H (2021) International Code of Phytosociological Nomenclature, 4th edn. App Veg Sci 2021:24:e12491

    Google Scholar 

  42. Whittaker RH (1954) The vegetational response to serpentine soils. In: Whittaker RH (ed) The ecology of serpentine soils: a symposium. Ecology 35:275–288

    Google Scholar 

  43. Zobel B (1952) Jeffrey pine in the south Coast Ranges of California. Madroño 11:283–284

    Google Scholar 

  44. Zobel DG, Hawk GM (1980) The environment of Chamaecyparis lawsoniana. Am Mid Nat 103:280–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sánchez-Mata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Mata, D. (2021). California Ultramafic Vegetation: A Phytosociological Update. In: Pedrotti, F., Box, E.O. (eds) Tools for Landscape-Scale Geobotany and Conservation. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-74950-7_10

Download citation

Publish with us

Policies and ethics