Skip to main content

Abstract

This chapter presents the problem of the complexity of plastic flow in alloys, which is manifested by serrated deformation curves and transient plastic strain localizations. This phenomenon, which uncovers an inherently collective nature of the dynamics of crystal defects, is well known for conventional alloys. Surprisingly, despite the particular microstructure of HEAs, which strongly impacts the microscopic dynamics of defects, not only the HEAs are prone to the macroscopically jerky flow, but the serration patterns display many similar features, thus bearing evidence to similar laws for the collective dynamics. To provide a comprehensive approach to this problem, the chapter is subdivided into two parts. The first part presents the state-of-the art of this research under the angle of distinct regimes of collective dislocation dynamics found in conventional alloys, e.g., self-organized criticality, deterministic chaos, or synchronization. The second part summarizes recent investigations into serrated flows in HEAs, uncovering common and specific types of behaviors. Both parts conclude with the formulation of diverse open questions concerning these strongly coupled fields of research.

Abstract for Section 11.1 This part presents a review of investigations into the complexity of the plastic flow associated with the Portevin-Le Chatelier effect, or jerky flow, in traditional alloys that have basic elements determining the crystal lattice of the material. The main accent is put on the illustration of the state-of-the art of this research under the angle of distinct regimes of collective dislocation dynamics, e.g., self-organized criticality, deterministic chaos, or synchronization. Finally, an extension of the research toward finer scales, which are resolved using acoustic emission and image correlation techniques, is discussed.

Abstract for Section 11.2 Expanding upon the previous chapter, this chapter presents a literature review of the serrated flow phenomenon in high-entropy alloys (HEAs). The serrated flow is important, as it can result in permanent macroscopic and microstructural changes in HEAs. The literature reveals several important findings regarding the effect of strain rate and test temperature on the serrated flow. Furthermore, this chapter explores the relationship among the composition, microstructure, testing condition, and serration behavior. Toward the end of the chapter, a concise summary is presented for the temperature, strain rate, mechanical-testing type (compression/tension/nanoindentation), and serration type for HEAs. This chapter also provides an overview of the different types of analytical methods that have been successfully implemented to model and analyze the serration behavior in HEAs. Such techniques include the mean-field theory (MFT) formalism, complexity analysis method, and multifractal technique. Finally, future research topics in this area are presented, such as the effects of twinning and irradiation on the serration behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Savart, Recherches sur les vibrations longitudinales. Ann. Chim. Phys. 65, 337–402 (1837)

    Google Scholar 

  2. M.A. Masson, Sur l’élasticité des corpes solides. Ann. Chim. Phys. 3, 451–462 (1841)

    Google Scholar 

  3. A. Portevin, F. Le Chatelier, Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. CR Acad. Sci. Paris 176, 507–510 (1923)

    CAS  Google Scholar 

  4. Y. Estrin, L.P. Kubin, Spatial сoupling and propagative plastic instabilities, in Continuum Models for Materials with Microstructure, ed. by H.-B. Mühlhaus, (Wiley, New York, 1995), pp. 395–450

    Google Scholar 

  5. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium System: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, London, Sydney etc, 1977) ISBN: 0-471-02401-5

    Google Scholar 

  6. H. Haken, Synergetik – Eine Einführung (Springer, Berlin, Heidelberg, New York, 1982)

    Book  Google Scholar 

  7. L.P. Kubin, C. Fressengeas, G. Ananthakrishna, Collective behavior of dislocations in plasticity, in Dislocations in Solids, ed. by F. R. N. Nabarro, M. S. Duesbery, vol. 11, (Elsevier Science, Amsterdam, 2002), pp. 101–192

    Chapter  Google Scholar 

  8. G. Ananthakrishna, Current theoretical approaches to collective behavior of dislocations. Phys. Rep. Rev. Sec. Phys. Lett. 440, 113–259 (2007). https://doi.org/10.1016/j.physrep.2006.10.003

    Article  Google Scholar 

  9. L.P. Kubin, Dislocation patterning, in Treatise in Materials Science and Technology, ed. by H. Müghrabi, (VCH, Weinberg, FRG, 1993), pp. 137–189

    Google Scholar 

  10. G.A. Malygin, Dislocation self-organization processes and crystal plasticity. Phys. Usp. 42, 887–916 (1999). https://doi.org/10.1070/PU1999v042n09ABEH000563

    Article  CAS  Google Scholar 

  11. J. Weiss, T. Richeton, F. Louchet, F. Chmelı́k, P. Dobron, D. Entemeyer, M. Lebyodkin, T. Lebedkina, C. Fressengeas, R.J. McDonald, Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments. Phys. Rev. B 76, 224110 (2007). https://doi.org/10.1103/PhysRevB.76.224110

    Article  CAS  Google Scholar 

  12. C. Fressengeas, A.J. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, V. Taupin, Dislocation transport and intermittency in the plasticity of crystalline solids. Phys. Rev. B 79, 014108 (2009). https://doi.org/10.1103/PhysRevB.79.014108

    Article  CAS  Google Scholar 

  13. L.B. Zuev, On the way of plastic flow localization in pure metals and alloys. Ann. Phys. 16(4), 286–310 (2007). https://doi.org/10.1002/andp.200610233

    Article  CAS  Google Scholar 

  14. E.N. da C. Andrade, On the viscous flow in metals and allied phenomena. Proc. R. Soc. A 84, 1–12 (1910)

    Google Scholar 

  15. D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190 (2006). https://doi.org/10.1126/science.1123889

    Article  CAS  Google Scholar 

  16. M.V. Klassen-Nekludova, Mechanical Twinning of Crystals (Consultants Bureau, New York, 1964)

    Book  Google Scholar 

  17. O.V. Klyavin, Physics of Plasticity of Crystals at Helium Temperatures [in Russian]. Nauka, Moscow, 1987

    Google Scholar 

  18. Y. Estrin, L.P. Kubin, Plastic instabilities: Phenomenology and theory. Mater. Sci. Eng. A 137, 125–134 (1991). https://doi.org/10.1016/0921-5093(91)90326-I

    Article  Google Scholar 

  19. M. Zaiser, P. Hähner, Oscillatory modes of plastic deformation: Theoretical concepts. Phys. Status Solidi B 199, 267–330 (1997). https://doi.org/10.1002/1521-3951(199702)199:2<267::AID-PSSB267>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  20. B. Obst, Basic aspects of tensile properties, in Handbook of Applied Superconductivity, ed. by B. Seeber, (IOP Publishing, Bristol, Philadelphia, 1998), pp. 969–993

    Chapter  Google Scholar 

  21. V.V. Pustovalov, Serrated deformation of metals and alloys at low temperatures (review). Low Temp. Phys. 34, 683–723 (2008). https://doi.org/10.1063/1.2973710

    Article  CAS  Google Scholar 

  22. P. Rodriguez, Serrated plastic flow. Bull. Mater. Sci. 6(4), 653–663 (1984)

    Article  Google Scholar 

  23. J.M. Robinson, M.P. Shaw, Microstructural and mechanical influences on dynamic strain ageing phenomena. Int. Mater. Rev. 39(3), 113–122 (1994). https://doi.org/10.1179/imr.1994.39.3.113

    Article  CAS  Google Scholar 

  24. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, I.V. Shashkov, On the similarity of plastic flow processes during smooth and jerky flow: Statistical analysis. Acta Mater. 60, 3729–3740 (2012). https://doi.org/10.1016/j.actamat.2012.03.026

    Article  CAS  Google Scholar 

  25. K. Chihab, Y. Estrin, L.P. Kubin, J. Vergnol, The kinetics of the Portevin-Le Chatelier bands in an Al-5 at%Mg alloy. Scr. Metall. 21, 203–208 (1987). https://doi.org/10.1016/0036-9748(87)90435-2

    Article  CAS  Google Scholar 

  26. H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993). https://doi.org/10.1103/RevModPhys.65.1331

    Article  Google Scholar 

  27. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A 38, 364–374 (1988). https://doi.org/10.1103/PhysRevA.38.364

    Article  CAS  Google Scholar 

  28. S.H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000). https://doi.org/10.1016/S0167-2789(00)00094-4

    Article  Google Scholar 

  29. A.W. Sleeswijk, Dynamic strain ageing of alloys. Acta Metall. 6, 548 (1958)

    Google Scholar 

  30. P.G. McCormick, Serrated yielding and the occurrence of strain gradients in an Al-Cu alloy. Scr. Metall. 6, 165–170 (1972). https://doi.org/10.1016/0036-9748(72)90218-9

    Article  CAS  Google Scholar 

  31. G.A. Malygin, Dynamic interaction of impurity atmospheres with moving dislocations during serrated flow. Phys. Status Solidi A 15, 51–60 (1973). https://doi.org/10.1002/pssa.2210150104

    Article  CAS  Google Scholar 

  32. A. Van den Beukel, Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status. Solidi. A 30, 197–206 (1975). https://doi.org/10.1002/pssa.2210300120

    Article  Google Scholar 

  33. A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, H.W. Erbsloh, Microstructural aspects of strain localization in Al-Mg alloys. Acta Metall. 34(10), 1999–2009 (1986). https://doi.org/10.1016/0001-6160(86)90259-2

    Article  CAS  Google Scholar 

  34. P. Penning, Mathematics of the Portevin-Le Chatelier effect. Acta Metall. 20, 1169–1175 (1972). https://doi.org/10.1016/0001-6160(72)90165-4

    Article  Google Scholar 

  35. Y. Estrin, L.P. Kubin, Collective dislocation behavior in dilute alloys and the Portevin-Le Chatelier effect. J. Mech. Behav. Mater. 2, 255–292 (1990)

    Article  Google Scholar 

  36. E. Rizzi, P. Hähner, On the Portevin–Le Chatelier effect: Theoretical modeling and numerical results. J. Int. Plast. 20, 121–165 (2004). https://doi.org/10.1016/S0749-6419(03)00035-4

    Article  CAS  Google Scholar 

  37. S.Dj Mesarovic, Dynamic strain aging and plastic instabilities. J. Mech. Phys. Solids 43, 671–700 (1995). https://doi.org/10.1016/0022-5096(95)00010-G

    Article  Google Scholar 

  38. S. Tamimi, A. Andrade-Campos, J. Pinho-da-Cruz, Modelling of the Portevin-Le Chatelier effects in aluminium alloys: A review. J. Mech. Behav. Mater. 24, 67–78 (2015)

    Article  CAS  Google Scholar 

  39. P.N. Butcher, Gunn effect. Rep. Prog. Phys. 30, 97–148 (1967). https://doi.org/10.1088/0034-4885/30/1/303

    Article  Google Scholar 

  40. L.J. Cuddy, W.C. Leslie, Some aspects of serrated yielding in substitutional solid solutions of iron. Acta Metall. 40, 1157–1167 (1972). https://doi.org/10.1016/0001-6160(72)90164-2

    Article  Google Scholar 

  41. H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan, Three types of Portevin-Le Chatelier effects: Experiment and modeling. Acta Mater. 55, 2219–2228 (2007). https://doi.org/10.1016/j.actamat.2006.10.029

    Article  CAS  Google Scholar 

  42. H. Ait-Amokhtar, P. Vacher, S. Boudrahem, Kinematics fields and spatial activity of Portevine-Le Chatelier bands using the digital image correlation method. Acta Mater. 54, 4365–4371 (2006). https://doi.org/10.1016/j.actamat.2006.05.028

    Article  CAS  Google Scholar 

  43. A. Yilmaz, The Portevin-Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater. 12, 063001 (2011). https://doi.org/10.1088/1468-6996/12/6/063001

    Article  CAS  Google Scholar 

  44. D.A. Zhemchuzhnikova, Influence of the extreme grain size reduction on plastic deformation instability in an AlMg and AlMgScZr alloys, PhD Thesis, Université de Lorraine, Metz, France, 2018. https://hal.univ-lorraine.fr/tel-02141620/document

  45. Y. Bougherira, D. Entemeyer, C. Fressengeas, T. Lebedkina, N. Kobelev, M. Lebyodkin, Caractérisation multi-échelle de l’hétérogénéité spatio-temporelle de l’effet Portevin-Le Chatelier, Le XIXème Congrès Français de Mécanique, CFM 09, Marseille, France, August 24–28, 2009. http://documents.irevues.inist.fr/bitstream/handle/2042/37048/633.pdf?sequence=1

  46. M.A. Lebyodkin, T.A. Lebedkina, Multifractality and randomness in the unstable plastic flow near the lower strain-rate boundary of instability. Phys. Rev. E 77, 026111 (2008). https://doi.org/10.1103/PhysRevE.77.026111

    Article  CAS  Google Scholar 

  47. R.S. Raghavan, G. Ananthakrishna, Comment on “Scaling behavior of the Portevin–Le Chatelier effect in an Al-2.5%Mg alloy”. Phys. Rev. Lett. 97, 079601 (2006). https://doi.org/10.1103/PhysRevLett.97.079601

    Article  CAS  Google Scholar 

  48. M.A. Lebyodkin, T.A. Lebedkina, A. Jacques, Multifractal Analysis of Unstable Plastic Flow (Nova Science Publishers Inc., New York, 2009)

    Google Scholar 

  49. M. Lebyodkin, L. Dunin-Barkowskii, Y. Brechet, Y. Estrin, L.P. Kubin, Spatio-temporal dynamics of the Portevin-Le Chatelier effect: Experiment and modelling. Acta Mater. 48, 2529–2541 (2000). https://doi.org/10.1016/S1359-6454(00)00067-7

    Article  CAS  Google Scholar 

  50. M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin, Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys. Rev. Lett. 87(16), 165508 (2001). https://doi.org/10.1103/PhysRevLett.87.165508

    Article  CAS  Google Scholar 

  51. M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin, The hidden order behind jerky flow. Acta Mater. 50(11), 2813–2824 (2002). https://doi.org/10.1016/S1359-6454(02)00099-X

    Article  CAS  Google Scholar 

  52. T.A. Lebedkina, D.A. Zhemchuzhnikova, M.A. Lebyodkin, Correlation versus randomization of jerky flow in an AlMgScZr alloy using acoustic emission. Phys. Rev. E 97, 013001 (2018). https://doi.org/10.1103/PhysRevE.97.013001

    Article  CAS  Google Scholar 

  53. M.A. Lebyodkin, Y. Bougherira, T.A. Lebedkina, D. Entemeyer, Scaling in the local strain-rate field during jerky flow in an Al-3%Mg alloy. Metals 10, 134 (2020). https://doi.org/10.3390/met10010134

    Article  CAS  Google Scholar 

  54. M.A. Lebyodkin, Y. Brechet, Y. Estrin, L.P. Kubin, Statistics of the catastrophic slip events in the Portevin-Le Chatelier effect. Phys. Rev. Lett. 74, 4758–4761 (1995). https://doi.org/10.1103/PhysRevLett.74.4758

    Article  CAS  Google Scholar 

  55. M.A. Lebyodkin, Y. Brechet, Y. Estrin, L.P. Kubin, Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect. Acta Mater. 44, 4531–4541 (1996). https://doi.org/10.1016/1359-6454(96)00076-6

    Article  CAS  Google Scholar 

  56. M.A. Lebyodkin, L.R. Dunin-Barkowskii, Critical behavior and mechanism of strain correlations under conditions of unstable plastic flow. J. Exp. Theor. Phys. 86, 993–1000 (1998). https://doi.org/10.1134/1.558571

    Article  Google Scholar 

  57. M.A. Lebyodkin, L.R. Dunin-Barkowskii, Dynamic mechanism of the temperature dependence of the Portevin–Le Chatelier effect. Phys. Solid State 40, 447–452 (1998). https://doi.org/10.1134/1.1130341

    Article  Google Scholar 

  58. M.A. Lebyodkin, L.R. Dunin-Barkowskii, T.A. Lebedkina, Statistical and multifractal analysis of collective dislocation processes in the Portevin-Le Chatelier effect. Phys. Mesomech. 4, 9–14 (2001)

    Google Scholar 

  59. R.B. Schwarz, L.L. Funk, Kinetics of the Portevin-Le Chatelier effect in Al 6061 alloy. Acta Metal. 33, 295–307 (1985). https://doi.org/10.1016/0001-6160(85)90148-8

    Article  CAS  Google Scholar 

  60. G.F. Xiang, Q.C. Zhang, H.W. Liu, X.P. Wu, X.Y. Ju, Time-resolved deformation measurements of the Portevin-Le Chatelier bands. Scr. Mater. 56, 721–724 (2007). https://doi.org/10.1016/j.scriptamat.2006.08.049

    Article  CAS  Google Scholar 

  61. L. Casarotto, H. Dierke, R. Tutsch, H. Neuhäuser, On nucleation and propagation of PLC bands in an Al–3Mg alloy. Mater. Sci. Eng. A 527, 132–140 (2009). https://doi.org/10.1016/j.msea.2009.07.043

    Article  CAS  Google Scholar 

  62. W. Tong, H. Tao, N. Zhang, L.G. Hector Jr., Time-resolved strain mapping measurements of individual Portevin–Le Chatelier deformation bands. Scripta Mater. 53, 87–92 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.020

    Article  CAS  Google Scholar 

  63. J. Zdunek, T. Brynk, J. Mizera, Z. Pakiela, K.J. Kurzydlowski, Digital image correlation investigation of Portevin-Le Chatelier effect in an aluminium alloy. Mater. Charact. 59, 1429–1433 (2008). https://doi.org/10.1016/j.matchar.2008.01.004

    Article  CAS  Google Scholar 

  64. M.A. Lebyodkin, D.A. Zhemchuzhnikova, T.A. Lebedkina, E.C. Aifantis, Kinematics of formation and cessation of type B deformation bands during the Portevin-Le Chatelier effect in an AlMg alloy. Results Phys. 12, 867–869 (2019). https://doi.org/10.1016/j.rinp.2018.12.067

    Article  Google Scholar 

  65. A. Clauset, C. Shalizi, M. Newman, Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). https://doi.org/10.1137/070710111

    Article  Google Scholar 

  66. A. Deluca, Á. Corral, Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys. 61, 1351–1394 (2013). https://doi.org/10.2478/s11600-013-0154-9

    Article  Google Scholar 

  67. W.H. Press, Flicker noises in astronomy and elsewhere. Comments Mod. Phys. Part C Comments Astrophys. 7, 103–119 (1978)

    Google Scholar 

  68. P. Bak, Chao Tang, K. Wiesenfeld, Are earthquakes, fractals, and 1/f noise self-organized critical phenomena? in Cooperative Dynamics in Complex Physical Systems, Springer Series in Synergetics, ed. by H. Takayama, vol. 43, (Springer, Berlin, Heidelberg, 1988), pp. 274–279. https://doi.org/10.1007/978-3-642-74554-6_70

    Chapter  Google Scholar 

  69. P. Bak, K. Chen, Self-organized criticality. Sci. Am. 264, 46–53 (1991). https://doi.org/10.1038/scientificamerican0191-46

    Article  Google Scholar 

  70. H.J. Jensen, Self-Organized Criticality (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  71. M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988). https://doi.org/10.1103/RevModPhys.60.537

    Article  CAS  Google Scholar 

  72. E. Altshuler, T.H. Johansen, Colloquium: Experiments in vortex avalanches. Rev. Mod. Phys. 76, 471–487 (2004). https://doi.org/10.1103/RevModPhys.76.471

    Article  CAS  Google Scholar 

  73. N.W. Watkins, G. Pruessner, S.C. Chapman, N.B. Crosby, H.J. Jensen, 25 years of self-organized criticality: Concepts and controversies. Space Sci. Rev. 198, 3–44 (2016). https://doi.org/10.1007/s11214-015-0155-x

    Article  Google Scholar 

  74. M. Zaiser, Scale invariance in plastic flow of crystalline solids. Adv. Phys. 55, 185–245 (2006). https://doi.org/10.1080/00018730600583514

    Article  CAS  Google Scholar 

  75. G. Sparks, R. Maaβ, Nontrivial scaling exponents of dislocation avalanches in microplasticity. Phys. Rev. Mater. 2, 120601 (2018). https://doi.org/10.1103/PhysRevMaterials.2.120601

    Article  CAS  Google Scholar 

  76. N.Q. Chinh, T. Györi, J. Gubicza, J. Lendvai, T.G. Langdon, Possible self-organized criticality in the Portevin-Le Chatelier effect during decomposition of solid solution alloys. MRS Commun. 2, 1–4 (2011). https://doi.org/10.1557/mrc.2011.25

    Article  CAS  Google Scholar 

  77. J. Kertész, L.B. Kiss, The noise spectrum in the model of self-organised criticality. J. Phys. A Math. Gen. 23, L433–L440 (1990). https://doi.org/10.1088/0305-4470/23/9/006

    Article  Google Scholar 

  78. M.S. Bharathi, G. Ananthakrishna, Chaotic and power law states in the Portevin-Le Chatelier effect. Europhys. Lett. 60, 234–240 (2002). https://doi.org/10.1209/epl/i2002-00391-2

    Article  CAS  Google Scholar 

  79. G. Ananthakrishna, M.S. Bharathi, Dynamical approach to the spatiotemporal aspects of the Portevin–Le Chatelier effect: Chaos, turbulence, and band propagation. Phys. Rev. E 70, 026111 (2004). https://doi.org/10.1103/PhysRevE.70.026111

    Article  CAS  Google Scholar 

  80. J. Feder, Fractals (Plenum Press, New York, London, 1988)

    Book  Google Scholar 

  81. J.-F. Muzy, E. Bacry, A. Arneodo, The multifractal formalism revisited with wavelets. Int. J. Bifurcation Chaos 4, 245–302 (1994). https://doi.org/10.1142/S0218127494000204

    Article  Google Scholar 

  82. D. Harte, Multifractals (Chapman & Hall, London, 2001)

    Book  Google Scholar 

  83. A. Arneodo, B. Audit, N. Decoster, J.-F. Muzy, C. Vaillant, Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data, in The Science of Disasters, ed. by A. Bunde, J. Kropp, H. J. Schellnhuber, (Springer, 2002), pp. 27–102

    Google Scholar 

  84. B.B. Mandelbrot, The Fractal Geometry of Nature (Macmillan, New York, 1983)

    Book  Google Scholar 

  85. B.B. Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond (Springer, New York, 2004). https://doi.org/10.1007/978-1-4757-4017-2

    Book  Google Scholar 

  86. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986). https://doi.org/10.1103/PhysRevA.33.1141

    Article  CAS  Google Scholar 

  87. A.B. Chhabra, R.V. Jensen, Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 62, 1327–1330 (1989). https://doi.org/10.1103/PhysRevLett.62.1327

    Article  CAS  Google Scholar 

  88. G. Ananthakrishna, C. Fressengeas, M. Grosbras, J. Vergnol, G. Engelke, J. Plessing, H. Neuhäuser, E. Bouchaud, J. Planes, L.P. Kubin, On the existence of chaos in jerky flow. Scr. Metall. Mater. 32, 1731–1737 (1995). https://doi.org/10.1016/0956-716X(95)00013-L

    Article  CAS  Google Scholar 

  89. G. Ananthakrishna, S.J. Noronha, C. Fressengeas, L.P. Kubin, Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals. Phys. Rev. E 60, 5455–5462 (1999). https://doi.org/10.1103/PhysRevE.60.5455

    Article  CAS  Google Scholar 

  90. S.J. Noronha, G. Ananthakrishna, L. Quaouire, C. Fressengeas, L.P. Kubin, Chaos in the Portevin-Le Chatelier effect. Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 2577–2586 (1997). https://doi.org/10.1142/S0218127497001734

    Article  Google Scholar 

  91. D. Kugiumtzis, A. Kehagias, E.C. Aifantis, H. Neuhäuser, Statistical analysis of the extreme values of stress time series from the Portevin – Le Chatelier effect. Phys. Rev. E 70, 036110 (2004). https://doi.org/10.1103/PhysRevE.70.036110

    Article  CAS  Google Scholar 

  92. A. Sarkar, P. Barat, The Portevin-Le Chatelier effect in the continuous time random walk framework. Phys. Lett. A 367, 291–294 (2007). https://doi.org/10.1016/j.physleta.2007.03.020

    Article  CAS  Google Scholar 

  93. A. Sarkar, C.L. Webber Jr., P. Barat, P. Mukherjee, Recurrence analysis of the Portevin–Le Chatelier effect. Phys. Lett. A 372, 1101–1105 (2008). https://doi.org/10.1016/j.physleta.2007.08.055

    Article  CAS  Google Scholar 

  94. K. Darowicki, J. Orlikowski, A. Zielinski, W. Jurczak, Quadratic Cohen representations in spectral analysis of serration process in Al-Mg alloys. Comput. Mater. Sci. 39, 880–886 (2007). https://doi.org/10.1016/j.commatsci.2006.10.011

    Article  CAS  Google Scholar 

  95. K. Darowicki, J. Orlikowski, A. Zielinski, Frequency bands selection of the Portevin-LeChatelier effect. 43, 366–373 (2008). https://doi.org/10.1016/j.commatsci.2007.12.001

  96. R.N. Mudrock, M.A. Lebyodkin, P. Kurath, A.J. Beaudoin, T.A. Lebedkina, Strain-rate fluctuation during macroscopically uniform deformation of a solution-strengthened alloy. Scr. Mater. 65, 1093–1096 (2011). https://doi.org/10.1016/j.scriptamat.2011.09.025

    Article  CAS  Google Scholar 

  97. A.C. Iliopoulos, N.S. Nikolaidis, E.C. Aifantis, Portevin-Le Chatelier effect and Tsallis nonextensive statistics. Physica A 438, 509 (2015). https://doi.org/10.1016/j.physa.2015.07.007

    Article  Google Scholar 

  98. J. Brechtl, S.Y. Chen, X. Xie, Y. Ren, J.W. Qiao, P.K. Liaw, S.J. Zinkle, Towards a greater understanding of serrated flow in an Al-containing high-entropy-based alloy. Int. J. Plast. 115, 71–92 (2019). https://doi.org/10.1016/j.ijplas.2018.11.011

    Article  CAS  Google Scholar 

  99. J. Brechtl, B. Chen, X. Xie, Y. Ren, J.D. Venable, P.K. Liaw, S.J. Zinkle, Entropy modeling on serrated flows in carburized steels. Mater. Sci. Eng. A 753, 135–145 (2019). https://doi.org/10.1016/j.msea.2019.02.096

    Article  CAS  Google Scholar 

  100. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    Article  Google Scholar 

  101. G. Ananthakrishna, M.C. Valsakumar, Chaotic flow in a model for repeated yielding. Phys. Lett. A 95, 69–71 (1983). https://doi.org/10.1016/0375-9601(83)90141-X

    Article  Google Scholar 

  102. S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, M.A. Lebyodkin, Acta Mater. 51, 3651–3662 (2003). https://doi.org/10.1016/S1359-6454(03)00114-9

    Article  CAS  Google Scholar 

  103. R. Sarmah, G. Ananthakrishna, Influence of system size on spatiotemporal dynamics of a model for plastic instability: Projecting low-dimensional and extensive chaos. Phys. Rev. E 87, 052907 (2013). https://doi.org/10.1103/PhysRevE.87.052907

    Article  CAS  Google Scholar 

  104. M.A. Lebyodkin, T.A. Lebedkina, Multifractal analysis of evolving noise associated with unstable plastic flow. Phys. Rev. E 73, 036114 (2006). https://doi.org/10.1103/PhysRevE.73.036114

    Article  CAS  Google Scholar 

  105. M.A. Lebyodkin, Y. Estrin, Multifractal analysis of the Portevin-Le Chatelier effect: General approach and application to AlMg and AlMg/Al2O3 alloys. Acta Mater. 53, 3403–3413 (2005). https://doi.org/10.1016/j.actamat.2005.03.042

    Article  CAS  Google Scholar 

  106. A.A. Shibkov, M.F. Gasanov, M.A. Zheltov, A.E. Zolotov, V.I. Ivolgin, Intermittent plasticity associated with the spatio-temporal dynamics of deformation bands during creep tests in an AlMg polycrystal. Int. J. Plast. 86, 37–55 (2016). https://doi.org/10.1016/j.ijplas.2016.07.014

    Article  CAS  Google Scholar 

  107. F.B. Klose, F. Hagemann, P. Hähner, H. Neuhäuser, Investigation of the Portevin-Le Chatelier effect in Al-3wt.%Mg alloys by strain-rate and stress-rate controlled tensile tests. Mater. Sci. Eng. A 387–389, 93–97 (2004). https://doi.org/10.1016/j.msea.2004.01.062

    Article  CAS  Google Scholar 

  108. M.M. Krishtal, A.K. Khrustalev, A.V. Volkov, S.A. Borodin, Nucleation and growth of macrofluctuations of plastic strain with discontinuous yield and luders deformation: Results of high-speed video filming. Dokl. Phys. 54, 225–229 (2009). https://doi.org/10.1134/S1028335809050024

    Article  CAS  Google Scholar 

  109. A.A. Shibkov, M.A. Zheltov, M.F. Gasanov, A.E. Zolotov, A.A. Denisov, M.A. Lebyodkin, Mater. Sci. Eng. A 772, 138777 (2020). https://doi.org/10.1016/j.msea.2019.138777

    Article  CAS  Google Scholar 

  110. T. Böhlke, G. Bondar, Y. Estrin, M. Lebyodkin, Geometrically non-linear modeling of the Portevin-Le Chatelier effect. Comput. Mater. Sci. 44, 1076–1088 (2009). https://doi.org/10.1016/j.commatsci.2008.07.036

    Article  CAS  Google Scholar 

  111. M. Maziere, H. Dierke, Investigations on the Portevin-Le Chatelier critical strain in an aluminum alloy. Comput. Mater. Sci. 52, 68–72 (2012). https://doi.org/10.1016/j.commatsci.2011.05.039

    Article  CAS  Google Scholar 

  112. C. U. Grosse, M. Ohtsu (eds.), Acoustic Emission Testing: Basics for Research – Applications in Civil Engineering (Springer, Berlin, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-69972-9

    Book  Google Scholar 

  113. K. Ono, Acoustic emission in materials research – A review. J. Acoustic. Emiss. 29, 284–308 (2011)

    Google Scholar 

  114. W. Sikorski (ed.), Acoustic Emission (InTech, Rijek, 2012)

    Google Scholar 

  115. P. Lukac, Z. Trojanova, F. Chmelik, Microstructural characterization by nondestructive methods. Mater. Sci. Forum 482, 103–108 (2005). https://doi.org/10.4028/www.scientific.net/MSF.482.103

    Article  CAS  Google Scholar 

  116. F. Chmelik, F.B. Klose, H. Dierke, J. Sachl, H. Neuhäuser, P. Lucas, Investigating the Portevin-Le Chatelier effect in strain rate and stress rate controlled tests by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng. A 462, 53–60 (2007). https://doi.org/10.1016/j.msea.2006.01.169

    Article  CAS  Google Scholar 

  117. M. Lebyodkin, K. Amouzou, T. Lebedkina, T. Richeton, A. Roth, Complexity and anisotropy of plastic flow of α-Ti probed by acoustic emission and local extensometry. Materials 11, 1061 (2018). https://doi.org/10.3390/ma11071061

    Article  CAS  Google Scholar 

  118. M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.-R. Grasso, Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001). https://doi.org/10.1038/35070524

    Article  CAS  Google Scholar 

  119. J. Weiss, J.-R. Grasso, Acoustic emission in single crystals of ice. J. Phys. Chem. B 101, 6113–6117 (1997). https://doi.org/10.1021/jp963157f

    Article  CAS  Google Scholar 

  120. J. Weiss, J.-R. Grasso, M.-C. Miguel, A. Vespignani, S. Zapperi, Complexity in dislocation dynamics: Experiments. Mater. Sci. Eng. A 309-310, 360–364 (2001). https://doi.org/10.1016/S0921-5093(00)01633-6

    Article  Google Scholar 

  121. J. Weiss, W. Ben Rhouma, T. Richeton, S. Dechanel, F. Louchet, L. Truskinovsky, From mild to WildLV14378 fluctuations in crystal plasticity. Phys. Rev. Lett. 114, 105504 (2015). https://doi.org/10.1103/PhysRevLett.114.105504

    Article  CAS  Google Scholar 

  122. V.S. Bobrov, M.A. Lebedkin, Electrical effects in low-temperature abrupt deformation of Al. Fiz. Tverd. Tela 31, 120–126 (1989) [Sov. Phys. Solid State 31 (1989) 982-986]

    CAS  Google Scholar 

  123. V.S. Bobrov, S.I. Zaitsev, M.A. Lebedkin, Statistics of dynamic processes in the low-temperature discontinuous deformation of metals. Fiz. Tverd. Tela 32, 3060–3065 (1990) [Sov. Phys. Solid State 32 (1990) 1176-1779]

    CAS  Google Scholar 

  124. Y. Bougherira, Étude des phénomènes d’auto-organisation des ensembles de dislocations dans un alliage au vieillissement dynamique, PhD Thesis, Université Paul Verlaine, Metz, France, 2011. https://hal.univ-lorraine.fr/tel-01749084/document

  125. I.V. Shashkov, Multiscale study of the intermittency of plastic deformation by acoustic mission method, PhD Thesis, Université de Lorraine, Metz, France, 2012. https://hal.univ-lorraine.fr/tel-01749405/document

  126. K. Ono, Review on structural health evaluation with acoustic emission. Appl. Sci. 8, 958 (2018). https://doi.org/10.3390/app8060958

    Article  CAS  Google Scholar 

  127. E. Onajite, Understanding sample data, in Seismic Data Analysis in Hydrocarbon Exploration, (Elsevier, 2014), pp. 105–115. https://doi.org/10.1016/B978-0-12-420023-4.00008-3

    Chapter  Google Scholar 

  128. M.A. Lebyodkin, I.V. Shashkov, T.A. Lebedkina, K. Mathis, P. Dobron, F. Chmelik, Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Phys. Rev. E 88, 042402 (2013). https://doi.org/10.1103/PhysRevE.88.042402

    Article  CAS  Google Scholar 

  129. M.A. Lebyodkin, I.V. Shashkov, T.A. Lebedkina, V.S. Gornakov, Experimental investigation of the effect of thresholding on temporal statistics of avalanches. Phys. Rev. E 95, 032910 (2017). https://doi.org/10.1103/PhysRevE.95.032910

    Article  CAS  Google Scholar 

  130. I.V. Shashkov, M.A. Lebyodkin, T.A. Lebedkina, Multiscale study of acoustic emission during smooth and jerky flow in an AlMg alloy. Acta Mater. 60, 6842–6850 (2012). https://doi.org/10.1016/j.actamat.2012.08.058

    Article  CAS  Google Scholar 

  131. N. Kiesewetter, P. Schiller, Acoustic-emission from moving dislocations in aluminum. Phys. Status Solidi A 38, 569–575 (1976). https://doi.org/10.1002/pssa.2210380218

    Article  CAS  Google Scholar 

  132. T.A. Lebedkina, Y. Bougherira, D. Entemeyer, M.A. Lebyodkin, I.V. Shashkov, Crossover in the scale-free statistics of acoustic emission associated with the Portevin-Le Chatelier instability. Scr. Mater. 148, 47–50 (2018). https://doi.org/10.1016/j.scriptamat.2018.01.017

    Article  CAS  Google Scholar 

  133. M.A. Lebyodkin, T.A. Lebedkina, F. Chmelik, T.T. Lamark, Y. Estrin, C. Fressengeas, J. Weiss, Intrinsic structure of acoustic emission events during jerky flow in an Al alloy. Phys. Rev. B 79, 174114–174119 (2009). https://doi.org/10.1103/PhysRevB.79.174114

    Article  CAS  Google Scholar 

  134. F. Chmelík, A. Ziegenbein, H. Neuhäuser, P. Lukáč, Investigating the Portevin-Le Chatelier effect by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng. A 324, 200–207 (2002). https://doi.org/10.1016/S0921-5093(01)01312-0

    Article  Google Scholar 

  135. N.P. Kobelev, M.A. Lebyodkin, T.A. Lebedkina, Role of self-organization of dislocations in the onset and kinetics of macroscopic plastic instability. Metall. Mater. Trans. A 48, 965–974 (2017). https://doi.org/10.1007/s11661-016-3912-x

    Article  CAS  Google Scholar 

  136. M. Abbadi, P. Hähner, A. Zeghloul, On the characteristics of Portevin-Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing. Mater. Sci. Eng. A 337, 194–201 (2002). https://doi.org/10.1016/S0921-5093(02)00036-9

    Article  Google Scholar 

  137. K. Mathis, F. Chmelik, Exploring plastic deformation of metallic materials by the acoustic emission technique, in Acoustic Emission, ed. by W. Sikorsky, (InTech, Rijeka, 2012), pp. 23–48

    Google Scholar 

  138. K. Kumar, G. Ananthakrishna, Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra. Phys. Rev. E 97, 012201 (2018). https://doi.org/10.1103/PhysRevE.97.012201

    Article  CAS  Google Scholar 

  139. J.M. Carlson, J.S. Langer, B.E. Shaw, Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994). https://doi.org/10.1103/RevModPhys.66.657

    Article  Google Scholar 

  140. G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, A. Vulpiani, Power laws in solar flares: Self-organized criticality or turbulence? Phys. Rev. Lett. 83, 4662–4665 (1999). https://doi.org/10.1103/PhysRevLett.83.466

    Article  CAS  Google Scholar 

  141. E. Spada, V. Carbone, R. Cavazzana, L. Fattorini, G. Regnoli, N. Vianello, V. Antoni, E. Martines, G. Serianni, M. Spolaore, L. Tramontin, Search of self-organized criticality processes in magnetically confined plasmas: Hints from the reversed field pinch configuration. Phys. Rev. Lett. 86, 3032–3035 (2001). https://doi.org/10.1103/PhysRevLett.86.3032

    Article  CAS  Google Scholar 

  142. L.I. Salminen, A.I. Tolvanen, M.J. Alava, Acoustic emission from paper fracture. Phys. Rev. Lett. 89, 185503 (2002). https://doi.org/10.1103/PhysRevLett.89.185503

    Article  CAS  Google Scholar 

  143. A. Deluca, Á. Corral, Scale invariant events and dry spells for medium-resolution local rain data. Nonlinear Proc. Geophys. 21, 555–567 (2014). https://doi.org/10.5194/npg-21-555-2014

    Article  Google Scholar 

  144. R. Sanchez, D.E. Newman, B.A. Carreras, Waiting-time statistics of self-organized-criticality systems. Phys. Rev. Lett. 88, 068302 (2002). https://doi.org/10.1103/PhysRevLett.88.068302

    Article  CAS  Google Scholar 

  145. J. Baró, Á. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Statistical similarity between the compression of a porous material and earthquakes. Phys. Rev. Lett. 110, 088702 (2013). https://doi.org/10.1103/PhysRevLett.110.088702

    Article  CAS  Google Scholar 

  146. K. Christensen, Z. Olami, Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model for earthquakes. J. Geophys. Res. 97, 8729–8735 (1992). https://doi.org/10.1029/92JB00427

    Article  Google Scholar 

  147. M. Paczuski, S. Boettcher, M. Baiesi, Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile model: A comparison with the observed statistics of solar flares. Phys. Rev. Lett. 95, 181102 (2005). https://doi.org/10.1103/PhysRevLett.95.181102

    Article  CAS  Google Scholar 

  148. L. Laurson, X. Illa, M.J. Alava, The effect of thresholding on temporal avalanche statistics. J. Stat. Mech. Theory Exp., P01019 (2009). https://doi.org/10.1088/1742-5468/2009/01/P01019

  149. D. Zhemchuzhnikova, M. Lebyodkin, T. Lebedkina, A. Mogucheva, D. Yuzbekova, R. Kaibyshev, Peculiar spatiotemporal behavior of unstable plastic flow in an AlMgMnScZr alloy with coarse and ultrafine grains. Metals 7, 325 (2017). https://doi.org/10.3390/met7090325

    Article  CAS  Google Scholar 

  150. J. Buck, E. Buck, Synchronous fireflies. Sci. Am. 234, 74 (1976)

    Article  CAS  Google Scholar 

  151. C.J. Pérez, Á. Corral, A. Díaz-Guilera, K. Christensen, A. Arenas, On self-organized critically and synchronization in lattice models of coupled dynamic systems. Int. J. Mod. Phys. B 10, 1111–1151 (1996). https://doi.org/10.1142/S0217979296000416

    Article  Google Scholar 

  152. P.G. McCormick, C.P. Ling, Numerical modelling of the Portevin-Le Chatelier effect. Acta Metall. Mater. 43, 1969–1977 (1995). https://doi.org/10.1016/0956-7151(94)00390-4

    Article  CAS  Google Scholar 

  153. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, T.A. Lebedkina, I.V. Shashkov, On the similarity of plastic flow processes during smooth and jerky flow in dilute alloys. Acta Mater. 60, 844–850 (2012). https://doi.org/10.1016/j.actamat.2011.10.042

    Article  CAS  Google Scholar 

  154. R. Král, P. Dobroň, F. Chmelík, V. Koula, M. Rydlo, M. Janeček, A qualitatively new approach to acoustic emission measurements and its application to pure aluminium and Mg-Al alloys. Kovove Mater. 45, 159–163 (2007)

    Google Scholar 

  155. F. Heslot, B. Castaing, A. Libchaber, Transitions to turbulence in helium gas. Phys. Rev. A 36, 5870–5873 (1987). https://doi.org/10.1103/PhysRevA.36.5870

    Article  CAS  Google Scholar 

  156. M. Yamada, K. Ohkitani, Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett. 60, 983–986 (1988). https://doi.org/10.1103/PhysRevLett.60.983

    Article  CAS  Google Scholar 

  157. Z. Eisler, I. Bartos, J. Kertész, Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57, 89–142 (2008). https://doi.org/10.1080/00018730801893043

    Article  CAS  Google Scholar 

  158. W.S. Kendal, Self-organized criticality attributed to a central limit-like convergence effect. Physica A 421, 141–150 (2015). https://doi.org/10.1016/j.physa.2014.11.035

    Article  Google Scholar 

  159. L.R. Taylor, Aggregation, variance and mean. Nature 189, 732–735 (1961). https://doi.org/10.1038/189732a0

    Article  Google Scholar 

  160. B. Jørgensen, J.R. Martinez, M. Tsao, Asymptotic-behavior of the variance function. Scand. J. Stat. 21, 223–243 (1994)

    Google Scholar 

  161. J.-B. Lecomte, H.P. Benoît, S. Ancelet, M.-P. Etienne, L. Bel, E. Parent, Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume. Methods Ecol. Evol. 4, 1159–1166 (2013). https://doi.org/10.1111/2041-210X.12122

    Article  Google Scholar 

  162. M.A. Sutton, F. Hild, Recent advances and perspectives in digital image correlation. Exp. Mech. 55, 1–8 (2015). https://doi.org/10.1007/s11340-015-9991-6

    Article  Google Scholar 

  163. P. Jacquot, Speckle interferometry: A review of the principal methods in use for experimental mechanics applications. Strain 44, 57–69 (2008). https://doi.org/10.1111/j.1475-1305.2008.00372.x

    Article  Google Scholar 

  164. L.B. Zuev, V.I. Danilov, N.V. Kartashova, S.A. Barannikova, The self-excited wave nature of the instability and localization of plastic deformation. Mater. Sci. Eng. A 234-236, 699–702 (1997). https://doi.org/10.1016/S0921-5093(97)00242-6

    Article  Google Scholar 

  165. G.F. Sarafanov, Plastic-strain-softening waves in crystals. Phys. Solid State 43, 263–269 (2001). https://doi.org/10.1134/1.1349472

    Article  CAS  Google Scholar 

  166. R.J. McDonald, C. Efstathiou, P. Kurath, The wavelike plastic deformation of single crystal copper. J. Eng. Mater. Technol. Trans. ASME 131, 031013 (2009). https://doi.org/10.1115/1.3120410

    Article  CAS  Google Scholar 

  167. L.B. Zuev, S.A. Barannikova, Autowave physics of material plasticity. Crystals 9, 458 (2019). https://doi.org/10.3390/cryst9090458

    Article  CAS  Google Scholar 

  168. A. Roth, M.A. Lebyodkin, T.A. Lebedkina, J.S. Lecomte, T. Richeton, K.E.K. Amouzou, Mechanisms of anisotropy of mechanical properties of alpha-titanium in tension conditions. Mater. Sci. Eng. A 596, 236–243 (2014). https://doi.org/10.1016/j.msea.2013.12.061

    Article  CAS  Google Scholar 

  169. A. Roth, T.A. Lebedkina, M.A. Lebyodkin, On the critical strain for the onset of plastic instability in an austenitic FeMnC steel. Mater. Sci. Eng. A 539, 280–284 (2012). https://doi.org/10.1016/j.msea.2012.01.094

    Article  CAS  Google Scholar 

  170. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358–460 (2017)

    Article  CAS  Google Scholar 

  171. R.N. Mudrock, M.A. Lebyodkin, P. Kurath, A.J. Beaudoin, T.A. Lebedkina, Strain-rate fluctuations during macroscopically uniform deformation of a solution-strengthened alloy. Scr. Mater. 65(12), 1093–1096 (2011)

    Article  CAS  Google Scholar 

  172. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  Google Scholar 

  173. H. Neuhauser, Collective microshear processes and plastic instabilities in crystalline and amorphous structures. Int. J. Plast. 9(4), 421–435 (1993)

    Article  Google Scholar 

  174. S.Z. Niu, H.C. Kou, Y. Zhang, J. Wang, J.S. Li, The characteristics of serration in Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 702, 96–103 (2017)

    Article  CAS  Google Scholar 

  175. J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A.M. Coleman, B. Straka, H. Shortt, R.J. Spurling, P.K. Liaw, A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys. Metals 10(8), 1101 (2020)

    Article  Google Scholar 

  176. J.M. Reed, M.E. Walter, Observations of serration characteristics and acoustic emission during serrated flow of an Al–Mg alloy. Mater. Sci. Eng. A 359(1), 1–10 (2003)

    Article  Google Scholar 

  177. S.Y. Chen, W.D. Li, X. Xie, J. Brechtl, B.L. Chen, P.Z. Li, G.F. Zhao, F.Q. Yang, J.W. Qiao, P.K. Liaw, Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. J. Alloys Compd. 752, 464–475 (2018)

    Article  CAS  Google Scholar 

  178. D.V. Denisov, K.A. Lőrincz, W.J. Wright, T.C. Hufnagel, A. Nawano, X. Gu, J.T. Uhl, K.A. Dahmen, P. Schall, Universal slip dynamics in metallic glasses and granular matter – Linking frictional weakening with inertial effects. Sci. Rep. 7, 43376 (2017)

    Article  Google Scholar 

  179. I. Gindin, V. Khotkevich, Y.A. Starodubov, Ductile characteristics of aluminum at low temperatures. Fiz. Met. Metalloved. 7, 794 (1959)

    CAS  Google Scholar 

  180. T.H. Blewitt, R.R. Coltman, J.K. Redman, Low-temperature deformation of copper single crystals. J. Appl. Phys. 28(6), 651–660 (1957)

    Article  CAS  Google Scholar 

  181. V. Bobrov, I. Videnskii. Material from the XX-th all-union conference on low-temperature physics (Chernogolovka, 1979), Part 3 79

    Google Scholar 

  182. I. Kuzmenko, S. Lubenets, V. Pustovalov, L. Fomenko, Vliyanie sverkhprovodyashchego perekhoda na skolzhenie i dvoynikovanie indiya i ego splavov [Effect of the superconducting transition on slip and twinning in indium and its alloys]. Sov. J. Low Temp. Phys. 9, 450–453 (1983)

    Google Scholar 

  183. A. Sarkar, S.A. Maloy, K.L. Murty, Investigation of Portevin-LeChatelier effect in HT-9 steel. Mater. Sci. Eng. A 631, 120–125 (2015)

    Article  CAS  Google Scholar 

  184. D.M. Field, D.C.V. Aken, Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel. Metall. Mater. Trans. A 49A(4), 1152–1166 (2018)

    Article  Google Scholar 

  185. P. Lan, J.Q. Zhang, Serrated flow and dynamic strain aging in Fe-Mn-C TWIP steel. Metall. Mater. Trans. A 49A(1), 147–161 (2018)

    Article  Google Scholar 

  186. P.D. Zavattieri, V. Savic, L.G. Hector, J.R. Fekete, W. Tong, Y. Xuan, Spatio-temporal characteristics of the Portevin-Le Chatelier effect in austenitic steel with twinning induced plasticity. Int. J. Plast. 25(12), 2298–2330 (2009)

    Article  CAS  Google Scholar 

  187. M. Madivala, A. Schwedt, S.L. Wong, F. Roters, U. Prahl, W. Bleck, Temperature dependent strain hardening and fracture behavior of TWIP steel. Int. J. Plast. 104, 80–103 (2018)

    Article  CAS  Google Scholar 

  188. F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, H. Dong, On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation induced plasticity. Int. J. Plast. 103, 188–202 (2018)

    Article  CAS  Google Scholar 

  189. A.S. Alomari, N. Kumar, K.L. Murty, Enhanced ductility in dynamic strain aging regime in a Fe-25Ni-20Cr austenitic stainless steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 729, 157–160 (2018)

    Article  CAS  Google Scholar 

  190. Y.Y. Hong, S.L. Li, H.J. Li, J. Li, G.G. Sun, Y.D. Wang, Development of intergranular residual stress and its implication to mechanical behaviors at elevated temperatures in AL6XN austenitic stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49A(8), 3237–3246 (2018)

    Article  Google Scholar 

  191. Q.S. Li, Y.Z. Shen, P.C. Han, Iop. Serrated flow behavior of Aisi 316l austenitic stainless steel for nuclear reactors. 3rd Annual International Workshop on Materials Science and Engineering, Iop Publishing Ltd, Bristol (2017)

    Google Scholar 

  192. C. Ferrero, R. Monforte, C. Marinari, E. Martino, Correlation between serration effect and temperature. Cryogenics 34, 473–476 (1994)

    Article  CAS  Google Scholar 

  193. D.W. Kim, W.S. Ryu, J.H. Hong, S.K. Choi, Effect of nitrogen on the dynamic strain ageing behaviour of type 316L stainless steel. J. Mater. Sci. 33(3), 675–679 (1998)

    Article  CAS  Google Scholar 

  194. M. Koyama, T. Sawaguchi, K. Tsuzaki, Overview of dynamic strain aging and associated phenomena in Fe–Mn–C austenitic steels. ISIJ Int. 58(8), 1383–1395 (2018)

    Article  CAS  Google Scholar 

  195. T.A. Lebedkina, M.A. Lebyodkin, J.P. Chateau, A. Jacques, S. Allain, On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 519(1–2), 147–154 (2009)

    Article  Google Scholar 

  196. S. Allain, O. Bouaziz, T. Lebedkina, M. Lebyodkin, Relationship between relaxation mechanisms and strain aging in an austenitic FeMnC steel. Scr. Mater. 64(8), 741–744 (2011)

    Article  CAS  Google Scholar 

  197. G. Ananthakrishna, C. Fressengeas, M. Grosbras, J. Vergnol, C. Engelke, J. Plessing, H. Neuhauser, E. Bouchaud, J. Planes, L.P. Kubin, On the existence of chaos in jerky flow. Scr. Metall. Mater. 32(11), 1731–1737 (1995)

    Article  CAS  Google Scholar 

  198. A.F. Rowcliffe, S.J. Zinkle, D.T. Hoelzer, Effect of strain rate on the tensile properties of unirradiated and irradiated V-4Cr-4Ti. J. Nucl. Mater. 283, 508–512 (2000)

    Article  Google Scholar 

  199. M. Koyama, K. Fukumoto, H. Matsui, Effects of purity on high temperature mechanical properties of vanadium alloys. J. Nucl. Mater. 329, 442–446 (2004)

    Article  Google Scholar 

  200. A. Sarkar, P. Barat, P. Mukherjee, Multiscale entropy analysis of the Portevin-Le Chatelier effect in an Al-2.5%Mg alloy. Fractals 18(3), 319–325 (2010)

    Article  Google Scholar 

  201. A. Chatterjee, A. Sarkar, P. Barat, P. Mukherjee, N. Gayathri, Character of the deformation bands in the (A + B) regime of the Portevin-Le Chatelier effect in Al-2.5%Mg alloy. Mater. Sci. Eng. A 508, 156–160 (2009)

    Article  Google Scholar 

  202. M.A. Valdes-Tabernero, R. Sancho-Cadenas, I. Sabirov, M.Y. Murashkin, I.A. Ovid’ko, F. Galvez, Effect of SPD processing on mechanical behavior and dynamic strain aging of an Al-Mg alloy in various deformation modes and wide strain rate range. Mater. Sci. Eng. A 696, 348–359 (2017)

    Article  CAS  Google Scholar 

  203. N. Chibane, H. Ait-Amokhtar, C. Fressengeas, On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys. Scr. Mater. 130, 252–255 (2017)

    Article  CAS  Google Scholar 

  204. D. Yuzbekova, A. Mogucheva, D. Zhemchuzhnikova, T. Lebedkina, M. Lebyodkin, R. Kaibyshev, Effect of microstructure on continuous propagation of the Portevin-Le Chatelier deformation bands. Int. J. Plast. 96, 210–226 (2017)

    Article  CAS  Google Scholar 

  205. M. Jobba, R.K. Mishra, M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys. Int. J. Plast. 65, 43–60 (2015)

    Article  CAS  Google Scholar 

  206. K. Chihab, On the apparent strain rate sensitivity of Portevin-Le Chatelier effect. Ann. Chim. Sci. Mater. 29(5), 15–23 (2004)

    Article  CAS  Google Scholar 

  207. D. Park, J.G. Morris, The tensile deformation-behavior of AA-3004 aluminum-alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 25(2), 357–364 (1994)

    Article  Google Scholar 

  208. B. Tian, O. Paris, M. Prem, E. Pink, P. Fratzl, Serrated flow and related microstructures in an Al-8.4 at.% Li alloy. J. Mater. Sci. 37(7), 1355–1361 (2002)

    Article  CAS  Google Scholar 

  209. B.H. Tian, Comparing characteristics of serrations in Al-Li and Al-Mg alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 360(1–2), 330–338 (2003)

    Article  Google Scholar 

  210. G. Thomas, N.K. Srinivasan, Effect of quenching temperature on nature of serrations in an aluminum-alloy. Scr. Metall. 8(10), 1163–1166 (1974)

    Article  CAS  Google Scholar 

  211. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A. Dahmen, Tuned critical avalanche scaling in bulk metallic glasses. Sci. Rep. 4, 4382 (2014)

    Article  Google Scholar 

  212. J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A. Dahmen, Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 112(155501), 1–5 (2014)

    Google Scholar 

  213. J.J. Li, Z. Wang, J.W. Qiao, Power-law scaling between mean stress drops and strain rates in bulk metallic glasses. Mater. Des. 99, 427–432 (2016)

    Article  CAS  Google Scholar 

  214. F.H.D. Torre, D. Klaumünzer, R. Maaß, J.F. Löffler, Stick–slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater. 58, 3742–3750 (2010)

    Article  Google Scholar 

  215. R. Maaß, D. Klaumünzer, J.F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59, 3205–3213 (2011)

    Article  Google Scholar 

  216. B. Shi, S.Y. Luan, P.P. Jin, Crossover from free propagation to cooperative motions of shear bands and its effect on serrated flow in metallic glass. J. Non-Cryst. Solids 482, 126–131 (2018)

    Article  CAS  Google Scholar 

  217. W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, P.K. Liaw, Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 24(1), 1–16 (2008)

    Article  Google Scholar 

  218. X. Xie, Y.-C. Lo, Y. Tong, J. Qiao, G. Wang, S. Ogata, H. Qi, K.A. Dahmen, Y. Gao, P.K. Liaw, Origin of serrated flow in bulk metallic glasses. J. Mech. Phys. Solids 124, 634–642 (2019)

    Article  Google Scholar 

  219. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin, Serrated plastic flow during nanoindentation of a bulk metallic glass. Scr. Mater. 45(8), 947–952 (2001)

    Article  CAS  Google Scholar 

  220. C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51(1), 87–99 (2003)

    Article  CAS  Google Scholar 

  221. B.C. Wei, T.H. Zhang, W.H. Li, Y.F. Sun, Y. Yu, Y.R. Wang, Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses. Intermetallics 12(10–11), 1239–1243 (2004)

    Article  CAS  Google Scholar 

  222. L. Liu, K.C. Chan, Plastic deformation of Zr-based bulk metallic glasses under nanoindentation. Mater. Lett. 59(24–25), 3090–3094 (2005)

    Article  CAS  Google Scholar 

  223. W.H. Li, B.C. Wei, T.H. Zhang, D.M. Xing, L.C. Zhang, Y.R. Wang, Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics 15(5–6), 706–710 (2007)

    Article  Google Scholar 

  224. W.H. Jiang, F. Jiang, F.X. Liu, H. Choo, P.K. Liaw, Temperature dependence of serrated flows in compression in a bulk-metallic glass. Appl. Phys. Lett. 89 (2006). https://doi.org/10.1063/1.2424275

  225. K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Charlot, A.R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G.A. Evangelakis, D.B. Miracle, A.L. Greer, T. Zhang, Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 93(3), 3 (2008)

    Article  Google Scholar 

  226. C.G. Tang, Y. Li, K.Y. Zeng, Effect of residual shear bands on serrated flow in a metallic glass. Mater. Lett. 59(26), 3325–3329 (2005)

    Article  CAS  Google Scholar 

  227. G.S. Yu, J.G. Lin, W. Li, Z.W. Lin, Structural relaxation and serrated flow due to annealing treatments in Zr-based metallic glasses. J. Alloy. Compd. 489(2), 558–561 (2010)

    Article  CAS  Google Scholar 

  228. C.N. Kuo, H.M. Chen, X.H. Du, J.C. Huang, Flow serrations and fracture morphologies of Cu-based bulk metallic glasses in energy release perspective. Intermetallics 18(8), 1648–1652 (2010)

    Article  CAS  Google Scholar 

  229. J. Brechtl, X. Xie, Z. Wang, J. Qiao, P.K. Liaw, Complexity analysis of serrated flow in a bulk metallic glass under constrained and unconstrained conditions. Mater. Sci. Eng. A 771, 138585 (2019)

    Article  Google Scholar 

  230. J. Brechtl, Z. Wang, X. Xie, J.-W. Qiao, P.K. Liaw, Relation between the defect interactions and the serration dynamics in a Zr-based bulk metallic glass. Appl. Sci. 10(11), 3892 (2020)

    Article  CAS  Google Scholar 

  231. S. Chen, X. Xie, B.L. Chen, J.W. Qiao, Y. Zhang, Y. Ren, K.A. Dahmen, P.K. Liaw, Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy. JOM 67(10), 2314–2320 (2015)

    Article  CAS  Google Scholar 

  232. R. Carroll, C. Lee, C.-W. Tsai, J.-W. Yeh, J. Antonaglia, B.A.W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, K.A. Dahmen, Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 5, 16997 (2015)

    Article  CAS  Google Scholar 

  233. S. Chen, L. Yu, J. Ren, X. Xie, X. Li, Y. Xu, G. Zhao, P. Li, F. Yang, Y. Ren, P.K. Liaw, Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci. Rep. 6, 29798 (2016)

    Article  CAS  Google Scholar 

  234. S. Chen, X. Xie, W. Li, R. Feng, B. Chen, J. Qiao, Y. Ren, Y. Zhang, K.A. Dahmen, P.K. Liaw, Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy. Mater. Chem. Phys. 210, 20–28 (2018)

    Article  CAS  Google Scholar 

  235. M. Komarasamy, N. Kumar, R.S. Mishra, P.K. Liaw, Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Mater. Sci. Eng. A 654, 256–263 (2016)

    Article  CAS  Google Scholar 

  236. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36A(5), 1263–1271 (2005)

    Article  CAS  Google Scholar 

  237. J. Liu, X. Guo, Q. Lin, H. Zhanbing, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, X. Lu, J. Ren, Y. Zhang, Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci. China Mater. 62(6), 853–863 (2019)

    Article  CAS  Google Scholar 

  238. Y. Hu, L. Shu, Q. Yang, W. Guo, P.K. Liaw, K.A. Dahmen, J.M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars. Commun. Phys. 1, 8 (2018)

    Article  Google Scholar 

  239. Z.M. Jiao, M.Y. Chu, H.J. Yang, Z.H. Wang, J.W. Qiao, Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Technol. 31(10), 1244–1249 (2015)

    Article  CAS  Google Scholar 

  240. S. Samal, M.R. Rahul, R.S. Kottada, G. Phanikumar, Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 664, 227–235 (2016)

    Article  CAS  Google Scholar 

  241. J.X. Fu, C.M. Cao, W. Tong, Y.X. Hao, L.M. Peng, The tensile properties and serrated flow behavior of a thermomechanically treated CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 690, 418–426 (2017)

    Article  CAS  Google Scholar 

  242. M. Komarasamy, K. Alagarsamy, R.S. Mishra, Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics 84, 20–24 (2017)

    Article  CAS  Google Scholar 

  243. X.X. Guo, X. Xie, J.L. Ren, M. Laktionova, E. Tabachnikova, L.P. Yu, W.-S. Cheung, K.A. Dahmen, P.K. Liaw, Plastic dynamics of the Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl. Phys. Lett. 111(25), 251905 (2017)

    Article  Google Scholar 

  244. H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21(5), 252–266 (2017)

    Article  CAS  Google Scholar 

  245. B.F. Wang, A. Fu, X.X. Huang, B. Liu, Y. Liu, Z.Z. Li, X. Zan, Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J. Mater. Eng. Perform. 25(7), 2985–2992 (2016)

    Article  CAS  Google Scholar 

  246. J. Antonaglia, X. Xie, Z. Tang, C.-W. Tsai, J.W. Qiao, Y. Zhang, M.O. Laktionova, E.D. Tabachnikova, J.W. Yeh, O.N. Senkov, M.C. Gao, J.T. Uhl, P.K. Liaw, K.A. Dahmen, Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66(10), 2002–2008 (2014)

    Article  CAS  Google Scholar 

  247. J.X. Fu, C.M. Cao, W. Tong, L.M. Peng, Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy. Trans. Nonferrous Metals Soc. China 28(5), 931–938 (2018)

    Article  CAS  Google Scholar 

  248. Y. Zhang, J.S. Li, J. Wang, W.Y. Wang, H.C. Kou, E. Beaugnon, Temperature dependent deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy, starting from serrated flow behavior. J. Alloys Compd. 757, 39–43 (2018)

    Article  CAS  Google Scholar 

  249. B.F. Wang, X.R. Yao, C. Wang, X.Y. Zhang, X.X. Huang, Mechanical properties and microstructure of a NiCrFeCoMn high-entropy alloy deformed at high strain rates. Entropy 20(11), 11 (2018)

    Article  Google Scholar 

  250. H.T. Zhang, K.W. Siu, W.B. Liao, Q. Wang, Y. Yang, Y. Lu, In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater. Res. Express 3(9), 8 (2016)

    Article  Google Scholar 

  251. L.J. Zhang, P.F. Yu, H. Cheng, H. Zhang, H.Y. Diao, Y.Z. Shi, B.L. Chen, P.Y. Chen, R. Feng, J. Bai, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47A(12), 5871–5875 (2016)

    Article  Google Scholar 

  252. L.P. Yu, S.Y. Chen, J.L. Ren, Y. Ren, F.Q. Yang, K.A. Dahmen, P.K. Liaw, Plasticity performance of Al0.5CoCrCuFeNi high-entropy alloys under nanoindentation. J. Iron Steel Res. Int. 24(4), 390–396 (2017)

    Article  Google Scholar 

  253. W.Y. Chen, X. Liu, Y.R. Chen, J.W. Yeh, K.K. Tseng, K. Natesan, Irradiation effects in high entropy alloys and 316H stainless steel at 300° C. J. Nucl. Mater. 510, 421–430 (2018)

    Article  CAS  Google Scholar 

  254. M. Kang, K.R. Lim, J.W. Won, Y.S. Na, Effect of Co content on the mechanical properties of A2 and B2 phases in AlCoxCrFeNi high-entropy alloys. J. Alloy. Compd. 769, 808–812 (2018)

    Article  CAS  Google Scholar 

  255. M. Chen, Y. Liu, Y.X. Li, X. Chen, Microstructure and mechanical properties of AlTiFeNiCuCrx high-entropy alloy with multi-principal elements. Acta Metall. Sin. 43(10), 1020–1024 (2007)

    CAS  Google Scholar 

  256. B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J. Alloy. Compd. 820, 153092 (2020)

    Article  CAS  Google Scholar 

  257. S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, Y. Zhang, Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy 16(2), 870–884 (2014)

    Article  Google Scholar 

  258. J. Brechtl, S.Y. Chen, X. Xie, Y. Ren, J.W. Qiao, P.K. Liaw, S.J. Zinkle, Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. Int. J. Plast. 115, 71–92 (2019)

    Article  CAS  Google Scholar 

  259. C.-W. Tsai, C. Lee, P.-T. Lin, X. Xie, S. Chen, R. Carroll, M. LeBlanc, B.A.W. Brinkman, P.K. Liaw, K.A. Dahmen, J.-W. Yeh, Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. Int. J. Plast. 122, 212–224 (2019)

    Article  CAS  Google Scholar 

  260. A.C. da Silva, N.D. Maganini, E.F. de Almeida, Multifractal analysis of Bitcoin market. Physica A 512, 954–967 (2018)

    Article  Google Scholar 

  261. P. Ferreira, Assessing the relationship between dependence and volume in stock markets: A dynamic analysis. Physica A 516, 90–97 (2019)

    Article  Google Scholar 

  262. Y.N. Xing, J. Wang, Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation. Physica A 513, 234–247 (2019)

    Article  Google Scholar 

  263. U. Bashir, G.F. Zebende, Y.G. Yu, M. Hussain, A. Ali, G. Abbas, Differential market reactions to pre and post Brexit referendum. Physica A 515, 151–158 (2019)

    Article  Google Scholar 

  264. S. Begusic, Z. Kostanjcar, H.E. Stanley, B. Podobnik, Scaling properties of extreme price fluctuations in Bitcoin markets. Physica A 510, 400–406 (2018)

    Article  Google Scholar 

  265. T. Thiagarajan, Interpreting electrical signals from the brain. Acta Phys. Pol. B 49(12), 2095–2125 (2018)

    Article  Google Scholar 

  266. S. Scarpetta, I. Apicella, L. Minati, A. de Candia, Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network. Phys. Rev. E 97(6), 13 (2018)

    Article  Google Scholar 

  267. M. Martinello, J. Hidalgo, A. Maritan, S. di Santo, D. Plenz, M.A. Munoz, Neutral theory and scale-free neural dynamics. Phys. Rev. X 7(4), 11 (2017)

    Google Scholar 

  268. L. Cocchi, L.L. Gollo, A. Zalesky, M. Breakspear, Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017)

    Article  Google Scholar 

  269. Y. Karimipanah, Z.Y. Ma, J.E.K. Miller, R. Yuste, R. Wessel, Neocortical activity is stimulus- and scale-invariant. PLoS One 12(5), 18 (2017)

    Article  Google Scholar 

  270. T. Bellay, A. Klaus, S. Seshadri, D. Plenz, Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state. elife 4, 25 (2015)

    Article  Google Scholar 

  271. M. Steriade, D.A. McCormick, T.J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134), 679–685 (1993)

    Article  CAS  Google Scholar 

  272. A. Destexhe, D. Contreras, The fine structure of slow-wave sleep oscillations: From single neurons to large networks, in Sleep and Anesthesia: Neural Correlates in Theory and Experiment, ed. by A. Hutt, (Springer, New York, 2011), pp. 69–105

    Chapter  Google Scholar 

  273. A. Destexhe, Nonlinear Dynamics of the Rhythmical Activity of the Brain (Aspects Non Linéaires de l’Activité Rythmique du Cerveau) (Université Libre de Bruxelles, Brussels, 1992)

    Google Scholar 

  274. C.G. Stefanita, From Bulk to Nano: The Many Sides of Magnetism (Springer, Berlin/Heidelberg, 2008)

    Book  Google Scholar 

  275. D. Mascarenas, M. Lockhart, T. Lienert, Barkhausen noise as an intrinsic fingerprint for ferromagnetic components. Smart Mater. Struct. 28(1), 17 (2019)

    Article  Google Scholar 

  276. F. Bohn, G. Durin, M.A. Correa, N.R. Machado, R.D. Della Pace, C. Chesman, R.L. Sommer, Playing with universality classes of Barkhausen avalanches. Sci. Rep. 8, 12 (2018)

    Article  Google Scholar 

  277. A. Travesset, R.A. White, K.A. Dahmen, Crackling noise, power spectra, and disorder-induced critical scaling. Phys. Rev. B 66(2), 11 (2002)

    Article  Google Scholar 

  278. P.A. Varotsos, N.V. Sarlis, E.S. Skordas, M.S. Lazaridou-Varotsos, MW9 Tohoku earthquake in 2011 in Japan: Precursors uncovered by natural time analysis. Earthq. Sci. 30(4), 183–191 (2017)

    Article  Google Scholar 

  279. J.T. Uhl, S. Pathak, D. Schorlemmer, X. Liu, R. Swindeman, B.A.W. Brinkman, M. LeBlanc, G. Tsekenis, N. Friedman, R. Behringer, D. Denisov, P. Schall, X. Gu, W.J. Wright, T. Hufnagel, A. Jennings, J.R. Greer, P.K. Liaw, T. Becker, G. Dresen, K.A. Dahmen, Universal quake statistics: From compressed nanocrystals to earthquakes. Sci. Rep. 5, 16493 (2015)

    Article  CAS  Google Scholar 

  280. J.P. Sethna, K.A. Dahmen, C.R. Myers, Crackling noise. Nature 410(6825), 242–250 (2001)

    Article  CAS  Google Scholar 

  281. M. Kurata, X. Li, K. Fujita, M. Yamaguchi, Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings. Smart Mater. Struct. 22(11), 115002 (2013)

    Article  Google Scholar 

  282. E. Pink, A. Grinberg, Serrated flow in a ferritic stainless steel. Mater. Sci. Eng. 51(1), 1–8 (1981)

    Article  CAS  Google Scholar 

  283. A. Sarkar, A. Chatterjee, P. Barat, P. Mukherjee, Comparative study of the Portevin-Le Chatelier effect in interstitial and substitutional alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 459(1–2), 361–365 (2007)

    Article  Google Scholar 

  284. J. Weertman, Theory of infinitesimal dislocations distributed on a plane applied to discontinuous yield phenomena. Can. J. Phys. 45(2P2), 797–807 (1967)

    Article  CAS  Google Scholar 

  285. F. Pöhl, Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 9(1), 15350 (2019)

    Article  Google Scholar 

  286. K.G. Samuel, P. Rodriguez, Age-softening and yield points in beta-brass. Trans. Indian Inst. Metals 33(4), 285–295 (1980)

    CAS  Google Scholar 

  287. W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  288. A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 62(1), 49–62 (1949)

    Article  Google Scholar 

  289. H. Herman, Treatise on Materials Science and Technology: Volume 4 (Elsevier Science, Saint Louis, 2017)

    Google Scholar 

  290. B.K. Agrawal, Introduction to Engineering Materials (Tata McGraw-Hill, New York, 1988)

    Google Scholar 

  291. A. Kozłowska, B. Grzegorczyk, M. Morawiec, A. Grajcar, Explanation of the PLC effect in advanced high-strength medium-Mn steels. A review. Materials 12(24), 4175 (2019)

    Article  Google Scholar 

  292. C. Lee, J. Brechtl, P.K. Liaw, Research on bulk-metallic glasses and high-entropy alloys in Peter K. Liaw’s group and with his colleagues. Metall. Mater. Trans. A 52, 2033–2093 (2021)

    Article  CAS  Google Scholar 

  293. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A(8), 2533–2536 (2004)

    Article  CAS  Google Scholar 

  294. H.Y. Yasuda, K. Shigeno, T. Nagase, Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals. Scr. Mater. 108, 80–83 (2015)

    Article  CAS  Google Scholar 

  295. L. Guo, J. Gu, X. Gong, K. Li, S. Ni, Y. Liu, M. Song, Short-range ordering induced serrated flow in a carbon contained FeCoCrNiMn high entropy alloy. Micron 126, 102739 (2019)

    Article  CAS  Google Scholar 

  296. E.D. Tabachnikova, A.V. Podolskiy, M.O. Laktionova, N.A. Bereznaia, M.A. Tikhonovsky, A.S. Tortika, Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2-300 K. J. Alloy. Compd. 698, 501–509 (2017)

    Article  CAS  Google Scholar 

  297. S. Fu, Q. Zhang, Q. Hu, M. Gong, P. Cao, H. Liu, The influence of temperature on the PLC effect in Al-Mg alloy. Sci. China Technol. Sci. 54(6), 1389–1393 (2011)

    Article  CAS  Google Scholar 

  298. J. Qiang, K. Tsuchiya, H.Y. Diao, P.K. Liaw, Vanishing of room-temperature slip avalanches in a face-centered-cubic high-entropy alloy by ultrafine grain formation. Scr. Mater. 155, 99–103 (2018)

    Article  CAS  Google Scholar 

  299. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102(17), 175501 (2009)

    Article  Google Scholar 

  300. E.K.H. Salje, A. Saxena, A. Planes, Avalanches in Functional Materials and Geophysics (Springer, Cham, 2016)

    Google Scholar 

  301. D.V. Denisov, K.A. Lorincz, J.T. Uhl, K.A. Dahmen, P. Schall, Universality of slip avalanches in flowing granular matter. Nat. Commun. 7, 6 (2016)

    Article  Google Scholar 

  302. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7(7), 554–557 (2011)

    Article  CAS  Google Scholar 

  303. X.L. Bian, G. Wang, K.C. Chan, J.L. Ren, Y.L. Gao, Q.J. Zhai, Shear avalanches in metallic glasses under nanoindentation: Deformation units and rate dependent strain burst cut-off. Appl. Phys. Lett. 103(10), 4 (2013)

    Article  Google Scholar 

  304. D. Toker, F.T. Sommer, M. D’Esposito, A simple method for detecting chaos in nature. Commun. Biol. 3(1), 11 (2020)

    Article  CAS  Google Scholar 

  305. T.R. Xu, T. Scaffidi, X.Y. Cao, Does scrambling equal chaos? Phys. Rev. Lett. 124(14), 7 (2020)

    Article  Google Scholar 

  306. V. Krishnamurthy, Predictability of weather and climate. Earth Space Sci. 6(7), 1043–1056 (2019)

    Article  CAS  Google Scholar 

  307. A. Selvam, Chaotic Climate Dynamics (Luniver Press, Frome, 2007)

    Google Scholar 

  308. R. Buizza, Chaos and weather prediction – A review of recent advances in numerical weather prediction: Ensemble forecasting and adaptive observation targeting. Nuovo Cimento Soc. Ital. Fis. C Geophys. Space Phys. 24(2), 273–301 (2001)

    Google Scholar 

  309. J. Brechtl, X. Xie, P.K. Liaw, Investigation of chaos and memory effects in the Bonhoeffer-van der Pol oscillator with a non-ideal capacitor. Commun. Nonlinear Sci. Numer. Simul. 73, 195–216 (2019)

    Article  Google Scholar 

  310. M. Sekikawa, K. Shimizu, N. Inaba, H. Kita, T. Endo, K. Fujimoto, T. Yoshinaga, K. Aihara, Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation. Phys. Rev. E 84(5), 8 (2011)

    Article  Google Scholar 

  311. T. Kousaka, Y. Ogura, K. Shimizu, H. Asahara, N. Inaba, Analysis of mixed-mode oscillation-incrementing bifurcations generated in a nonautonomous constrained Bonhoeffer-van der Pol oscillator. Phys. D Nonlinear Phenom. 353, 48–57 (2017)

    Article  Google Scholar 

  312. T. Kaizoji, Intermittent chaos in a model of financial markets with heterogeneous agents. Chaos Solitons Fractals 20(2), 323–327 (2004)

    Article  Google Scholar 

  313. A.K. Tiwari, R. Gupta, Chaos in G7 stock markets using over one century of data: A note (Reprinted from Research in International Business and Finance vol 47, pg 304–310, 2019). Res. Int. Bus. Financ. 49, 315–321 (2019)

    Article  Google Scholar 

  314. M.G. Tsionas, P.G. Michaelides, Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system. Physica A 482, 95–107 (2017)

    Article  Google Scholar 

  315. P. Panday, S. Samanta, N. Pal, J. Chattopadhyay, Delay induced multiple stability switch and chaos in a predator-prey model with fear effect. Math. Comput. Simul. 172, 134–158 (2020)

    Article  Google Scholar 

  316. G.D. Ruxton, Chaos in a three-species food chain with a lower bound on the bottom population. Ecology 77(1), 317–319 (1996)

    Article  Google Scholar 

  317. I.V. Telesh, H. Schubert, K.D. Joehnk, R. Heerkloss, R. Schumann, M. Feike, A. Schoor, S.O. Skarlato, Chaos theory discloses triggers and drivers of plankton dynamics in stable environment. Sci. Rep. 9, 12 (2019)

    Article  Google Scholar 

  318. H. Korn, P. Faure, Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)

    Article  Google Scholar 

  319. A. Destexhe, Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons. Phys. Rev. E 50(2), 1594–1606 (1994)

    Article  CAS  Google Scholar 

  320. B.S. Tavares, G.D. Vidigal, D.M. Garner, R.D. Raimundo, L.C. de Abreu, V.E. Valenti, Effects of guided breath exercise on complex behaviour of heart rate dynamics. Clin. Physiol. Funct. Imaging 37(6), 622–629 (2017)

    Article  Google Scholar 

  321. M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin, Multifractal burst in the spatiotemporal dynamics of jerky flow. Phys. Rev. Lett. 87(16), 4 (2001)

    Article  Google Scholar 

  322. L. Barreira, Lyapunov Exponents (Springer, Cham, 2017)

    Google Scholar 

  323. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining lyapunov exponents from a time-series. Physica D 16(3), 285–317 (1985)

    Article  Google Scholar 

  324. M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Article  Google Scholar 

  325. M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)

    Article  Google Scholar 

  326. J. Xia, P. Shang, Multiscale entropy analysis of financial time series. Fluct. Noise Lett. 11(4), 1–12 (2012)

    Article  Google Scholar 

  327. S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  CAS  Google Scholar 

  328. S.M. Pincus, Assessing serial irregularity and its implications for health, in Population Health and Aging: Strengthening the Dialogue Between Epidemiology and Demography, ed. by M. Weinstein, A. I. Hermalin, M. A. Stoto, (New York Academy of Sciences, New York, 2001), pp. 245–267

    Google Scholar 

  329. C. Volos, S. Jafari, J. Kengne, J.M. Munoz-Pacheco, K. Rajagopal, Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-Excited Attractors (MDPI AG, Barcelona, 2019)

    Google Scholar 

  330. S.-D. Wu, C.-W. Wu, S.-G. Lin, K.-Y. Lee, C.-K. Peng, Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 378, 1369–1374 (2014)

    Article  CAS  Google Scholar 

  331. J. Brechtl, X. Xie, P.K. Liaw, S.J. Zinkle, Complexity modeling and analysis of chaos and other fluctuating phenomena. Chaos Solitons Fractals 116, 166–175 (2018)

    Article  Google Scholar 

  332. E. Blons, L.M. Arsac, P. Gilfriche, V. Deschodt-Arsac, Multiscale entropy of cardiac and postural control reflects a flexible adaptation to a cognitive task. Entropy 21(10), 13 (2019)

    Article  Google Scholar 

  333. A.C. Iliopoulos, N.S. Nikolaidis, E.C. Aifantis, Analysis of serrations and shear bands fractality in UFGs. J. Mech. Behav. Mater. 24(1–2), 1–9 (2015)

    Article  CAS  Google Scholar 

  334. T. Heister, L.G. Rebholz, Scientific Computing: For Scientists and Engineers (De Gruyter, Boston, 2015)

    Book  Google Scholar 

  335. M.D. Costa, A.L. Goldberger, Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series. Entropy 17, 1197–1203 (2015)

    Article  Google Scholar 

  336. B. Marion. Fractals for dummies. https://brunomarion.com/fractals-for-dummies/ (2018)

  337. J.L. Ren, C. Chen, Z.Y. Liu, R. Li, G. Wang, Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys. Rev. B 86(13), 8 (2012)

    Article  Google Scholar 

  338. E.C. Aifantis, Internal length gradient (ILG) material mechanics across scales and disciplines, in Advances in Applied Mechanics, ed. by S. P. A. Bordas, D. S. Balint, vol. 49, (Elsevier Academic Press, San Diego, 2016), pp. 1–110

    Google Scholar 

  339. T.A. Lebedkina, M.A. Lebyodkin, T.T. Lamark, M. Janeček, Y. Estrin, Effect of equal channel angular pressing on the Portevin–Le Chatelier effect in an Al3Mg alloy. Mater. Sci. Eng. A 615, 7–13 (2014)

    Article  CAS  Google Scholar 

  340. T.A. Lebedkina, M.A. Lebyodkin, Effect of deformation geometry on the intermittent plastic flow associated with the Portevin–Le Chatelier effect. Acta Mater. 56, 5567–5574 (2008)

    Article  CAS  Google Scholar 

  341. M.A. Lebyodkin, T.A. Lebedkina, Multifractality and randomness in the unstable plastic flow near the lower strain-rate boundary of instability. Phys. Rev. E 77(2), 8 (2008)

    Article  Google Scholar 

  342. M.A. Lebyodkin, T.A. Lebedkina, Multifractal analysis of evolving noise associated with unstable plastic flow. Phys. Rev. E 73(3), 8 (2006)

    Article  Google Scholar 

  343. N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, K.A. Dahmen, Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 109(095507), 1–5 (2012)

    Google Scholar 

  344. J. Xu, C.-m. Cao, P. Gu, L.-m. Peng, Microstructures, tensile properties and serrated flow of AlxCrMnFeCoNi high entropy alloys. Trans. Nonferrous Metals Soc. China 30(3), 746–755 (2020)

    Article  CAS  Google Scholar 

  345. S.H. Fu, T. Cheng, Q.C. Zhang, Q. Hu, P.T. Cao, Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin-Le Chatelier effect. Acta Mater. 60(19), 6650–6656 (2012)

    Article  CAS  Google Scholar 

  346. F.A. Mohamed, K.L. Murty, T.G. Langdon, The Portevin-Le Chatelier effect in Cu3Au. Acta Metall. 22(3), 325–332 (1974)

    Article  CAS  Google Scholar 

  347. P.G. McCormigk, A model for the Portevin-Le Chatelier effect in substitutional alloys. Acta Metall. 20(3), 351–354 (1972)

    Article  Google Scholar 

  348. A.S. Tirunilai, J. Sas, K.-P. Weiss, H. Chen, D.V. Szabó, S. Schlabach, S. Haas, D. Geissler, J. Freudenberger, M. Heilmaier, A. Kauffmann, Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J. Mater. Res. 33(19), 3287–3300 (2018)

    Article  CAS  Google Scholar 

  349. A.S. Tirunilai, T. Hanemann, K.P. Weiss, J. Freudenberger, M. Heilmaier, A. Kauffmann, Dislocation-based serrated plastic flow of high entropy alloys at cryogenic temperatures. Acta Mater. 200, 980–991 (2020)

    Article  CAS  Google Scholar 

  350. R.B. Schwarz, R.D. Isaac, A.V. Granato, Dislocation inertial effects in the plastic deformation of dilute alloys of lead and copper. Phys. Rev. Lett. 38(10), 554–557 (1977)

    Article  CAS  Google Scholar 

  351. R.B. Schwarz, R. Labusch, Dynamic simulation of solution hardening. J. Appl. Phys. 49(10), 5174–5187 (1978)

    Article  CAS  Google Scholar 

  352. Z. Pu, Z.C. Xie, R. Sarmah, Y. Chen, C. Lu, G. Ananthakrishna, L.H. Dai, Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature. Philos. Mag. 25 (2020). https://doi.org/10.1080/14786435.2020.1822557

  353. D.Q. Qi, B.D. Fu, K. Du, T.T. Yao, C.Y. Cui, J.X. Zhang, H.Q. Ye, Temperature effects on the transition from Lomer-Cottrell locks to deformation twinning in a Ni-Co-based superalloy. Scr. Mater. 125, 24–28 (2016)

    Article  CAS  Google Scholar 

  354. M. Naeem, H. He, F. Zhang, H. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. Wu, F. Wang, Y. Wu, Z. Lu, Z. Zhang, C.T. Liu, X.-L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv. 6(13), eaax4002 (2020)

    Article  Google Scholar 

  355. D. Caillard, Dynamic strain ageing in iron alloys: The shielding effect of carbon. Acta Mater. 112, 273–284 (2016)

    Article  CAS  Google Scholar 

  356. Y.J. Xu, D.Q. Qi, K. Du, C.Y. Cui, H.Q. Ye, Stacking fault effects on dynamic strain aging in a Ni–Co-based superalloy. Scr. Mater. 87, 37–40 (2014)

    Article  CAS  Google Scholar 

  357. S.Y. Chen, L. Wang, W.D. Li, Y. Tong, K.K. Tseng, C.W. Tsai, J.W. Yeh, Y. Ren, W. Guo, J.D. Poplawsky, P.K. Liaw, Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strain-aging strengthening in a body-centered-cubic high-entropy alloy. Mater. Res. Lett. 7(12), 475–481 (2019)

    Article  CAS  Google Scholar 

  358. P. Hähner, On the physics of the Portevin-Le Châtelier effect part 1: The statistics of dynamic strain ageing. Mater. Sci. Eng. A 207(2), 208–215 (1996)

    Article  Google Scholar 

  359. M.A. Laktionova, E.D. Tabchnikova, Z. Tang, P.K. Liaw, Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300K. Low Temp. Phys. 39(7), 630–632 (2013)

    Article  CAS  Google Scholar 

  360. S.Q. Xia, Y. Zhang, Deformation mechanisms of Al0.1CoCrFeNi high entropy alloy at ambient and cryogenic temperatures. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 733, 408–413 (2018)

    Article  CAS  Google Scholar 

  361. V. Gerold, H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys. Acta Metall. 37(8), 2177–2183 (1989)

    Article  CAS  Google Scholar 

  362. J.W. Qiao, Y. Zhang, P.K. Liaw, Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 2057–2064 (2010)

    Article  CAS  Google Scholar 

  363. P.Y. Chan, G. Tsekenis, J. Dantzig, K.A. Dahmen, N. Goldenfeld, Plasticity and dislocation dynamics in a phase field crystal model. Phys. Rev. Lett. 105(1), 015502 (2010)

    Article  Google Scholar 

  364. A.H. Cottrell, LXXXVI. A note on the Portevin-Le Chatelier effect. London Edinburgh Dublin Philos. Mag. J. Sci. 44(355), 829–832 (1953)

    Article  CAS  Google Scholar 

  365. S.F. Ge, H.M. Fu, L. Zhang, H.H. Mao, H. Li, A.M. Wang, W.R. Li, H.F. Zhang, Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 784, 9 (2020)

    Article  Google Scholar 

  366. S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. J. Alloys Compd. 820, 8 (2020)

    Article  Google Scholar 

  367. Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85–97 (2014)

    Article  CAS  Google Scholar 

  368. M. Dietiker, S. Buzzi, G. Pigozzi, J.F. Loffler, R. Spolenak, Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused ion-beam milling. Acta Mater. 59(5), 2180–2192 (2011)

    Article  CAS  Google Scholar 

  369. S. Buzzi, M. Dietiker, K. Kunze, R. Spolenak, J.F. Loffler, Deformation behavior of silver submicrometer-pillars prepared by nanoimprinting. Philos. Mag. 89(10), 869–884 (2009)

    Article  CAS  Google Scholar 

  370. H. Diao, X. Xie, F. Sun, K.A. Dahmen, P.K. Liaw, Mechanical properties of high-entropy alloys, in High-Entropy Alloys: Fundamentals and Applications, ed. by M. C. Gao, J.-W. Yeh, P. K. Liaw, Y. Zhang, (Springer, Cham, 2016), pp. 181–236

    Chapter  Google Scholar 

  371. I. Basu, V. Ocelik, J.T.M. De Hosson, Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater. 150, 104–116 (2018)

    Article  CAS  Google Scholar 

  372. A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2013)

    Google Scholar 

  373. C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9(5), 32–40 (2006)

    Article  CAS  Google Scholar 

  374. Q. Tian, G. Zhang, K. Yin, L. Wang, W. Wang, W. Cheng, Y. Wang, J.C. Huang, High temperature deformation mechanism and microstructural evolution of relatively lightweight AlCoCrFeNi high entropy alloy. Intermetallics 119, 106707 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhail A. Lebyodkin or Jamieson Brechtl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebyodkin, M.A., Lebedkina, T.A., Brechtl, J., Liaw, P.K. (2021). Serrated Flow in Alloy Systems. In: Brechtl, J., Liaw, P.K. (eds) High-Entropy Materials: Theory, Experiments, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-77641-1_11

Download citation

Publish with us

Policies and ethics