Skip to main content

The Genus Phoma: What We Know and What We Need to Know?

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

Phoma sensu lato is currently considered as one of the most peculiar groups of fungi due to complex taxonomy, the prevalence in different environments, biology and abilities to produce a variety of metabolites. They are well-known as plant disease agents but also reported as pathogens of animals and humans. Other species are endophytes and prospective producers of an abundant and dependable source of bioactive and chemically novel compounds with potential for exploitation in a wide variety of areas like medicine, agriculture and industry. The knowledge of Phoma has progressed since 1880 and made this group of fungi more understandable. Considering all the relevant aspects of Phoma as well as their manifold bioactivities, our knowledge of the genus is much further advanced. However, still, there is a prompt need to discover not yet investigated species and their unique potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyagi A, Yano T, Kozuma S, Takastu T (2007) Pleofungins, Novel Inositol Phosphorylceramide Synthase Inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143-152.

    Article  CAS  Google Scholar 

  • Arora P, Wani ZA, Nalli Y, Ali A, Hassan SR (2016) Antimicrobial potential of Thiodiketopiperazine derivatives produced by Phoma sp., an endophytes of Glycyrrhiza glabra Linn. Microb Ecol 72:802-812.

    Article  CAS  PubMed  Google Scholar 

  • Aveskamp MM, de Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31: 1–18.

    Google Scholar 

  • Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perelló A, Woudenberg JHC, Groenewald JZ, Crous PW (2009a) DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101: 363–382. doi: https://doi.org/10.3852/08-199

    Article  CAS  PubMed  Google Scholar 

  • Aveskamp MM, Woudenberg JHC, de Gruyter J, Turco E, Groenewald JZ, Crous PW (2009b) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10: 403–414. https://doi.org/10.1111/j.1364-3703.2009.00540.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65: 1–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey KL, Derby J, inventors (2010) Her Majesty the Queen in right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada (Saskatoon, CA). Continuation in Part. , assignee. Fungal isolates and biological control compositions for the control of weeds. United States Patent # 7,772,155. August 10, 2010.

    Google Scholar 

  • Bailey KL, Derby J, inventors (2012) Her Majesty the Queen in right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada (Saskatoon, CA), assignee. Fungal isolates and biological control compositions for the control of weeds. United States Patent # 8,211,830. July 3, 2012.

    Google Scholar 

  • Bailey KL, Pitt WM, Falk S, Derby J (2011) The effects of Phoma macrostoma on nontarget plant and target weed species. Biol Control 58: 379–386. doi: https://doi.org/10.1016/j.biocontrol.2011.06.001

    Article  Google Scholar 

  • Bera, M., Khan, M.A., Bera, S. (2018). Two new species of Phomites Fritel from the phyllosphere of Siwalik. J. Mycopathol. Res. 56(1), 11–14.

    Google Scholar 

  • Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P and Rai, M. (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology, 48: 173-179.

    Google Scholar 

  • Boerema GH (1997) Contributions towards a monograph of Phoma (Coelomycetes) – V. Subdivision of the genus in sections. Mycotaxon 64: 321–333.

    Google Scholar 

  • Boerema, G.H. and Bollen, G.J. (1975). Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 8: 111-144.

    Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual. Differentiation of specific and infraspecific taxa in culture. CABI Publishing, United Kingdom.

    Book  Google Scholar 

  • Bräse S, Encinas A, Keck J, Nising CF (2009). Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev. 109(9):3903-90. doi: https://doi.org/10.1021/cr050001f. PMID: 19534495

    Article  CAS  PubMed  Google Scholar 

  • Chaves Neto José Roberto, Mazutti, Marcio Antonio, Zabot, Giovani Leone, & Tres, Marcus Vinícius. (2020). Bioherbicidal action of Phoma dimorpha fermented broth on seeds and plants of Senna obtusifolia 1. Pesquisa Agropecuária Tropical, 50, e56894. Epub April 03, 2020.doi: https://doi.org/10.1590/1983-40632020v5056894

    Article  Google Scholar 

  • Chen Q, Jiang JR, Zhang GZ, et al. (2015a) Resolving the Phoma enigma. Stud Mycol 82: 137–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang K, Zhang GZ, et al. (2015b). A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China.Phytotaxa197: 267–281.

    Google Scholar 

  • Chen Y, Yang W, Zou G, Chen S, Pang J and She Z (2019). Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia.139:104369. DOI: https://doi.org/10.1016/j.fitote.2019.104369.

  • Chilvers MI, Rogers JD, Dugan FM, Stewart JE, Chen WD, Peever L (2009) Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycological Research 113: 391–400. doi: https://doi.org/10.1016/j.mycres.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  • Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F (2017) Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research 202: 11-20.

    Article  PubMed  Google Scholar 

  • de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113: 508–519.

    Article  PubMed  Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066–1081.

    Article  PubMed  Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2012) Redisposition of Phoma-like anamorphs in Pleosporales. Stud Mycol 75: 1–36.

    Article  PubMed Central  Google Scholar 

  • Dennis RWG (1946) Notes on some British fungi ascribed to Phoma and related genera. Transactions of the British Mycological Society 29: 11-42.

    Article  Google Scholar 

  • Diamond H, Cooke BM (2003) Preliminary studies on biological control of the Fusarium ear blight complex of wheat. Crop Protection 22:99-107.

    Article  Google Scholar 

  • Elsharkawy MM (2019). Induced systemic resistance against Cucumber mosaic virus by Phoma sp. GS8-2 stimulates transcription of pathogenesis-related genes in Arabidopsis. Pest Manag Sci. 75(3):859-866. doi: https://doi.org/10.1002/ps.5193. Epub 2018 Oct 15.

    Article  CAS  PubMed  Google Scholar 

  • Elsharkawy MM, El-Khateeb NMM (2019) Antifungal activity and resistance induction against Sclerotium cepivorum by plant growth-promoting fungi in onion plants. Egyptian Journal of Biological Pest Control 29:68.

    Article  Google Scholar 

  • Elsharkawy MM, Suga H, Shimizu M (2020) Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus. Environ Sci Pollut Res 27: 19029–19037.

    Article  CAS  Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M. (2013). Screening of different species of Phoma for the synthesis of silver nanoparticles. Biotechnol Appl Biochem. 60(5):482-93. doi: https://doi.org/10.1002/bab.1141.

    Article  CAS  PubMed  Google Scholar 

  • Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby JA, Gerwick BC (2003) The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66:1558–61. https://doi.org/10.1021/np030193e

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL et al. (2010) Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World J Microbiol Biotechnol 26:889–894.

    Article  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2008) Systemic resistance to bacterial leaf speck pathogen in Arabidopsis thaliana induced by the culture filtrate of a plant growth-promoting fungus (PGPF) Phoma sp. GS8-1. Journal of General Plant Pathology 74 (3), pp. 213-221

    Article  CAS  Google Scholar 

  • Hou LW, Groenewald Z, Pfenning LH, Yarden O, Crous PW, Cai L (2020) The phoma-like dilemma. Stud Mycol 96: 309-396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Xu J, Fenqi Li, Zhou D, Xu L, Chunyuan Li (2017) Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. Chem Nat Compd 53:1-4.

    Article  CAS  Google Scholar 

  • Hughes SJ (1953) Conidiophores, conidia and classification. Canadian Journal of Botany 31:577-599.

    Article  Google Scholar 

  • Hussain H, Kock I, Harrasi AA, Rawahi AA, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz B, Krohn K (2014) Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac J Trop Med 7:699-702.

    Article  CAS  Google Scholar 

  • Hussain H, John M, Al-Harrasi A, Shah A, Hassan Z, Abbas G, Rana UA, Green IR, Schulz B, Krohn, K (2015) Phytochemical investigation and antimicrobial activity of an endophytic fungus Phoma sp. J King Saud Univ Sci 27:92-95

    Article  Google Scholar 

  • Irinyi L, Kövics GJ, Sándor E (2009) Taxonomical re-evaluation of Phoma-like soybean pathogenic fungi. Mycological Research 113: 249–260. doi: https://doi.org/10.1016/j.mycres.2008.11.003

    Article  PubMed  Google Scholar 

  • Kedar, A., Rathod, D.P., Yadav, A., Agarkar, G., Rai, M.K. (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience. 6:132-139

    Google Scholar 

  • Keirnan EC, Tan YP, Laurence MH, Mertin AA, Liew EC, Summerell BA, Shivas RG (2021) Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys, 78, 1. doi: https://doi.org/10.3897/mycokeys.78.60063

    Article  PubMed  PubMed Central  Google Scholar 

  • Kövics, G.J., Sándor, E., Rai, M. and Irinyi, L. (2013). Phoma-like fungi on soybeans. Critical Reviews in Microbiology 40(1):49-62. doi: https://doi.org/10.3109/1040841X.2012.755948

    Article  CAS  PubMed  Google Scholar 

  • Kukhar E, Smagulova A, Kiyan V (2020) Biological properties of Phoma macrostoma related to non-dermatophyte onychomycosis. Medical Mycology Case Reports 27:55–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HT, Liu T, Yang R, Xie F, Yang Z, Yang Y, Zhou H, Ding ZT (2020) Phomretones A–F, C 12 polyketides from the co-cultivation of Phoma sp YUD17001 and Armillaria sp. RSC Adv 10:18384-18389

    Article  CAS  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KH, Wu SH (2019) A new antiviral 14 Nordrimane Sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75-79.

    Article  CAS  Google Scholar 

  • Nalli Y, Arora P, Khan S, Malik F, Riyaz-Ul-Hassan S, Gupta V, Ali A (2019) Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28:260-266

    Article  CAS  Google Scholar 

  • Peng X, Duan F, He Y, Gao Y, Chen J, Chang J, Ruan H (2020) Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1. Org Biomol Chem 18:4056-4062.

    Article  CAS  PubMed  Google Scholar 

  • Rai M. (1989) Phoma sorghina infection in human being. Mycopathologia (Den Haag) 105:167–170.

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., Bridge, P. and Gade, A. (2009). Myconanotechnology: a new and emerging science. In Applied Mycology, CAB international. 258-267

    Google Scholar 

  • Rai M., Tiwari VV Irinyi L, Kövics GJ (2014) Advances in taxonomy of genus Phoma: Polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J Microbiol 54: 123-128.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Gade AK, Duarte MC, Duran N (2015). Three Phoma species. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnol. 2015;9(5):280-7. doi: https://doi.org/10.1049/iet-nbt.2014.0068.

    Article  PubMed  Google Scholar 

  • Rai M, Gade A, Zimowska B, Ingle AP, Ingle P (2018). Marine-derived Phoma-the gold mine of bioactive compounds, Appl Microbiol Biotechnol, 102:9053–9066; doi: https://doi.org/10.1007/s00253-018-9329-2

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Gade, A., Zimowska, B., Ingle, A.P., Ingle, P. (2020). Harnessing the potential of novel bioactive compounds produced by endophytic Phoma spp. – biomedical and agricultural applications. Acta Sci. Pol. Hortorum Cultus, 19(6): 31–45. DOI: https://doi.org/10.24326/asphc.2020.6.3

    Article  Google Scholar 

  • Saccardo PA (1880) Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2: 1-38.

    Google Scholar 

  • Saccardo PA (1884) Sylloge Sphaeropsidearum et Melanconiearum omnium hucusque cognitorum. Sylloge Fungorum 3: 1-860.

    Google Scholar 

  • Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ, Zhao D, Wang YB, Bai J, Hua HM, Chen G, Pei YH (2017). α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett. 27(16): 3723-3725. doi: https://doi.org/10.1016/j.bmcl.2017.06.079. Epub 2017 Jun 29.

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 9(16): 6241–6246. doi: https://doi.org/10.1073/pnas.1117018109

    Article  Google Scholar 

  • Sheikhloo Z. and Salouti M (2012). Intracellular Biosynthesis of Gold Nanoparticles by Fungus Phoma macrostoma, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42:1, 65-67

    Article  CAS  Google Scholar 

  • Shivanna MB, Meera MS, Kubota M, Hyakumachi M (2005) Promotion of growth and yield in cucumber by zoysiagrass rhizosphere fungi. Microbes Environ 20:34–40.

    Article  Google Scholar 

  • Sullivan RF, White JR JF (2000) Phoma glomerata as a mycoparasite of powdery mildew. Applied and Environmental Microbiology 66:425–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2009) Induction of systemic resistance in Arabidopsis thaliana in response to culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biology 11 (1):97-104.

    Article  CAS  PubMed  Google Scholar 

  • Sutton BC (1964) Phoma and related genera. Trans Brit Mycol Soc 47: 497- 509.

    Article  Google Scholar 

  • van der Aa HA, and Vanev S (2002) A Revision of the Species Described in Phyllosticta. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.

    Google Scholar 

  • van der Aa HA, Noordeloos ME, de Gruyter J (1990) Species concepts in some larger genera of the Coelomycetes. Stud Mycol 32: 3-19.

    Google Scholar 

  • Verkley GJM, da Silva M, Wicklow DT, Crous PW (2004) Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Studies in Mycology 50: 323-335.

    Google Scholar 

  • Wollenweber HW, Hochapfel H (1936) Beiträge zur Kenntnis parasitärer und saprophytotischer Pilze. I. Phomopsis, Dendrophoma, Phoma und Ascochyta und ihre Beziehung zur Fruchtfäule. Z Parasitenk 8: 561-605.

    Article  Google Scholar 

  • Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56–62. doi: https://doi.org/10.3767/003158509X427808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J, et al. (2014) Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interactions. 9(1):585-591.

    Article  Google Scholar 

  • Zimowska B (2007a) New Phoma species on Leonurus cardiaca. Acta Mycol 42: 119-123

    Article  Google Scholar 

  • Zimowska B (2007b) Fungi colonizing and damaging different parts of peppermint (Mentha piperita L.) cultivated in south-eastern Poland. Herba Pol 53: 97-105.

    Google Scholar 

  • Zimowska B (2008) Biodiversity of fungi colonizing and damaging selected parts of motherwort (Leonurus cardiaca L.). Herba Pol 54: 30-40.

    Google Scholar 

  • Zimowska B (2012) Pathogenicity and ultrastructural studies of the mode of penetration by Phoma strasseri in peppermint stems and rhizomes. Pol J Microbiol 61: 273-279.

    Article  CAS  PubMed  Google Scholar 

  • Zimowska B, Król ED, Furmańczyk A, Abramczyk B, Okoń S (2018) Molecular characterization of Boeremia strasseri the causal agent of black stems and rhizomes rot of peppermint. J. Plant Pathol 100: 13–24, doi: https://doi.org/10.1007/s42161-018-0003-4

    Article  Google Scholar 

Download references

Acknowledgement

MR is thankful to the Polish National Agency for Academic Exchange (NAWA) for financial support (Project No. PPN/ULM/2019/1/00117/A/DRAFT/00001) to visit the Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Zimowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, M., Zimowska, B., Kövics, G.J. (2022). The Genus Phoma: What We Know and What We Need to Know?. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_1

Download citation

Publish with us

Policies and ethics