Skip to main content

Bioactive Secondary Metabolites from Endophytic Phoma spp.

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

Phoma is an exceptionally polyphyletic genus of rapidly growing soil fungi under the phylum of Ascomycota. The genus of Phoma includes more than 2000 species observed as phytopathogen or endophytes. The endophytic Phoma spp. have been isolated from a range of tropical/subtropical plants, arid climate of mangrove, mountain, desert, and forest. Wide varieties of plant like tree, herb, shrub, grass, palm, and climber inhabit exclusive endophytic Phoma spp. The isolated endophytic Phoma has been recognized as important source of many novel and natural products that exhibit a wide range of biological activities. Few of the chief bioactive secondary metabolites obtained from diverse species of Phoma are phomin, phomodione, sesquiterpenoid, cytochalasin B, deoxaphomin, usnic acid, trichodermin, beta-sitosterol, cercosporamide, sirodesmin, phomasetin, etc. Moreover, many novel secondary metabolites produced by Phoma sp. act as bio-herbicide, while some of them can produce indoleacetic acid that promotes the growth of that particular plant in which they reside. The biomolecules of endophytic Phoma are reported as antimicrobial, anti-inflammatory, bio-herbicidal, antiangiogenic, cytotoxic, and anti-HIV. Therefore, the chapter aims to present the secondary metabolites of Phoma, its identification tools, and its bioactivity in various areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BEAS-2B:

Human bronchial epithelial cells

COSY:

Correlated spectroscopy

DV-3:

Human dengue virus type 3

EtOAc:

Ethyl acetate

FT-IR:

Fourier-transform infrared spectroscopy

GC-MS:

Gas chromatography-mass spectrometry

H1N1:

Influenza A virus subtype

HeLa:

Henrietta Lacks (immortal cell line)

HIV:

Human immunodeficiency virus

HL:

Human leukemia cell line

HMBC:

Heteronuclear multiple bond correlation

HMQC:

Heteronuclear multiple quantum coherence

IL:

Interleukin

LC-MS:

Liquid chromatography-mass spectrometry

MCF-7:

Breast cancer cell line (MCF = Michigan Cancer Foundation)

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser effect spectroscopy

PAF:

Platelet-activating factor

ROS:

Reactive oxygen species

RS:

Reciprocal syncytial virus

SMMC:

Human hepatocarcinoma cell line

SW480:

Human colorectal cancer cell lines

VOCs:

Volatile organic compounds

References

  • Agwa OK, Nwosu IG, Abu GO (2017) Saccharification of bio-ethanol fermentation of carbohydrate extracted microalgal biomass by genetically identified organisms. Biotechnol Biomater 8:1-7.

    Google Scholar 

  • Aldred D, Magan N, Lane BS (2001) Influence of water activity and nutrients on growth and production of squalestatin S1 by a Phoma sp. J Appl Microbiol 87:842–848.

    Article  Google Scholar 

  • Alpert PT (2016) Superbugs: antibiotic resistance is becoming a major public health concern. Home Health Care Manag Pract 29:1-4.

    Google Scholar 

  • Aoyagi A, Yano T, Kozuma S, Takastu T (2007) Pleofungins, Novel Inositol Phosphorylceramide Synthase Inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143-152.

    Article  CAS  Google Scholar 

  • Arnold AE 2007 Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol 21:51–66.

    Article  Google Scholar 

  • Arnold, AE 2008 Endophytic Fungi: Hidden Components of Tropical Community Ecology In Tropical Forest Community Ecology. Blackwell Scientific 1st edition 254:271

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G, Coley PD, Kursar TA (2000) Are tropical endophytic fungi hyper diverse. Ecol Lett 3:267–274.

    Article  Google Scholar 

  • Arora P, Wani ZA, Nalli Y, Ali A, Hassan SR (2016) Antimicrobial potential of Thiodiketopiperazine derivatives produced by Phoma sp., an endophytes of Glycyrrhiza glabra Linn. Microb Ecol 72:802-812.

    Article  CAS  PubMed  Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31:1-18.

    Google Scholar 

  • Ayer W, Jemenez D (1994) Phomalone, an antifungal metabolite of Phoma etheridgei. Can J Chem 72:2326-2332.

    Article  CAS  Google Scholar 

  • Bacon CW, White JFJ (2000) Physiological Adaptations in the Evolution of Endophytism in the Clavicipitaceae In Microbial Endophytes; Marcel Dekker Inc 237:261.

    Google Scholar 

  • Bailey KL, Pitt WM, Falk S, Derby J (2011) The effects of Phoma macrostoma on nontarget plant and target weed species. Biol Control 58:379–386.

    Article  Google Scholar 

  • Bailey KL, Falk S, Durby JA, Melzer, Bolend G (2013) The effect of fertilizers on the efficacy of the bioherbicide, Phoma macrostoma, to control dandelions in turfgrass. Biol Control 65:147-15.

    Article  Google Scholar 

  • Bennett A, Ponder MM, Diaz JG (2018) Phoma infections: classification, potential food sources and their clinical impact. Microorganisms 6:1-12.

    Article  Google Scholar 

  • Bhagobaty RK (2015) Endophytic fungi: prospects in Biofuel production. Proc Natl Acad Sci India Sect B Biol Sci 85:21-25.

    Article  CAS  Google Scholar 

  • Bharathidasan R, Panneerselvam A (2011) Isolation and identification of endophytic fungi from Avicennia marina in Ramanathpuram district, Karankadu, Tamilnadu, India. Eur J Exp Biol 1:31-36.

    Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual. CABI Publishing 1st Edition.

    Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653-60.

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Gloer JB, Wicklow DT (2002) Phomadecalins A, B, C, D and Phomapentenone A: New bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J Nat Prod 65:399-402.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZM, Chen HP, Li Y, Feng T, Liu JK (2014) Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. J Antibiot 68:23–26.

    Article  Google Scholar 

  • Chen Y, Yang W, Zou G, Chen S, Pang J, She Z (2018) Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 140:1-17.

    Google Scholar 

  • Chen HM, Wu HX, He XY, Zhang HH, Miao F, Liang ZS (2020) Promoting tanshinone synthesis of Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603. China journal of Chinese Materia Medica 45:65-71.

    CAS  PubMed  Google Scholar 

  • Choi JJ, Kim SH (2017) A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA 114: 9391–9396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow YY and Ting ASY (2014) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 56:1-8.

    Google Scholar 

  • Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxin by Phoma exigua var exigua, a potential mycoherbicide against perennial thistles. J Agr Food Chem 56:630-634.

    Article  Google Scholar 

  • Cohen, SD (2006) Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: Analyses of intergenic spacer region sequences of ribosomal DNA. Microbol Ecol 52:463–469.

    Article  CAS  Google Scholar 

  • Dai D, Hussaina H, Drägerb S, Schulzb B, Kurtánc T, Pescitellid G, Flörkea U, Krohn K (2010) Metabolites from the Fungus Phoma sp. 7210, associated with Aizoon canariense. Nat Prod Commun 5:1175-1180.

    CAS  PubMed  Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-Inflammatory and Anticancer Activity of Ergoflavin Isolated from an Endophytic Fungus. Chem Biodivers 6(5): 784–789.

    Google Scholar 

  • Dinarello C (2010) Anti-inflammatory Agents: Present and Future. Cell 140:935–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Yao Z, Li J, Sun C, Xia J, Wang B, Shi D, Ren L (2020) Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS One 15:1–18.

    Article  Google Scholar 

  • Dugan F, Sitton, Sullivan R, James W (2002) The neotyphodium endophyte of wild barley (Hordeum brevisubulatum sub sp. violaceum) grows and sporulates on leaf surfaces of the host. Symbiosis 32:147–159.

    Google Scholar 

  • Elkhateeb WA, Daba GM (2020) The Exceptional Endophytic Fungi, Emericella (Berk.) and Phoma (Sacc.) Genera. International Journal of Research in Pharmacy and Biosciences 7:10-15.

    Google Scholar 

  • El-Nagerabi SAF, Elshafie AE, Alkhanjari SS (2013) Endophytic fungi associated with Ziziphus species and new records from mountainous area of Oman. Biodiversity 14:10-16.

    Google Scholar 

  • Elsebai MF, Hazem A, Ghabbour HA, Legrave N, Vive FF, Mehiri M (2018) New bioactive chlorinated cyclopentene derivatives from the marine-derived Fungus Phoma sp. Med Chem Res 27:1885–1892.

    Article  CAS  Google Scholar 

  • Fang MJ, Fang H, Li WJ, Huang DM, Wu Z, Zhao YF (2012) A new diphenyl ether from Phoma sp. strain, SHZK-2. Nat Prod Res 26:1224-1228.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EG, Pereira OL, da Silva CC, Bento CBP, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92.

    Article  PubMed  Google Scholar 

  • Figueiredo JM, Dias WB, Previato LM, Previato JO, Heise N (2005) Characterization of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi. Biochem J 387: 519–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gama DS, Santos IAFM, Abreu LM, Medeiros FHV, Duarte WF, Cardoso PG (2020) Endophytic fungi from Brachiaria grasses in Brazil and preliminary screening of Sclerotinia sclerotorium antagonists. Sci Agr 77.

    Google Scholar 

  • Gamboa, MA, Bayman, P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33:352–360.

    Article  Google Scholar 

  • Gangadevi V, Muthumary EJ (2007) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724.

    Article  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees Hevea brasiliensis in Peru. Fungal Ecol. 3:240–254.

    Article  Google Scholar 

  • Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass Panicum virgatum L growing in the native tallgrass prairie of northern Oklahoma. Fungal Div 471:19-27.

    Article  Google Scholar 

  • Gubiani JR, Wijerante EMK, Shi T, Araujo AR, Arnold AE, Chapman E, Gunatalika AAL (2017) An epigenetic modifier induces production of (10′S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg Med Chem 25:1860-1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guégan S, Garcia-Hermoso D, Sitbon K, Ahmed S, Moguelet P, Dromer F, Lortholary O (2016) French Mycosis Study Group. Ten-Year Experience of Cutaneous and/or Subcutaneous Infections Due to Coelomycetes in France. Open Forum Infect Dis X 3:1-13.

    Google Scholar 

  • Guo LD, Huang GR, Wang Y (2008) Seasonal and Tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling mountains, Beijing. J Integr Plant Biol 50:997-1003.

    Article  PubMed  Google Scholar 

  • Gupta S, Kaul S, Singh B, Vishwakarma A, Dhar MK (2016) Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Appl Biochem and Biotechnol 180: 1093-1109.

    Article  CAS  Google Scholar 

  • Hajimahdi Z, Zarghi A (2016) Progress in HIV-1 integrase inhibitor: A review of their chemical structure diversity. Iran J Pharm Sci 15:595-628.

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Sohn EY, Shah AA, Kim SK, Joo GJ, Lee IJ (2009) Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechn 19:1244-1249.

    CAS  Google Scholar 

  • Hazuda D, Blau CU, Felock P, Hastings J, Pramanik B, Wolfe A, Bushman F, Farnet C, Goetz M, Williams M, Silverman K, Lingham R, Singh S (1999) Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antivir Chem Chemother 10:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Herath K, Harris G, Jayasuriya H, Zink D, Smith S, Vicente F, Bills G, Collado J, Gonzalez A, Jennifer B, Kahn N, Galuska S, Giacobbe R, Abruzzo G, Hickeys E, Liberato P, Xu D, Roemer T, Singh B (2009) Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorg Med Chem 17:1361-1369.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Harper J, Arif AM, Grant DM, Swift EG (2007) Purification identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemsitry 69:1049-1056.

    Article  Google Scholar 

  • Huang S, Xu J, Fenqi Li, Zhou D, Xu L, Chunyuan Li (2017) Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. Chem Nat Compd 53:1-4.

    Article  CAS  Google Scholar 

  • Humzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R (2018) Diversity and characterization of Endophytic fungi isolated from the Tropical Mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil born fungus, Fusarium solani. Front Microbiol 9:1707.

    Article  Google Scholar 

  • Hussain H, Kock I, Harrasi AA, Rawahi AA, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz B, Krohn K (2014) Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac J Trop Med 7:699-702.

    Article  CAS  Google Scholar 

  • Jayasuriya H, Bills HG, Zink L, Smith JL, Goetz MA, Jenkins RG, Omstead M N, Silverman KC, Bills G F, Linghum RB, Singh S B, Pelaez F, Cascales C (1995) Barceloneic acid A, a farnesyl protein transferase inhibitor from Phoma sp. J Nat Prod 58:986-991.

    Article  CAS  PubMed  Google Scholar 

  • Kedar A, Rathod D, Yadav A, Agarkar G, Rai M (2014) Endophytic Phoma sp. Isolated from medicinal plant promote the growth of Zea mays. Bioscience 6:132-139.

    Google Scholar 

  • Khan AL, Muhammad W, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K, Kim MJ, Adnan M, Lee IJ (2014) Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth. J Plant Interact 9:731–737.

    Article  CAS  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and Indole acetic acid. PLoS ONE 11:1-19.

    Article  CAS  Google Scholar 

  • Kim JW, Chori HG, Song JH, Kang KS, Shim SH (2018) Bioactive secondary metabolites from an endophytes fungus Phoma sp PF2 derived from Artemisia princeps pamp. J Antibiot 72:174–177.

    Article  Google Scholar 

  • Kong F, Yang Y, Liu P, Dong T, Zhu W (2014) Thiodiketopiperazines from the Marine-Derived Fungus Phoma sp. OUCMDZ-1847. J Nat Prod 77:132–137.

    Article  CAS  PubMed  Google Scholar 

  • Kumaran RS, Choi YK, Lee S, Jeon HJ, Jung H, Kim HJ (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr J Biotechnol 11:950-960.

    CAS  Google Scholar 

  • Lee MS, Wang SW, Wang GJ, Pang KL, Lee CK, Kuo YH, Cha HJ, Lin RK, Lee TH (2016) Angiogenesis Inhibitors and Anti-Inflammatory Agents from Phoma sp. NTOU4195. J Nat Prod 79:2983–2990.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhai X, Shu Z, Dong P, Ming Q, Qin L, Zheng C (2016) Phoma glomerata D 14: A endophytes from Salvia miltirorrhia that produces Salvionic acid C. Curr Microbiol 73:31-37.

    Article  PubMed  Google Scholar 

  • Li HT, Zhou H, Duan RT, Li HY, Tang LH, Yang XQ, Yang YB, Ding ZT (2019) Inducing secondary metabolite production by co-culture of the endophytic fungus Phoma sp. and the symbiotic fungus Armillaria sp. J Nat Prod 82:1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KH, Wu SH (2019) A new antiviral 14 Nordrimane Sesquiterpanoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75-79.

    Article  CAS  Google Scholar 

  • Loro M, Valero-Jiménez CA, Nozawa S, Márquez LM (2012) Diversity and composition of fungal endophytes in semiarid. Northwest Venezuela. J Arid Environ 85:46–55.

    Article  Google Scholar 

  • Luft L, Confortin TC, Todero I, Chaves Neto JR, Tonato D, Felimberti PZ, Zabot GL, Mazutti MA (2019) Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. Environ Technol 1-27.

    Google Scholar 

  • Maha A, Rukachaisirkul V, Phongpaichit S, Preedanon S, Sakayaroj J (2017) tyrosine and hydantoin derivative from fungus Phoma herbarum PSU-H256 isolated from Hevea brasiliensis. Terahedrone 73:4597-4601.

    Article  CAS  Google Scholar 

  • Maheswari S, Rajagopal K (2013) Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Curr Sci 104:515–518.

    Google Scholar 

  • Mahish PK, Ghritlahare A (2017) Pathogenicity of Phoma chrysanthemicola to Chrysanthemum plants (Asteraceae Family) and Control of Pathogen by Chemical and Biological Approach. Biosci Biotechnol Res Asia 14:1191-1200.

    Article  Google Scholar 

  • Meena H, Hnamte S, Sidhhardha B (2019) Secondary metabolites from endophytic fungi: chemical diversity and application In: advances in Endophytic fungal research. Springer, Cham 1st Edition 145:169.

    Google Scholar 

  • Mishra R, Kushveer JS, Revanthbabu P, Sarma VV (2019) Endophytic fungi and their enzymatic potential In: Advances in Endophytic Fungal Research. Springer, Cham 1st Edition 283:337.

    Google Scholar 

  • Mohamed H, Ebrahim W, Peterson MK, Proksch P (2017) Production of Phytotoxic Polyketide Spiciferone A by Phoma fungicola. Mikol Fitopatol 51:1-2.

    Google Scholar 

  • Moricca S, Ginetti B, Ragazzi A (2012) Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathol Mediterr 51: 587-598.

    Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehoff A, Leary C, Meyer W et al. (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by Clavicipitaceous endophytes. Symbiosis 28:291–302.

    Google Scholar 

  • Nalli Y, Arora P, Khan S, Malik F, Hassan SR, Gupta V, Ali A (2019) Isolation and structural modification of macophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28:260–266.

    Article  CAS  Google Scholar 

  • Oikawa H, Toshima H, Ohashi S, Konig W, Kenmoku H, Sassa T (2001) Diversity of diterpene hydrocarbon in fungus Phoma betae. Tetrahedron Lett 42:2329-2332.

    Article  CAS  Google Scholar 

  • Ostarhage C, Schwibible GM, Wright K (2000) difference between marine and terrestrial Phoma sp as determined by HPLC-DAD and HPLC-MS. Phytochem Anal 11:288-294.

    Article  Google Scholar 

  • Park YH, Chung JY, Ahn DJ, Kwon TR, Lee SK, Bae I, Yun HK, Bae H (2015) Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biological Control 91: 71–81.

    Google Scholar 

  • Paulus B, Kanowski J, Gadek P, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454.

    Article  PubMed  Google Scholar 

  • Peng X, Duan F, He Y, Gao Y, Chen J, Chang J, Ruan H (2020) Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirotrata XJ-2-1. Org Biomol Chem 18:4056-4062.

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236-249.

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Hussain H, Schulz B, Draege S, Krohn K (2010) Two New Metabolites, Epoxydine A and B, from Phoma sp. Helv Chim Acta 93:169-174.

    Article  CAS  Google Scholar 

  • Radhakrishnan R (2018) Introductory Chapter: Need of Bioherbicide for Weed Control, Biological Approaches for Controlling Weeds, Ramalingam Radhakrishnan, IntechOpen. https://doi.org/10.5772/intechopen.77958.

  • Radiastuti N, Bahalwan HA and Susilwati DN (2019) Phylogenetic study of endophytic fungi associated Centella asiatica from Bengkulu and Malaysian accessions based on the ITS rDNA sequence. Biodiversitas 20:1248-1258.

    Article  Google Scholar 

  • Rai MK, Rajak RC (1993) Distinguishing characteristics of some Phoma species. Mycotaxon 48:389–414

    Google Scholar 

  • Rai M, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 35:182-196.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Zimowska B, Ingle AP, Ingle P (2018) Marine deriverd Phoma - the gold mine of bioactive compound. Appl Microbiol Biotechnol 102:9053-9066.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Gade, A., Zimowska, B., Ingle, A.P., Ingle, P. (2020). Harnessing the potential of novel bioactive compounds produced by endophytic Phoma spp. – biomedical and agricultural applications. Acta Sci. Pol. Hortorum Cultus, 19(6), 31–45. https://doi.org/10.24326/asphc.2020.6.3

  • Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25:375-382.

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera N (2011) Diversity of endophytic fungi of Taxus globosa Mexican yew. Fungal Divers 47, 65–74.

    Article  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal Endophytes: diversity and functional roles. New Phytopathol 182:314-330.

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2011) Secondary metabolites In Comprehensive Biotechnology. Elsevier 2nd edition 155:167.

    Google Scholar 

  • Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ et al., (2017) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27:3723-3725.

    Article  CAS  PubMed  Google Scholar 

  • Schaechter M (2011). Eukaryotic Microbes. Academic Press 1st edition.

    Google Scholar 

  • Selim KA, Elkhateeb WA, Tawila AM, El-Beih AA, Abdel-Rahman TM, El-Diwany AI, Ahmed EF (2018) Antiviral and Antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4:49.

    Article  CAS  Google Scholar 

  • Shi T, Qi J, Shao C, Zhao D, Hou X, Wang C (2017) Bioactive Diphenyl Ethers and Isocoumarin Derivatives from a Gorgonian-Derived Fungus Phoma sp. (TA07-1). Mar Drugs 15:1-7.

    Article  Google Scholar 

  • Shibazaki M, Taniguchi M, Yokoi T, Nagai K, Watanabe M, Suzuki K, Yamamoto T (2004) YM215343, a novel antifungal compound from Phoma sp. QN04621. J Antibiot 57:379-382.

    Article  CAS  Google Scholar 

  • Silva GBPG, Silvino KF, Bezerra J, Farias T, Araujo JM and Stamford TLM (2017) Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae). Afr J Microbiol Res 11:1-7.

    Article  CAS  Google Scholar 

  • Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ (1998) Equisetin and a Novel Opposite Stereochemical Homolog Phomasetin, Two Fungal Metabolites as Inhibitors of HIV-1 Integrase. Tetrahedron Lett 39:2243-2246.

    Article  CAS  Google Scholar 

  • Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi. Trends Plant Sci 14: 353-355.

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Polishook JD, White Jr. JF (2012) Endophytic fungi In: Biodiversity of Fungi. Elsevier Academic Press, 1st Edition 1:31.

    Google Scholar 

  • Strobel G, Singh SK, Hassan SRU, Mitchell AM, Geary B, Sears J. (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87-94.

    Article  CAS  PubMed  Google Scholar 

  • Sugano M, Sato A, Lijima Y, Oshima T, Furuya K, Kuwano H, Hata T, Hanzawa H. (1991) Phomactin A: A Novel PAF Antagonist from a Marine Fungus Phoma sp. J Am Chem Soc 113:5463-5464.

    Article  CAS  Google Scholar 

  • Sumilat D, Yamazaki H, Kanno S, Saito R, Watanabe Y, Namikosh M (2017) Biphenyl ether derivatives with protein tyrosine phosphatase 1B inhibitory activity from the freshwater fungus Phoma sp. J Antibiot 70:331–333.

    Article  CAS  Google Scholar 

  • Sun Y, Wang Q, Lu X, Kane I, Kakishima M (2012) Endophytic fungal community in stem and leaves of plant from desert area in China. Mycol Prog 11:781-790.

    Article  Google Scholar 

  • Szucs Z, Plaszko T, Cziaky Z, Szikszai AK, Emri T, Bertoti R et al., (2018) Endophytic fungi from roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate-myrosinase-isothiocyanate system. BMC Plant Biol 18:85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan XM, Zhou Y, Zhou X, Xia X, Wei Y, He L et al., (2018a) Diversity and biodiversity potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep 5:5929.

    Article  Google Scholar 

  • Tan XM, Li YL, Sun LY, Sun BD, Niu SB, Wang MH et al., (2018b). Spiciferones analogs from an endophytic fungus Phoma betae collected from desert plant in West China. J Antibiot 71:613-617.

    Article  CAS  Google Scholar 

  • Teimoori-Boghsani Y, Ganjeali A, Tomislav C, Muller H, Asili J and Berg (2020) Endophytic fungi of Native Salvia abrotanoides Plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol 10:3013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theantana T, Hyde KD, Lumyong S (2009) Asparaginase production by endophytic fungi from Thai medicinal plants: cytotoxicity properties. Int J Integr Biol 7:1-8.

    CAS  Google Scholar 

  • Tiwari R, Singh S, Nain PKS, Rana S, Sharma A, Pranav K, Nain L (2013) Harnessing the hydrolytic potential of phytopathogenic fungus Phoma exigua ITCC 2049 for saccharification of lignocellulosic biomass. Bioresour Technol 150:228-234.

    Article  CAS  PubMed  Google Scholar 

  • Toredo I, Confortin TC, Luft L, Brun T, Ugaldo GA, Almeida TC, Arnemann JA, Zabot GL, Mazutti MA (2018) Formulation of a bioherbicide with metabolites from Phoma sp. Sci Hortic-Amsterdam 241:285-292.

    Article  Google Scholar 

  • Uzma F, Mohan CD, Siddaiah CN, Chowdappa S (2019) Endophytic fungi: Promising source of Novel Bioactive compounds In Advances in Endophytic Fungal Research. Fungal Biology. Springer Cham, 1st Edition 243:265.

    Google Scholar 

  • Verma N, Kumar K, Kaur G, Anand S (2007) L-Asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol 27:45-62.

    Article  CAS  PubMed  Google Scholar 

  • Venkatasubbaiah P, Dyke CGV, Chilton WS (1992) Phytotoxic Metabolites of Phoma Sorghina, A New Foliar Pathogen of Pokeweed. Mycologia 84(5): 715–723.

    Google Scholar 

  • Vikrant P, Verma KK, Rajak RC, Pandey AK (2006) Charcterization of Phytotoxin from Phoma herbarum for management of Pathenium hysterophorus L. J Phytopathol 154:7-8.

    Article  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2011) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93:1231–1239.

    Article  PubMed  Google Scholar 

  • Wang WX, Zheng MJ, Li J, Feng T, Li ZH, Huang R et al., (2019) Cytotoxic polyketides from endophytic fungus Phoma bellidis harbored in Ttricyrtis maculate. Phytochem Lett 29:41-46.

    Article  CAS  Google Scholar 

  • Weber RW, Stenger E, Meffert A and Hahn M (2004) Brefeldin A Production by Phoma medicanginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycological Research, 108(6), 662-671.

    Article  CAS  PubMed  Google Scholar 

  • Wijerante EMK, He H, Franzblau SG, Hoffman AM, Leslie AA (2013) Phomapyrrolidones A–C, Antitubercular Alkaloids from the Endophytic Fungus Phoma sp. NRRL 46751. J Nat Prod 76:1860-1865.

    Article  Google Scholar 

  • Wilson DM, Burlingame AL (1974) Deuterium and carbon-13 tracer studies of ethanol metabolism in the rat by 2H, 1H-decoupled 13C nuclear magnetic resonance. Biochem Biophys Res Commun 56:828-835.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2008) Quantitative metabolomics using NMR. Trends Anal Chem 27:228-237.

    Article  CAS  Google Scholar 

  • Wishart DS (2011) Advances in metabolite identification. Bioanalysis 3:1769-1782.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Chen Z, Ding W, Liu Y, Ma Z (2018) Chemical constituent of fermentation extract of Marine fungi Phoma sp.CZD F11 and Aspergillus sp.CZD-18 from Zhoushan Archipelago, China. Nat Prod Res, 32:1562-1566.

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Kim S, Bang S, Lee HJ, Liu C, Park CI et al., (2014) Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J Antibiot 68:139–141.

    Article  Google Scholar 

  • Zaiyou J, Meng L, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96:e7406.

    Google Scholar 

  • Zhang W, Krone K, Egold K, Draeger S, Schulz B (2008) Diversity of antimicrobial pyrenophorol derivatives from an endophytic fungus Phoma sp. Eur J Org Chem 25:4320-4328.

    Article  Google Scholar 

  • Zhang H, Xiong Y, Zhao H, Yi Y, Zhang C, Yu C et al., (2012) An Antimicrobial compound of from the endophytic fungi from Phoma sp. isolated from medicinal plant Taraxacum mongolicum. J Taiwan Inst Chem Eng 44:177-181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahish, P.K., Singh, S., Chauhan, R. (2022). Bioactive Secondary Metabolites from Endophytic Phoma spp.. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_11

Download citation

Publish with us

Policies and ethics