Skip to main content

Potential Role of Phoma spp. for Mycogenic Synthesis of Silver Nanoparticles

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

Fabrication of metal nanoparticles till date has been reported by the use of several biological agents like bacteria, fungi, yeast, algae, and plants. Among all the biological systems used for the synthesis of metal nanoparticles, fungal system scores over the other biological system. The possible use of fungi has gained much importance, as they are easy to culture in bulk. Also, the extracellular secretion of biomolecules has an added advantage in the downstream processing and handling of biomass as well as reusability of biomass. The genus Phoma is a cosmopolitan fungus with a worldwide distribution. Various species of the genus Phoma produce numerous important secondary metabolites which include phytotoxins, antitumor, and anti-HIV agents.

Phoma species are capable of synthesizing the metal nanoparticles extracellularly in general and silver nanoparticles (AgNPs) in particular. Phoma is known for synthesis of spherical AgNPs, silver nanorods, and other types of metal nanoparticles efficiently. Myconanotechnology has been playing a crucial role in the twenty-first century in solving various problems in the field of agriculture, electronics, and medicine. The broad range of applications shown by nanomaterials is mainly due to large surface area and small size. The physicochemical properties of nanoparticles differ from the bulk material; the search of material with the novel properties has attracted the attention of several researchers to harness the multiple functionalities of nanoparticles.

The process of extracellular metal nanoparticle synthesis is rapid in the presence of sunlight, easy, eco-friendly, simple, safe, and scalable. Immobilization of fungal biomass provides a way for large-scale production of nanoparticles. Understanding the mechanistic aspects of AgNP synthesis by Indian Phoma spp. has the potential to provide relatively rapid and ecologically “clean” nanofactories for large-scale production of metallic nanoparticles in general and AgNPs in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, S. C.and Mishra, J. K. (1981). Phoma lukhnownsis sp. Nov. From Indian alkaline soils. Current Science, 50 (13): 600.

    Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V. and Sastry, M. (2003). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 14: 824-828

    Article  CAS  Google Scholar 

  • Aveskamp, M.M., Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity, 31:1-18.

    Google Scholar 

  • Balis, E., Velegraki, A., Fragou, A., Pefanis, A., Kalabokas, T. and Mountokalakis, T. (2006). Lung mass caused by Phoma exigua. Scandinavian Journal of Infectious Diseases, 38(6): 552–555.

    Article  PubMed  Google Scholar 

  • Bansal, V., Ahmad, A., Sastry, M. and Rautray, D. (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Material Chemistry, 14: 3303–3305.

    Article  CAS  Google Scholar 

  • Basavand, E., Babaeizad, V., Mirhosseini, H.A. and Niri, M.D., (2020). Occurrence of leaf spot disease caused by Phoma herbarum on oregano in Iran. Journal of Plant Pathology, 102: 575-576.

    Article  Google Scholar 

  • Basavaraja, S., Balaji, S. D., Legashetty, A., Rasab, A. H. and Venkatraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43(5): 1164-1170.

    Article  CAS  Google Scholar 

  • Bawaskar, M., Gaikwad, S., Ingle, A., Rathod, D., Gade, A., Duran, N., Marcato, P. and Rai, M. (2010). A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Current Nanoscience, 6: 376-380.

    Article  CAS  Google Scholar 

  • Bhainsa, K. C. and D’souza, S. K. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47: 160-164.

    Google Scholar 

  • Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P and Rai, M. K. (2009). Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology, 48: 173-179.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria, E., Vilchis-Nestor, A.R. and Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83(1):42-48.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. C, Lin, Z. H. and Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Letters in Applied Microbiology, 37:105-08.

    Article  CAS  PubMed  Google Scholar 

  • Colmán, A.A., Alves, J.L., da Silva, M. and Barreto, R.W., (2018). Phoma destructiva causing blight of tomato plants: a new fungal threat for tomato plantations in Brazil?. Tropical Plant Pathology, 43(3): 257-262.

    Article  Google Scholar 

  • Davari, M. and Hajieghrari, B. (2008). Phoma negriana, a new invasive pathogen for Moghan’s vineyards in Iran. African Journal of Biotechnology, 7(6):788-791.

    Google Scholar 

  • Deb, D., Khan, A. and Dey, N., (2020). Phoma diseases: Epidemiology and control. Plant Pathology, 69(7):1203-1217.

    Article  CAS  Google Scholar 

  • Dorenbosch, M. M. J. (1970). Key to nine ubiquitous soil-borne Phoma like fungi. Persoonia, 6:1-14.

    Google Scholar 

  • Duran, N., Marcato, P. D., Alves, O. L., D’Souza, G. and Esposito, E. (2005). Mechanistic ‘aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3: 8-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayaz, M., Tiwary, C.S., Kalaichelvan, P.T. and Venkatesan, R. (2010). Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids and Surfaces B: Biointerfaces, 75: 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Gade, A., Rai, M., Karwa, A., Bonde, P and Ingle, A. (2007). Extracellular biosynthesis of silver nanoparticles by Pleurotus species. In International Medical Mushroom Conference – 4 (IMMC-4). Ljubljana (Slovenia) from 23 to 37th Sept. 2007. International Journal of Medicinal Mushroom. 9(3-4): 298-299.

    Google Scholar 

  • Gade, A. K, Bonde, P. P., Ingle, A. P., Marcato, P. D., Duran, N. and Rai, M. K. (2008). Exploitation of Aspergillus niger for fabrication of silver nanoparticles. Journal of Biobased Material and Bioenergy, 2 (3): 243-247.

    Article  Google Scholar 

  • Gade, A. K., Ingle, A. P., Whiteley, C. and Rai, M. (2010). Mycogenic metal nanoparticles: progress and applications. Biotechnology Letters, 32 (5): 593-600.

    Article  CAS  PubMed  Google Scholar 

  • Gade, A. K. Rai, M. K. and Kulkarni, S. K. (2011). Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. International Journal of Green Nanotechnology, 3 (3): 153-159.

    Article  CAS  Google Scholar 

  • Gade, A. K., Gaikwad, S. C., Duran, N. and Rai, M. K. (2013) Screening of different species of Phoma for the synthesis of silver nanoparticles, Biotechnology and applied Biochemistry, 60 (5): 482-493

    Article  CAS  PubMed  Google Scholar 

  • Gade, A. K., Gaikwad, S. C., Duran, N. and Rai, M. K. (2014) Green synthesis of silver nanoparticles by Phoma glomerata, Micron 59: 52-59.

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Adams J, Britt DW, Shen FA, McLean JE, Jacobson A, Kim Y-C, Anderson A J (2016) Ag nanoparticles generated using bio-reduction and-coating cause microbial killing without cell lysis. BioMetals, 29 (2): 211-213.

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanaga, A., Incoronato, N., Galdiero, S. and Galdiero, M. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 8: 4303-4314.

    PubMed  PubMed Central  Google Scholar 

  • Garibaldi, A., Gilardi, G., Gullino, M.L. (2010). First Report of Leaf Spot Caused by Phoma multirostrata on Fuchsia × hybrida in Italy. Plant Diseases, 94(3):382.1

    Article  Google Scholar 

  • Gilardi, G., Matic, S., Gullino, M.L. and Garibaldi, A., (2017). First report of Phoma herbarum causing leaf spot of woodland sage (Salvia nemorosa) in northern Italy. Plant Disease, 101(10):1824.

    Article  Google Scholar 

  • Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. and Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current. Nanoscience, 4: 141–144.

    Article  CAS  Google Scholar 

  • Ingle, A., Gade, A., Bawaskar, M. and Rai, M. (2009). Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11 (8): 2079-2085.

    Article  CAS  Google Scholar 

  • Jaidev, L. R. and Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 81(2):430-433.

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan, K., Manivannan, S., Nabeel, M. A. and Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71: 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Kövics, G.J., Sándor, E., Rai, M. and Irinyi, L. (2013). Phoma-like fungi on soybeans. Critical Reviews in Microbiology, 40(1):49-62.

    Article  PubMed  Google Scholar 

  • Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K. and Paknikar, K. M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14: 95-100.

    Article  CAS  Google Scholar 

  • Kukhar, E., Smagulova, A. and Kiyan, V., (2020). Biological properties of Phoma macrostoma related to non-dermatophyte onychomycosis. Medical Mycology Case Reports, 27:55-58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez, R.C. and Gomez-Gomez, L. (2009). Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiology and Biochemistry, 47(5):426-434.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, P. N. and Thirumalachar, M. J. (1959). Studies on some Indian soil fungi I some new or noteworthy Sphaeropsidales. Sydowia, 13: 143–147.

    Google Scholar 

  • Mehra, R. K. and Winge, D. R. (1991). Metal ion resistance in fungi: Molecular mechanisms and their regulated expression. Journal of Cellular Biochemistry, 45(1): 30-40.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadian, A., Shojaosadati, S. A. and Habibi-Rezaee, M. (2007). Fusarium oxysporum mediates photogeneration of silver nanoparticles. Scientia Iranica, 14: 323-326.

    CAS  Google Scholar 

  • Narendra, D.V. and Rao, V.G. (1974). A new entomogenous species of Phoma. Mycopathologia et mycologia applicata, 54:135-140.

    Article  Google Scholar 

  • Pellegrino, C, Gilardi, G, Gullino, M. L. and Garibaldi, A. (2010). Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica, 38:159-165.

    Article  Google Scholar 

  • Prasad, K. and Jha, A. K. (2010). Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. Journal of Colloid and Interface Science, 342: 68–72.

    Article  CAS  PubMed  Google Scholar 

  • Quiroz, F.J., Molina, J.E. and Dosio, G.A.A., (2014). Black stem by Phoma macdonaldii affected ecophysiological components that determine grain yield in sunflower (Helianthus annuus L.). Field Crops Research, 160: 31-40.

    Article  Google Scholar 

  • Rai MK. (1985). Taxonomic studies of species of Phoma isolated from air. J Econ Taxon Bot. 7:645–647.

    Google Scholar 

  • Rai, M. K. (1989). Phoma sorghina infection in human being. Mycopathologia, 105(3):167–170.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M. K. (2004). New and emerging Phoma species as human and animal pathogens, In; Fungi in human and animal health, Scientific Publisher, Jodhpur, Rajasthan, pp 69-80.

    Google Scholar 

  • Rai M. K. and Gade A. K. (2009). Strategic Synthesis of Nanoparticles by Mycetes Biotechnology of Industrial Microorganisms – An Industrial approach (Ed. Maheshwari), I K International, New Delhi, pp 322-332.

    Google Scholar 

  • Rai, J. N. and Misra, J. K. (1981). A new species of Phoma from Indian alkaline soil. Current Science, 50: 377.

    Google Scholar 

  • Rai, M., Yadav, A., Bridge, P. and Gade, A. (2009a). Myconanotechnology: a new and emerging science. In Applied Mycology, CAB international. 258-267.

    Google Scholar 

  • Rai, M. K., Deshmukh, P., Gade, A., Ingle, A., Kövics, G. J. and Irinyi, L. (2009b). Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Critical Reviews in Microbiology, 35 (3): 182-196.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A. and Gade, A. (2010). Mycofabrication, mechanistic aspects and multifunctionality of metal nanoparticles-where are we? And where should we go? In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Ed. Mendez-Vilas, A.) pp 1343-1354.

    Google Scholar 

  • Rai, M., Ingle, A., Gade, A. and Duran, N. (2015a). Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. IET Nanobiotechnology, 9(2), 71-75.

    Article  PubMed  Google Scholar 

  • Rai M, Ingle A. P., Gade A. K., Duarte M.C.T., and Duran N (2015b) Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnology, 9 (5), 280-287.

    Article  PubMed  Google Scholar 

  • Rai, M., Gade, A., Zimowska, B., Ingle, A.P. and Ingle, P., (2018). Marine-derived Phoma—the gold mine of bioactive compounds. Applied Microbiology and Biotechnology, 102(21): 9053-9066.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Gade, A., Zimowska, B., Ingle, A.P., Ingle, P. (2020). Harnessing the potential of novel bioactive compounds produced by endophytic Phoma spp. – biomedical and agricultural applications. Acta Sci. Pol. Hortorum Cultus, 19(6), 31–45. https://doi.org/10.24326/asphc.2020.6.3

  • Rai, M., Bonde, S., Golinska, P., Trzcińska-Wencel, J., Gade, A., Abd-Elsalam, K., Shende, S., Gaikwad, S. and Ingle, A., (2021). Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. Journal of Fungi, 7(2):139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos, M.M., Morais, E.D.S., Sena, I.D.S., Lima, A.L., de Oliveira, F.R., de Freitas, C.M., Fernandes, C.P., de Carvalho, J.C.T. and Ferreira, I.M., (2020). Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon. Biotechnology letters, 1-11.

    Google Scholar 

  • Rao, S. and Thirumalachar, U. (1981). Phoma exigua infecting brinjal leaves. Indian Phytopathology, 34: 37.

    Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M. I. and Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycetes. Current Science, 85 (2): 162-170.

    CAS  Google Scholar 

  • Shende, S., Gade, A., and Rai, M. (2017). Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environmental Chemistry Letters, 15(3): 427-434.

    Article  CAS  Google Scholar 

  • Shende, S., Bhagat, R., Raut, R., Rai, M. and Gade, A., (2021). Myco-fabrication of Copper nanoparticles and its effect on crop pathogenic fungi. IEEE Transactions on Nanobioscience. https://doi.org/10.1109/tnb.2021.3056100.

  • Shivshankar, S., Ahmad, A., Pasricha, R. and Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Material Chemistry, 13: 1822-1826.

    Article  Google Scholar 

  • Shukla, N. P., Raja, R. K., Agrawal, G. P. and Gupta, D. K. (1984). Phoma minutispora as a human pathogen. Mykosen, 27:255-258.

    Article  CAS  PubMed  Google Scholar 

  • Sugano, M., Sato, A. L., Oshima, T., Furuya, K., Kuwano, H., Hata, T. and Hanzawa, H. (1991). Phomactin A: A novel PAF antagonist from a marine fungus Phoma sp. Journal of American Chemical Society, 113 (14):5463-5464.

    Article  CAS  Google Scholar 

  • Suryavanshi, P., Pandit, R., Gade, A., Derita, M., Zachino, S., and Rai, M. (2017). Colletotrichum sp.-mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT-Food Science and Technology, 81, 188-194.

    Google Scholar 

  • Suh, M. K. (2005) Phaeohyphomycosis in Korea. Japanese Journal of Medical Mycology, 46:67-70.

    Article  PubMed  Google Scholar 

  • Tullio, V., Banche, G., Allizond, V., Roana, J., Mandras, N., Scalas, D., Panzone, M., Cervetti, O., Valle, S., Carlone, N. and Cuffini, A. M. (2010). Non-dermatophyte moulds as skin and nail foot mycosis agents: Phoma herbarum, Chaetomium globosum and Microascus cinereus. Fungal Biology, 114(4):345-349.

    Article  PubMed  Google Scholar 

  • Vahabi, K., Mansoori, G. A., and Karimi, S. (2011). Biosynthesis of Silver Nanoparticles by Fungus Trichoderma reesei (A Route for Large-Scale Production of AgNPs). Insciences Journal, 1(1): 65-79.

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the realworld: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volesky, B. and Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11: 235–250.

    Article  CAS  PubMed  Google Scholar 

  • Warcup, J. H. (1950). The soil-plate method for isolation of fungi from soil [L]. Nature, 166: 117-118.

    Article  CAS  PubMed  Google Scholar 

  • Win, T.T., Khan, S. and Fu, P., (2020). Fungus-(Alternaria sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. Journal of Nanotechnology, 2020.

    Google Scholar 

  • Yarmalovich, V.A. and Siaredzich, M.O., (2019). Phoma Blight of Planting Stock of Pinus sylvestris L. and Picea aAbies L. in Forest Nurseries of Belarus. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II, 12(2), pp. 27-36.

    Google Scholar 

  • Zaitz, C., Heins-Vaccari, E. M., De Freitas, R. S., Arriagada, G. L. H., Ruiz, L., Totoli, S. A. S., Marques, A. C., Rezze, G. G., Múller, H., Valente, N. S. and Lacaz, C. (1997). Subcutaneous Pheohypomycosis caused by Phoma cava. Report of a case and review of the literature. Revista do Instituto de Medicina Tropical de São Paulo, 39: 43-48.

    Google Scholar 

  • Zhang, W., Qiao, X. and Chen, J. (2007). Formation of silver nanoparticles in SDS Microemulsion. Materials Chemistry and Physics, 109: 411-416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gade, A., Shende, S., Rai, M. (2022). Potential Role of Phoma spp. for Mycogenic Synthesis of Silver Nanoparticles. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_17

Download citation

Publish with us

Policies and ethics